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Accurate survival prediction of breast cancer holds significant meaning for improving

patient care. Approaches using multiple heterogeneous modalities such as gene

expression, copy number alteration, and clinical data have showed significant

advantages over those with only one modality for patient survival prediction. However,

existing survival prediction methods tend to ignore the structured information between

patients and multimodal data. We propose a multimodal data fusion model based

on a novel multimodal affinity fusion network (MAFN) for survival prediction of breast

cancer by integrating gene expression, copy number alteration, and clinical data. First, a

stack-based shallow self-attention network is utilized to guide the amplification of tiny

lesion regions on the original data, which locates and enhances the survival-related

features. Then, an affinity fusion module is proposed to map the structured information

between patients and multimodal data. The module endows the network with a stronger

fusion feature representation and discrimination capability. Finally, the fusion feature

embedding and a specific feature embedding from a triple modal network are fused

to make the classification of long-term survival or short-term survival for each patient.

As expected, the evaluation results on comprehensive performance indicate that MAFN

achieves better predictive performance than existing methods. Additionally, our method

can be extended to the survival prediction of other cancer diseases, providing a new

strategy for other diseases prognosis.

Keywords: deep learning, cancer survival prediction, self-attention mechanism, affinity network, multimodal

data fusion

1. INTRODUCTION

Breast cancer is the second leading cause of death from cancer in women (Bray et al., 2018;
McKinney et al., 2020). According to the estimation by American Cancer Society, there are more
than 2.3 million new cases of invasive breast cancer diagnosed among females and approximately
685,000 cancer deaths in 2020 (Sung et al., 2021). Accurate survival prediction is an important goal
in the prognosis of breast cancer patients, because it can aid physicians make informed decisions
and further guide appropriate therapies (Sun et al., 2007). However, the high-dimensional nature
of the multimodal data makes it hard for physicians to manually interpret these data (Cheerla
and Gevaert, 2019). Considering this situation, it is urgent to develop computational methods to
provide efficient and accurate survival prediction (Cardoso et al., 2019; Zhu et al., 2020).
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The goal of cancer survival prediction is to predict whether
and when an event (i.e., patient death) will occur within a given
time period (Gao et al., 2020). In recent years, a considerable
amount of work has been done to predict the survival of
breast cancer patients by applying statistical or machine learning
methods to single-modular data, especially gene expression data
(Wang et al., 2005; Nguyen et al., 2013). For example, Van
De Vijver et al. (2002) used multivariate analysis on gene
expression data to identify 70 gene prognostic signatures. Xu
et al. (2012) utilized support vector machine (SVM) to select key
features from gene expression data for the survival prediction
of breast cancer. However, these methods solely based on gene
expression data still leave room for improvement, albeit with
high performance (Alizadeh et al., 2015; Lovly et al., 2016).
Especially with the advancement of next-generation sequencing
technologies, there is a tremendous amount of multimodal data
being generated, such as gene expression data, clinical data, and
copy number alteration (CNA) (Peng et al., 2005). These data are
extensively providing information for the diagnosis of cancer.

Recently, researchers have begun to integrate multimodal data
to predict survival of cancer patients. For example, Sun et al.
(2018), for the first time, developed a multimodal deep neural
network that uses decision fusion to integrate multimodal data.
Cheerla and Gevaert (2019) proposed an unsupervised encoder
to compress clinical data, mRNA expression data, microRNA
expression data, and histopathology whole slide images (WSI)
into single feature vectors for each patient; these feature vectors
were then aggregated to predict patient survival. Nikhilanand
et al. (Arya and Saha, 2020) introduced a STACKED_RF method
based on a stacked integrated framework combined with random
forest in multimodal data. These results show that better
performances can be achieved with multimodal data. Although
many efforts have been dedicated to integrating multimodal data
for cancer survival prediction, it remains a challenging task. First,
features associated with survival only exist in tiny lesion regions,
thus the feature embedding extracted from multimodal data
might be dominated by excessive irrelevant features in normal
areas and yield restrained classification performance. Second,
there is abundant structured information between patients and
multimodal data.

In this paper, we address the above two challenges by
proposing a novel MAFN for integrating gene expression, CNA,
and clinical data to predict survival of breast cancer patients.
OurMAFN framework includes attention module, affinity fusion
module, and deep neural networks (DNN) module. In order to
capture critical features in the tiny lesion regions, we utilized
attention mechanism to adaptively localize and enhance the
features associated with the supervised target while suppressing
background noise. However, the traditional attentionmechanism
(Gao et al., 2018; Chen et al., 2019; Uddin et al., 2020) is
not compatible with the need for multimodal data, because its
ignorance of the heterogeneity of multimodal data would lead
to great weight assigned to a few features (Gui et al., 2019).
Therefore, we applied a shallow attention net to each feature,
which can effectively extract key information from multimodal
data, fully taking the distinction and uniformity of heterogeneous
data into account. Additionally, we utilized affinity fusionmodule

to calculate fusion feature representation and to model complex
intra-modality and inter-modality relations with the knowledge
of structured information between patients and multimodal data.
Meanwhile, the DNN module was used to compensate the lack
of single-modality specific information on fusion features. The
main contributions of this paper can be summarized as follows:

(1) An attention module is proposed to adaptively
localize and enhance the features associated with
survival. By providing a shallow attention network
for each feature, mechanism alleviates the problem
of few features with great weight caused by
data heterogeneity.

(2) A novel feature fusion method is proposed, which constructs
an affinity network to fuse multimodal data more effectively.

(3) A multimodal data fusion method based on affinity network
(MAFN) is proposed by integrating gene expression data,
CNA data, and clinical data. We validate the effectiveness of
MAFN and suggest building blocks on four exposed datasets.
The experimental results show that MAFN performs better
compared with existing research methods to the best of our
knowledge (Jefferson et al., 1997; Xu et al., 2012; Nguyen
et al., 2013; Sun et al., 2018; Chen et al., 2019; Arya and Saha,
2020).

The rest of this paper is organized as follows: section 2 presents
the details of our proposed method and datasets. Furthermore,
the experimental results are discussed in section 3 and some
conclusions are drawn in section 4.

2. MATERIALS AND METHODS

2.1. Materials
In this study, we used 4 independent breast cancer datasets,
containing in total 3,380 samples (Table 1). We downloaded
METABRIC dataset from cBioPortal (Curtis et al., 2012), and
other datasets from the University of California Santa Cruz
(UCSC) cancer browser website (Goldman et al., 2018). The
downloaded datasets consist of three sub-data, including gene
expression data, CNA data, and clinical data. We used these
datasets in the following two steps. The first step was to obtain
the labels of survival-risk classes from the clinical data of each
dataset. Similar to the previous work by Khademi and Nedialkov
(2015), each sample was labeled as a good sample if the patient
survive more than 5 years, and labeled as a poor sample if the
patient did not survive more than 5 years. The second was to
randomly divide each dataset into three groups, 80% of the
samples used as training set, 10% used as test set, and the
remaining 10% used as verification set.

2.2. Data Preprocessing
The preprocessing strategies for three sub-data (i.e., gene
expression data, CNA data, and clinical data) were implemented
as below. First, we matched the sample labels shared among three
sub-data. Second, we filtered out the samples that have feature
missing values (NA) of more than 20% and features with missing
values (NA) in more than 10% samples for each sub-data. Then
we estimated the remaining missing values using the k-nearest
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TABLE 1 | Summary of breast cancer datasets.

Name Total samples Poor samples Good samples Reference

METABRIC 1,980 491 1,489 Pereira et al., 2016

TCGA-BRCA 1,056 813 243 The Cancer Genome Atlas

GSE8757 171 25 146 Chin et al., 2006

GSE69035 173 63 110 Zhang et al., 2009

Total 3,380 1,392 1,988 This work

TABLE 2 | The number of feature after feature selection.

Name Gene expression data CNA Clinical data

METABRIC 400 200 25

TCGA-BRCA 400 200 23

GSE8757 300 300 17

GSE69035 400 300 21

neighbor algorithm (Troyanskaya et al., 2001; Ding et al., 2016).
Third, the gene expression features were standardized and further
processed into three categories according to two thresholds
(Sun et al., 2018): under-expression (–1), normal expression
(0), and over-expression (1). These thresholds depend on the
variance of the gene. A gene with high variance would receive a
higher threshold than a gene with low variance. For CNA data,
we directly utilized the original data with five discrete values:
homozygous deletion (–2); hemizygous deletion (–1); neutral/no
change (0); gain (1); high level amplification (2). For clinical data,
non-numerical clinical data were digitized by one-hot encoding.

Feature Selection: The “curse of dimensionality” is a typical
problem when using multimodal data (Tan et al., 2015; Nguyen
et al., 2020). For example, the gene expression data and CNA
data in METABRIC dataset contain 24,369 and 22,545 genes,
respectively. Modified mRMR (MRMR) (Peng et al., 2005) is
one of the common dimensionality reduction algorithms in a
wide range of applications. Hence, we applied modified mRMR
method (fast-MRMR) (Ramírez-Gallego et al., 2017) to select
features from the original dataset without significant loss of
information. Similar to the previous work (Zhang et al., 2016;
Sun et al., 2018), we used the area under curve (AUC) value as
the criteria to evaluate the performance of the features. In detail,
we roughly searched the best N features from 200 to 600 with a
step size of 100 (Table 2).

2.3. Methods
In this section, we introduce the detailed design of MAFN for
predicting the survival of breast cancer patients. The goal of
MAFN is to distinguish between poor samples and good samples.
The multimodal data as input consists of gene expression data,
CNA data, and clinical data. It is expressed as follows:

X =
{
Xg ,Xc,Xclin

}
∈ R

N×d (1)

where d = (m+ n+ c), and m, n, and c represent the dimension
of the gene expression data, the CNA data, and the clinical data,
respectively, and N is the number of patients.

2.3.1. Attention Module

In order to adaptively localize and enhance the features associated
with survival, we used an attention mechanism framework to
guide our method. Previous attention mechanism-based studies
for cancer survival prediction generate feature weights uniformly
on all feature dimensions (Gao et al., 2018; Chen et al., 2019),
which may not be a good choice for heterogeneous data sources.
Because the heterogeneity of data results in few features of a
single modal assigned with relatively large weights and the loss of
details in the feature set.We argue that different modalities of one
patient together reflect the patient’s survival risk. To address this
issue, in MAFN we propose attention module that is inspired by
recent achievement in self-attention (Gui et al., 2019). We used a
dedicated shallow Attention Net for each feature in X, alleviating
the problem of data heterogeneity. The module consists of three
main parts: (1) embedding layer; (2) Attention Net; and (3)
sigmoid normalization.

First, an embedding layer network was used to extract the
intrinsic information (denoted as E) from the raw input X ∈

R
N×d and eliminate noise. At the same time, the gene expression

data and CNA data from large sparse domain were mapped to the
dense matrix. The embedding layer is calculated as follows:

E = σ (XTWE + bE) (2)

whereWE and bE are trainable weight matrices, and σ (.) denotes
activation function Relu(). The size of the embedding layer is
EN , which is generally smaller than the size of the original
input feature. In this process, the major part of information was
retained, while some redundant information was discarded on
the contrary.

Second, a stack-based shallow self-attention network was used
to seek the probability distribution for each feature (Figure 1,
attention module), respectively. Using E ∈ R

N×EN extracted by
the embedding layer as the input of each Attention Net, the kth
feature’s AttentionNet (L layer) output weight pk is then given by:

pk = F1→L(E) = f ◦L f
◦
L−1 . . .

◦f1(E) (3)

where f ◦L f
◦
L−1 = fL(fL−1(.)). For the layer i of the given Attention

Net, fi(.) is calculated as follows:

fi(x) = σ (Wk
i E

k
i−1 + bki ) (4)
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FIGURE 1 | The overall process of our multimodal affinity fusion network (MAFN) model for the breast cancer survival prediction. It mainly includes three parts: (1)

attention module adaptively localize and enhance the features associated with survival; (2) affinity fusion module extracts multimodal data fusion features; (3) DNN

module extracts each modal specific feature.

where Eki−1 is the output of i-1 hidden layer in the kth Attention

Net.Wk
i and b

k
i are trainable parameters of this layer, σ (.) denotes

activation function tanh().
The outputs of all shallow Attention Nets were integrated

into an attention matrix A =

{
pk|k = 1, 2, . . . , d

}
∈ R

N×d. In

order to prevent the saturation of neuron output caused by the
excessive absolute value of the weight, the sigmoid function was
used to normalize:

A′ = sigmoid(A) (5)

Finally, the weighted feature T was the dot product⊙ of original
data X and attention matrix A′. The final weighted feature of the
multimodal data is represented as follows:

T =
{
Tg ,Tc,Tclin

}
∈ R

N×d = X ⊙ A′ (6)

2.3.2. Affinity Fusion Module

We propose a fusion method for multimodal data based on
affinity network. It consists of three main parts: (1) construction
of a bipartite graph; (2) one-mode projection of the bipartite
graph; and (3) extraction of fusion feature.

Bipartite Graph: In order to capture the structured
information between patients and multimodal data, we utilized
the gene expression data and CNA data to construct a bipartite.
According to the previous method (Sun et al., 2018; Chen
et al., 2019), the features from gene expression data and CNA
data are standardized and further processed into three and five
categories in data preprocessing, respectively. Among them, if the
feature value is 0, it is regarded as normal expression, otherwise
abnormal expression.

First, set GB = (V ,E) as an undirected bipartite graph. Vertex
V consists of two mutually disjoint subsets, namely gene node
set and patient node set {p-nodes, g-nodes}. A node in g-nodes
represents a feature from gene expression data or CNA data, as
shown in the bipartite graph in Figure 2. For each patient, an

edge will be built between the patient node and a gene node, only
if the gene node value is abnormal expression (non-zero). Finally,
we constructed a patient-feature bipartite graph. Obviously, we
could intuitively understand gene expression data and CNA data
affecting patients from the patient-gene bipartite graph.

In the bipartite graph, the number of the patient nodes is
N and the gene nodes is (m+n). Set B ∈ [1, 0]N×(m+n) as the
bipartite graph relationship matrix, then

bij =

{
1, pigj ∈ E
0, otherwise

(7)

where E is a set of edges between p-nodes and g-nodes, bij is
the element value in B, which indicates the relation between
patient i and gene j. Each row of matrix B represents the link
relationship of a node in P-nodes, and each column represents
the link relationship of a node in g-nodes.

One-mode projection: In order to compute the affinity
network frommultimodal data (establish the connection between
different modalities), the bipartite graph relationship matrix B
was projected to the g-nodes set through one-mode projection
(Le and Pham, 2018). For each patient node pi, we defined a
sparse matrix Gi on the vertex set g-nodes. If any two gene
nodes have edges with pi, an edge will be built between the two
gene nodes. The matrix Gi ∈ [0, 1](m+n)×(m+n) was computed
as follows:

gjk =

{
1, bij = 1 and bik = 1
0, otherwise

(8)

where gik is the element value in Gi, which indicates the relation
between gene j and k. Then the affinity network G was computed
as follows:

G =

N∑

i

Gi (9)

Frontiers in Genetics | www.frontiersin.org 4 August 2021 | Volume 12 | Article 709027

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guo et al. MAFN

FIGURE 2 | The overview of bipartite graph and one-mode projection. With

the input gene expression and copy number alteration (CNA) data, (1) bipartite

graph expresses the structured relation between patients and multimodal

data, e.g., the edges between patient pi and gj (in gene expression data) or cj
(in CNA data); (2) the projection of gene, which establishes the connection of

different modalities by one-mode projection.

where N is the number of patient nodes. G(j, k) indicates the
weight between gene j and k.

Further Prune “Weak” Edges: For G, edges with small weights
are more likely to be noise. Hence, we pruned “weak” edges by
constructing a KNN graph. We defined the affinity matrix G′

as follows:

G′ = ψ(G, k) (10)

where ψ(., k) is the near neighbor chosen function. It keeps the
top-k values for each row of a matrix and sets the others to zero.

Normalization: A feasible way is to obtain normalized affinity
matrix by degree matrix: Ĝ′ = D−1G′, D is the diagonal matrix

whose entries D(i, i) =
∑

j G
′
ij, so that

∑
j Ĝ

′
ij = 1. However,

this normalization involves self-similarities on the diagonal of Ĝ′

matrix, which may lead to numerical instability. One way (Peng
et al., 2005) to perform a better normalization is as follows:

Ĝ′
ij =





G′
ij

2
∑

j∈Nk(i)
G′
ij
, j 6= i

1
2 , j = i

(11)

where Nk(i) is the indexes of k nearest neighbors of gene i. This
normalization method can take out the diagonal self-similarity,

and
∑

j Ĝ
′
ij = 1 is still valid.

Extract Fusion Features: We utilized the affinity matrix to
propagate features. Before this, weighted features of the gene
expression and CNA modalities were concatenated in the row
dimension, each row of which stores features of a sample:

Z = [TG; Tc] (12)

Inspired by the graph convolutional neural network, we extracted
the fusion features by the following formula:

Ff = f (Ĝ′,Z(l)) = σ (Z(l)Ĝ′W
(l)
f
) (13)

where Z(0) = Z and W
(l)
f

are trainable parameters of l layer, and

σ (.) denotes activation function tanh().

2.3.3. DNN Module

In order to compensate the lack of single-modality specific
information on fusion features, we utilized DNN module to
extract effective features from each modality. The module
consists of three deep neural networks. The specific features Fi
of each modal were extracted as follows:

Fi = σ (W(l)T
(l)
i + bl), i ∈

{
g, c, clin

}
(14)

where T
(0)
i = Ti,W

(l) is trainable parameters of l layer, b(l) is the
bias vector, σ (.) denotes activation function tanh().

Then, the specific features from DNN module and fusion
features from affinity fusion module were concatenated in the
row dimension:

F =
[
Fg; Fc; Fclin; Ff

]
(15)

Finally, F with multiple fully connected layers was used to predict
the survival of breast cancer patients:

ŷ = sigmoid(σ (W(l)F(l) + b(l))) (16)

where W(l) and b(l) are trainable parameters of l layer, σ (.)
denotes activation function tanh(), and F(l) denotes the final
multimodal representation at the layer l. Finally, we obtained the
final prediction score ŷ with sigmoid function.

2.4. Optimization
For model optimization, MAFN can be trained with supervised
setting. we defined cross entropy loss as objective function. In
addition, we used L2 regularization to prevent overfitting. The
objective function can be defined as follows:

loss(X, y, ŷ) = −
1

n

n∑

i

[
αylog (̂y)+ (1− α)(1− y)log(1− ŷ)

]

+
1

λ

L∑

l=1

‖Wl‖2 (17)

where y is the real label, ŷ is the prediction score, and n is the size
of batch. λ and α are the hyperparameters.

3. RESULTS AND DISCUSSION

3.1. Experimental Settings
We implemented our model using Pytorch on a Nvidia GTX
1080 GPU server. The model was trained with Adam optimizer.
The learning rate was initialized as e-3, and decayed to e-
4 at 6-th epoch. The parameters in section 2.3.1 were set as
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TABLE 3 | Acc, Pre, F1-score, and Recall predictive performance metrics of multimodal affinity fusion network (MAFN) and single-module models.

Dataset Methods Acc Pre F1-score Recall

METABRIC

MAFN(DNN_Affinity_Attention) 0.890 0.905 0.924 0.943

DNN 0.813 0.858 0.879 0.891

DNN_Affinity 0.863 0.880 0.907 0.936

DNN_Attention 0.848 0.884 0.920 0.902

TCGA-BRCA

MAFN(DNN_Affinity_Attention) 0.915 0.921 0.948 0.976

DNN 0.830 0.847 0.889 0.935

DNN_Affinity 0.858 0.935 0.906 0.879

DNN_Attention 0.868 0.900 0.920 0.942

GSE8757

MAFN(DNN_Affinity_Attention) 0.941 0.933 0.824 0.763

DNN 0.725 0.695 0.548 0.894

DNN_Affinity 0.941 0.882 0.833 0.789

DNN_Attention 0.745 0.714 0.566 0.895

GSE69035

MAFN(DNN_Affinity_Attention) 0.876 0.780 0.801 0.810

DNN 0.775 0.683 0.677 0.808

DNN_Affinity 0.876 0.800 0.784 0.769

DNN_Attention 0.764 0.680 0.631 0.692

EN = 128, L = 2, k = 10, and l = 3. Afterward, The
weights between each layer were initialized using normalized
initialization proposed by Glorot and Bengio (Glorot and Bengio,
2010). The weights between layers were initialized from a
truncated normal distribution defined by:

W ∼ T

[
−

√
2

ni + n0
,

√
2

ni + n0

]
(18)

where ni and n0 denote the number of input and output of the
units, respectively.

3.2. Evaluation Metrics
Following (Sun et al., 2007; Arya and Saha, 2020), we adopted
AUC as the evaluation metric, which is widely used in survival
prediction tasks. We plotted the receiver operating characteristic
(ROC) curve to show the interaction between true positive (TP)
and false positive (FP). AUC, Accuracy (Acc), Precision (Pre), F1-
score, and Recall were also used for performance evaluation. The
metrics are evaluated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

Precision =
TP

TP + TN
(20)

Recall =
TP

TP + FN
(21)

F1 =
2Precision× Recall

Precision+ Recall
(22)

where TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative, respectively.

3.3. Ablation Study
We conducted ablation studies to validate the effectiveness of two
crucial components in our proposed MAFN: attention module
and affinity fusion module. We employed the DNN module as
our basic network, namely DNNmodel. Experimental results are
shown in Table 3.

3.3.1. Validation of the Effectiveness of the Attention

and Affinity Fusion Module

(1) Evaluation of attention module: To validate the effectiveness
of attention module, we compared the performance of
DNN model and DNN_Attention model. Figure 3 shows
the AUC values of different model. We can find that
DNN_Attention achieves consistently better performance
than base network on four datasets. For example, the
AUC value of DNN_Attention model is improved by 3.3%
compared with the DNNmodel on METABRIC dataset, and
1.6% on TCGA-BRCA dataset. Furthermore, we calculated
the corresponding Acc, Pre, F1-score, and Recall of all
compared model. In particular, as shown in Table 3, we
observed remarkable improvements of 3.5, 2.6, 4.1, and 1.1%
for the Acc, Pre, F1-score, and Recall onMETABRIC dataset,
respectively. These results verify the advantage of using
attention module for survival prediction of breast cancer in
our proposed MAFN framework by adaptively learning the
weight of each feature sequence within multimodal data.

(2) Evaluation of affinity fusion module: To validate the
effectiveness of our affinity fusion module, we compared
the performance of DNN model and DNN_Affinity model.
As shown in Figure 3, the AUC value of DNN_Affinity
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FIGURE 3 | Comparison of ROC curves produced by multimodal affinity fusion network (MAFN) and single module. (A) is the result in METABRIC dataset; (B) is the

result in TCGA-BRCA dataset; (C) is the result in GSE8757 dataset; (D) is the result in GSE69035 dataset.

model is improved by 8.1% compared with the DNN model
on METABRIC dataset, and 7.0% on TCGA-BRCA dataset.
In addition, in terms of other indicators, DNN_Affinity
model also achieves corresponding improvement (as shown
in Table 2). These results demonstrate that affinity fusion
module plays a significant role in compensating for that
loss of information of specific features and improving the
performance of breast cancer prediction.

Furthermore, we compared the results of MAFN
(DNN_Affinity_Attention) model with the model based on
a single module improved algorithm (DNN_Affinity and
DNN_Attention) on different dataset. As shown in Table 2, the
results show that the complementarity of affinity fusion module
and attention module.

3.3.2. Validation of the Effectiveness of Multimodal

Data

To demonstrate the significance of fusing multimodal data and
the effectiveness of affinity fusion module for the prediction of

breast cancer survival, we adopted MAFN model to deal with
different single types of data (gene expression data or CNA
data or clinical data). Furthermore, it can further explore the
influence of gene expression data, CNA, and clinical data on
breast cancer survival prediction.We designed the following four
comparative experiments:

(i) MAFN with only clinical data.
In this experiment, we chose only clinical data as
input for MAFN model, namely Only_Clin. It is
hard to determine outliers in the one-hot coded
clinical data. The affinity module cannot construct a
bipartite graph based on clinical data. We extracted
the features directly by attention module and
DNNmodule.

(ii) MAFN with only gene expression data.
In this experiment, we chose only gene expression data as
input for MAFN model, namely Only_Gene. The affinity
fusion module only propagates information in intra-modal
of gene expression data.

Frontiers in Genetics | www.frontiersin.org 7 August 2021 | Volume 12 | Article 709027

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guo et al. MAFN

(iii) MAFN with only CNA data.
In this experiment, we chose only CNA data as input
for MAFN model, namely Only_CNA. The affinity fusion
module only propagates information in intra-modal of
CNA data.

(iv) MAFN with multimodality data.
In this experiment, we utilized multimodal data as input for
MAFN model, namely MAFN (Gene_CNA_Clin).

The ROC curves of models using different input on METABEIC
dataset are shown in Figure 4. From Figure 4, we observe that
compared with using single modality data alone, the application
of multimodal data enhances the performance for MAFN. For
example, the AUC value of MAFN reaches 93.8%, which is higher
than Only_Gene, Only_CNA, and Only_Clin models by 5.9,
29.8, and 8.9%, respectively. In addition, as shown in Figure 5,
the Pre of Only_CNA and Only_Clin models are 75.0 and
84.7%, which are lower than Only_Gene model. These results
demonstrate that gene expression data yields better classification

FIGURE 4 | Comparison of ROC curves of multimodal affinity fusion network

(MAFN) with different modality data.

performance andCNAdata and clinical data can provide valuable
predictive information additional to those provided by gene
expression data. All comparison results confirm the tremendous
benefits from integrating multimodal data and features fusion
by the Affinity Fusion module in survival prediction. Moreover,
we conducted MAFN on METABRIC dataset, in which gene
expression data is divided into different expression levels (Jin
et al., 2019; Nguyen and Le, 2020; Wei et al., 2020) and detailed
information is provided in Supplementary File 1. As shown in
Supplementary Table 1, we can find that MAFN is effective in
almost common division cases.

3.4. Comparison With Other Methods
In order to verify the effect of MAFN, we compared the
results of our method with three existing deep learning-based
methods, including STACKED_RF (Arya and Saha, 2020),
AMND (Chen et al., 2019), and MDNNMD (Sun et al., 2018).
Experiments were conducted on METABRIC, TCGA- BRCA,
GSE8757, and GSE69035 dataset, and the ROC curves of different
methods are plotted in Figure 6. As expected, MAFN achieves
better performance among all investigated deep learning-based
methods and obtains AUC improvement of 0.8, 6.8, and 7.4%
compared with STACKED_RF, AMND, and MDNNMD. From
the comparative study presented in Figure 6, we can state that
the results on other three dataset are consistent with those on
METABRIC dataset. These results show that compared with
other methods, MAFN method for multimodal fusion data has
remarkable improvements in breast cancer survival prediction.

Additionally, we also analyzed the metrics of Acc, Pre,
F1-score, and Recall of different methods. The corresponding
results are shown in Table 4. The Acc value of MAFN on
METABRIC dataset is 89.0%, which is 4.2, 5.8, and 8.7% higher
than those obtained by STACKED_RF, AMND, and MDNNMD,
respectively. The results from other three dataset are consistent
with those on METABRIC dataset. These results further confirm
the effectiveness of MAFN in breast cancer survival prediction.

To further evaluate the performance of MAFN, we also
compared it with three widely used traditional classification
methods, including LR (Jefferson et al., 1997), RF (Nguyen et al.,
2013), and SVM (Xu et al., 2012). Experiments were conducted

FIGURE 5 | Acc, Pre, F1-score, and Recall of multimodal affinity fusion network (MAFN) with different modality data.
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FIGURE 6 | Comparison of ROC curves of multimodal affinity fusion network (MAFN) and existing deep learning-based methods. (A) The result in METABRIC dataset;

(B) the result in TCGA-BRCA dataset; (C) the result in GSE8757 dataset; (D) the result in GSE69035 dataset.

on METABRIC and TCGA- BRCA dataset. As shown in Table 5,
experimental results show that a more optimal performance
was obtained from MAFN compared traditional classification
methods. For example, the AUC value of MAFN on TCGA-
BRCA dataset is higher than LR, RF, and SVM by 12.1, 19.6,
and 21.1%, respectively. At the same time, we could observe that
the prediction effect of deep learning method is better than non-
deep learning-based methods from Tables 4, 5. Moreover, some
researchers (Gao et al., 2019; Poirion et al., 2019; Tran et al.,
2020) directly used the survival date as the training label, and
also achieved satisfactory results. Since the training target of these
methods is inconsistent with MAFN, and thus the comparison
experiments cannot be performed.

In conclusion, MAFN is superior to other existing deep
learning methods and non-deep learning-based methods on
different datasets, indicating that MAFN method has remarkable
improvements in breast cancer survival prediction. At the same
time, the feasibility of deep neural network with multimodal data

fusion and the practicability of multimodal data in the prediction
of breast cancer prognosis are further proved.

4. CONCLUSION

In this study, we propose a deep neural network model based on
affinity fusion (MAFN) to effectively integrate multimodal data
for more accurate breast cancer survival prediction. Our findings
suggest that survival prediction methods based fused feature
representations from different modalities outperform those using
single modality data. Moreover, our proposed attention module
and affinity fusion module can efficiently extract more critical
information within multimodal data, and capture the structured
information within and between the modalities. Meanwhile,
DNNmodule can compensate the lacked single-modality specific
information on fusion features. The comprehensive experimental
results show that by using fusion features and specific features

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 709027

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Guo et al. MAFN

TABLE 4 | Acc, Pre, F1-score, and Recall predictive performance metrics of multimodal affinity fusion network (MAFN) and existing deep learning-based methods.

Dataset Methods Acc Pre F1-score Recall

METABRIC

MAFN 0.890 0.905 0.924 0.943

STACKED_RF 0.902 0.841 0.910 0.923

AMND 0.848 0.857 0.908 0.972

MDNNMD 0.832 0.801 0.508 0.372

TCGA-BRCA

MAFN 0.915 0.921 0.948 0.976

STACKED_RF 0.897 0.913 0.910 0.914

AMND 0.837 0.851 0.932 0.911

MDNNMD 0.780 0.765 0.513 0.530

GSE8757

MAFN 0.941 0.933 0.824 0.736

STACKED_RF 0.879 0.910 0.895 0.903

AMND 0.814 0.881 0.892 0.886

MDNNMD 0.868 0.903 0.918 0.933

GSE69035

MAFN 0.876 0.780 0.801 0.810

STACKED_RF 0.717 0.779 0.856 0.843

AMND 0.744 0.823 0.816 0.809

MDNNMD 0.787 0.893 0.840 0.794

TABLE 5 | AUC, Acc, Pre, F1-score, and Recall predictive performance metrics of MAFN and existing non-deep learning-based methods.

Dataset Methods AUC Acc Pre F1-score Recall

METABRIC

MAFN 0.938 0.890 0.905 0.924 0.943

LR 0.854 0.803 0.847 0.874 0.903

RF 0.839 0.836 0.841 0.899 0.967

SVM 0.848 0.818 0.852 0.885 0.920

TCGA-BRCA

MAFN 0.932 0.890 0.905 0.924 0.943

LR 0.811 0.808 0.879 0.882 0.884

RF 0.761 0.818 0.816 0.899 0.980

SVM 0.721 0.776 0.824 0.869 0.919

as input, MAFN compares favorably with the existing methods.
The important success of this work is the improvements for
the understanding of breast cancer multimodal data fusion and
the development of relevant prediction methods for survival.
Moreover, this method can be extended to predict the survival
time of other similar diseases, providing a new strategy for
cancer prognosis.
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