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Abstract

Family-based study design will play a key role in identifying rare causal variants,

because rare causal variants can be enriched in families with multiple affected

subjects. Furthermore, different from population-based studies, family studies are

robust to bias induced by population substructure. It is well known that rare causal

variants are difficult to detect from single-locus tests. Therefore, burden tests and

non-burden tests have been developed, by combining signals of multiple variants in

a chromosomal region or a functional unit. This inevitably incorporates some

neutral variants into the test statistics, which can dilute the power of statistical

methods. To guard against the noise caused by neutral variants, we here propose

an ‘adaptive combination of P-values method’ (abbreviated as ‘ADA’). This method

combines per-site P-values of variants that are more likely to be causal. Variants

with large P-values (which are more likely to be neutral variants) are discarded from

the combined statistic. In addition to performing extensive simulation studies, we

applied these tests to the Genetic Analysis Workshop 17 data sets, where real

sequence data were generated according to the 1000 Genomes Project. Compared

with some existing methods, ADA is more robust to the inclusion of neutral variants.

This is a merit especially when dichotomous traits are analyzed. However, there are

some limitations for ADA. First, it is more computationally intensive. Second,

pedigree structures and founders’ sequence data are required for the permutation

procedure. Third, unrelated controls cannot be included. We here show that, for

family-based studies, the application of ADA is limited to dichotomous trait analyses

with full pedigree information.
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Introduction

Studies in genetic epidemiology are important to uncover the genetic architecture

of complex human diseases. The development of next-generation sequencing

technologies has allowed for the mapping of all genetic variants across the human

genome. With this, we can search for rare causal variants (minor allele frequency

(MAF) ,1%), which are mostly not genotyped in genome-wide association

studies (GWAS) but are related to the etiology of complex diseases. Till now,

many statistical methods have been proposed for rare variant association testing.

Most of them were designed for population-based studies where unrelated cases

and controls were recruited and analyzed [1–22].

Despite a variety of statistical methods, there are two concerns in population-

based rare variant association studies. First, population stratification may cause

false-positive results. This issue was tackled since the era of genome-wide

association studies (GWAS). In GWAS where most genotyped variants were

common, principal component analysis (PCA) [23] and mixed models [24] were

proposed as effective methods to deal with population stratification. However,

studies of population stratification are still limited for next-generation sequencing

data [25]. Existing methods, such as PCA and mixed models, can fail to correct for

rare variant stratification [26]. Second, rare causal variants are difficult to observe

in general populations, and therefore statistical methods are usually under-

powered [27]. Although burden tests [2–5, 27] and non-burden tests [7–9] have

been proposed to aggregate signals of multiple variants, searching for rare causal

variants remains challenging.

Family-based study design will play a key role in identifying rare causal variants,

because rare causal variants can be enriched in families with multiple affected

subjects [28, 29]. Burden tests (such as the weighted sum approach (WS) [3], the

cumulative minor allele test (CMAT) [22]), and non-burden tests (such as the

sequence kernel association test (SKAT) [7, 8]) have been extended to family-

based designs by incorporating within-family correlation structures into the

statistics [30–40]. For continuous traits, Chen et al. [31] has proposed

‘‘famSKAT’’ that can account for members’ relationships within families. This

method was essentially equivalent to the method proposed by Schifano et al. [38]

and the adjusted sequence kernel association test (abbreviated as ‘‘ASKAT’’)

proposed by Oualkacha et al. [40], although Schifano et al.’s method was not

originally designed for rare variant association testing. Svishcheva et al. [39] then

developed a fast family-based SKAT (abbreviated as ‘‘FFBSKAT’’) that was shown

to be the fastest method to perform the kernel-based association tests for

continuous traits. Svishcheva et al. have shown a pure coincidence of the P-values

calculated by the famSKAT, ASKAT, and the FFBSKAT software programs [39].

Testing for effects of rare variants individually is known to be underpowered.

To strengthen association signals, both the burden tests and the non-burden tests

combine information of multiple rare variants in a gene/region. This inevitably

incorporates many neutral variants into the test statistics. Adaptive combination

of P-values method (abbreviated as ‘ADA’) has been shown to outperform the
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burden tests (e.g., WS and the variable threshold approach [5]) and the non-

burden tests (e.g., SKAT) in rare variant association testing for unrelated subjects,

because ADA is more robust to the inclusion of neutral variants [13, 21]. Taking

this advantage, we here extend the ADA method to deal with pedigree data, and

compare its power performance with that of the burden test [32], the kernel

statistic [32], and the FFBSKAT method [39] (famSKAT [31] and ASKAT [40] are

essentially equivalent to FFBSKAT). We also apply the method to the Genetic

Analysis Workshop 17 (GAW 17) data [27, 41]. Some family-based association

testing methods were designed for trio data (or trios plus unrelated controls),

such as the rare-variant extensions of the transmission disequilibrium test

(rvTDT) [36, 42]. Therefore, these methods are not compared here.

Materials and Methods

Let Yi be the trait value of the ith subject (i~1, � � � ,n). Suppose there are L loci in

the chromosomal region of interest, and let gil be the genotype score at the lth

locus of the ith subject (i~1, � � � ,n, l~1, � � � ,L). Under the assumption of

additive genetic model, gil is the number of minor alleles, i.e., 0, 1, or 2. The

statistic to test for the association between the trait and the lth marker is

Tl~
Y {Ŷ
� �’

g
l

h i2

2MAFl 1{MAFlð Þ Y {Ŷ
� �’

V Y{Ŷ
� �*x2

1, ð1Þ

where Y{Ŷ
� �

is the vector of residuals after adjusting for covariates (e.g., age,

gender), g
l

is the genotype score vector at the lth marker for the n subjects, MAFl

is the MAF of the lth marker calculated using founders, and V is an n6n matrix

of genetic correlations of these n subjects. For autosomes, the (i, j)th element of V

is 2wij, where wij is the kinship coefficient of the ith and the jth subjects. Because

the kinship coefficient of subjects belonging to different pedigrees should be 0, V

is a block-diagonal matrix with block sizes as the sizes of pedigrees.

The test statistic in Equation (1) has an approximate x2 distribution with 1

degree of freedom. This statistic is essentially equivalent to the statistic proposed

by Thornton and McPeek [43] (see Equation 1 in [43]). Phenotypes and

genotypes are treated as fixed and random, respectively. This retrospective view

allows us to correct the ascertainment bias when recruiting pedigrees through

affected subjects. After performing L tests for the L markers, we have P-values

p1,p2, � � � pL. Suppose we consider J candidate truncation thresholds, h1,h2, � � � ,hJ .

Summarizing the L markers, the significance score under the jth truncation

threshold is

Sj~{
XL

l~1

I plvhj
� �

:log pl, ð2Þ
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where I plvhj
� �

is an indicator variable coded as 1 if the lth marker has a P-value

smaller than hj (the jth truncation threshold) and 0 otherwise. Throughout this

study, the candidate truncation thresholds are specified as

h1~0:10,h2~0:11, � � � ,h11~0:20, suggested by the ADA method for population-

based studies [13, 21]. Using a wider range of P-value truncation thresholds, say,

h1~0:05,h2~0:06, � � � ,h21~0:25, does not contribute a noticeable power gain to

ADA (results not shown).

Because multiple P-value truncation thresholds are considered, to correct for

multiple testing, statistical significance must be obtained with permutations. We

first construct the distribution of the significance score Sj under the null

hypothesis, where the transmission of haplotypes from parents to offspring is

completely random, conditional on parental genotypes [44, 45]. For example, the

family shown by Fig. 1 consists of 12 members. Conditional on the genotypes of

No. 1 and No. 2, the probability that No. 3 has the observed/unobserved pattern

of allelic transmission is 1=2 under the null hypothesis. Given the founders’ (Nos.

1, 2, 5, 6) genotypes, this family consists of more than 285256 possible patterns of

allelic transmission. With a total of N families, there are at least 256N different

permutations of the genotype data.

The above permutation procedure was extended from that used for trio data

[44, 45]. Unambiguous haplotype phases are not always required in the process.

For example, No. 3 has a probability of 1=2 to possess the observed pattern of

allelic transmission, and then there is no need to change his genotypes. The

probability of owning unobserved pattern of allelic transmission is also 1=2. In this

situation, No. 3’s number of minor alleles at the lth locus (0, 1, or 2, representing

three different genotype scores) is g(U)
3l ~g1lzg2l{g3l, where g1l and g2l are the

genotype scores at the lth locus of Nos. 1 and 2, respectively; g3l is No. 3’s original

observed genotype score. Conditional on g3l and g6l belonging to Nos. 3 and 6, the

unobserved pattern of allelic transmission for No. 7 is g(U)
7l ~g3lzg6l{g7l. On the

other hand, given g(U)
3l and g6l, haplotype phases of Nos. 3 and 6 are required to

determine the genotype scores of Nos. 7–9. An haplotype-phasing software

package (such as Beagle [46]) is used to infer the most-likely haplotype pairs for

Nos. 3 and 6. The genotype scores of Nos. 7–9 are then determined by randomly

drawing one haplotype from No. 3 and one from No. 6.

Suppose we perform B permutations, say, B51000. For the bth permutation,

the significance score under the jth truncation threshold can be calculated with

Eq. (2), denoted as S bð Þ
j . The statistical significance of Sj is obtained by comparing

it with S bð Þ
j , b~1, � � � ,B. The P-value of Sj is estimated as

PB
b~1 I S(b)

j §Sj

� �
z1

Bz1
,

for each truncation threshold (j51, …, J), where I S(b)
j §Sj

h i
is an indicator

variable coded as 1 if S(b)
j §Sj and 0 otherwise. Similarly, the P-value of S(b’)

j for the

b’th permutation is

P
b=b’ I S(b)

j §S(b’)
j

� �
z1

B
, for j51, …, J and b’~1, � � � ,B. We
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can then find the minimum P-values across the J candidate truncation thresholds

for the observed sample and the bth permuted sample, denoted as MinP and

MinP(b), respectively. The ‘‘adjusted P-value’’ is estimated asPB
b~1 I MinP(b)

ƒMinP
� �

z1

Bz1
. This method is referred to as ‘‘ADA’’, because the

optimal P-value truncation threshold is driven adaptively according to the data.

Simulation Study

We generated sequence data with the SeqSIMLA software [47], which was

designed to simulate sequence data for family samples. SeqSIMLA used GENOME

[48] as the default sequence generator that could efficiently simulate sequence

data according to the standard coalescent model [49–52]. In this way, we aim to

evaluate statistical methods with simulated data that can reflect realistic DNA

sequences. In each simulation, 50, 80 or 100 three-generation families each with

12 members were generated. The family structure was shown by Fig. 1. For each

subject, a chromosome region with m550, 100, or 150 SNPs/SNVs (single-

nucleotide polymorphisms/single-nucleotide variants) was simulated.

Dichotomous traits and continuous traits were considered respectively.

When evaluating type-I error rates, no causal locus was specified. When

evaluating power, five SNPs/SNVs (Nos. 10, 20, 30, 40, 50) were assumed to be

causal. We did not restrict all causal variants to be rare/uncommon, because in

reality causal variants could also be common. Let ‘signal proportion’ be the

fraction of causal variants out of all variants. The signal proportion in our

simulations was set at one of the three levels: 0.033 (55=150), 0.05 (55=100), 0.1

(55=50).

Fig. 1. The family structure simulated by SeqSIMLA.

doi:10.1371/journal.pone.0115971.g001
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When dichotomous traits were considered, the overall population attributable

risk (PAR) for all causal loci was assumed to be 0.05, 0.10, 0.15, 0.20, 0.25, and

0.30, respectively. Therefore, the marginal PAR for each causal locus was 0.01,

0.02, 0.03, 0.04, 0.05, and 0.06, respectively. In the SeqSIMLA software [47], the

genotype relative risk (GRR) of the jth causal SNP/SNV was:

GRRj~1z
PARj

1{PARj
� �

:MAFj
, ð3Þ

where PARj and MAFj were the PAR and the population MAF of that SNP/SNV,

respectively. S1 Fig. showed the distribution of GRRs of causal SNPs/SNVs when

the overall PAR for all causal loci was assumed to be 0.05, 0.10, 0.15, 0.20, 0.25,

and 0.30, respectively (the marginal PAR for each causal locus was 0.01, 0.02, 0.03,

0.04, 0.05, and 0.06, respectively). A variant with a smaller frequency was assumed

to have a larger GRR, following the model in many previous contributions [3, 18–

20, 47]. For a founder, SeqSIMLA randomly sampled two haplotypes {H1, H2}

from the population sequence pool created by GENOME [48]. According to the

SeqSIMLA software [47], the disease status of this subject was determined by

P affectedj H1,H2f gð Þ~
f0| P

2

k~1
P
5

j~1
GRR

I Hk,j~aj

� �

j

1{f0zf0| P
2

k~1
P
5

j~1
GRR

I Hk,j~aj

� �

j

, ð4Þ

where f0 was the baseline penetrance specified as 0.05, Hk,j was the allele at the jth

causal SNP/SNV on the haplotype Hk (k~1,2), and aj was the minor allele at the

jth causal SNP/SNV (j~1,2, � � � ,5) [47]. Given parental haplotypes, a child’s

haplotypes were formed by randomly selecting one from the father and one from

the mother, and the child’s disease status was again determined by Eq. (4). Based

on this equation, a subject with no causal variant would have a probability of f0

(baseline penetrance) to be diseased, while a subject with more causal variants

would have a larger probability to be diseased.

When continuous traits were simulated, five SNPs/SNVs (Nos. 10, 20, 30, 40,

50) were assumed to be quantitative trait loci (QTLs). Causal variants were not

restricted to be all rare or uncommon, because in reality common variants can be

causal as well. Let Yi be the trait value of the ith subject. It was determined by the

model Yi~mz
P5

l~1 Gilzei, where m was the overall mean of the trait, Gil was the

genotypic value at the lth QTL of the ith subject (i~1, � � � ,n, l~1, � � � ,5) which

followed a normal distribution (with a mean of ml, 0, or {ml for 2, 1, and 0 minor

alleles at the lth QTL, respectively [47]), and ei was the error term for the ith

subject following a normal distribution as well. According to the default setting of

the SeqSIMLA software [47], the genetic effects of QTLs were all assumed to be

additive, and Var Yð Þ and m were both specified at 100. These two values were not

critical because SeqSIMLA software [47] actually controlled the proportion of
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Var Yð Þ explained by each QTL (denoted as VP). The value of VP was assumed to

be 0.001, 0.002, 0.003, 0.004, 0.005, and 0.006 for each QTL, respectively. The

corresponding proportion of variance explained by all the five QTLs was therefore

0.005, 0.01, 0.015, 0.02, 0.025, or 0.03.

Tests under Comparison

We compared ADA with the broad classes of the burden test (referred to as

‘‘Burden’’) [32], the kernel test for family data (referred to as ‘‘Kernel’’) [32], and

the FFBSKAT method [39]. Burden and Kernel were implemented with the R

package ‘‘pedgene’’ [32]; FFBSKAT was performed with the package ‘‘FFBSKAT’’

(http://mga.bionet.nsc.ru/soft/FFBSKAT/) [39]. FFBSKAT was performed only

when continuous traits were considered, because it could not analyze

dichotomous traits. Following the default setting of FFBSKAT [39] and Kernel

[32], the (j, j)th element of the diagonal weighting matrix W was set as

Beta MAFj; 1,25
� �

, where MAFj was the MAF of the jth genetic variant. The P-

values of ADA were obtained with 1,000 permutations.

Results

Type-I Error Rates

By setting the PAR or the proportion of variance explained by causal SNPs at

exactly 0%, we evaluated type-I error rates by performing 10,000 replications. In

each replication, 50 three-generation families each with 12 members (shown in

Fig. 1) were generated. For each subject, a chromosome region containing 100

SNPs/SNVs was simulated. Table 1 shows that all the tests (three for dichotomous

traits and four for continuous traits) are valid in the sense that their type-I error

rates match the nominal significance levels.

Power Comparisons

When we evaluated power, 1000 replications were performed under each scenario.

In total, there were 54,000 replications in power evaluation for dichotomous traits

and continuous traits, respectively (three levels of m (50, 100, or 150) 6 three

levels of family numbers (50, 80, or 100) 6 six levels of PAR (0.05, 0.1, …, 0.3) or

proportion of variance explained by causal SNPs (0.005, 0.01, …, 0.03) 61000

replications for each scenario). Across all these 108,000 replications, there were

totally 540,000 (5108,00065) causal SNPs/SNVs (because 5 causal SNPs/SNVs

or QTLs were specified in each replication). Among these 540,000 causal variants,

approximately 45% were rare (MAF,1%), ,62% were uncommon/rare

(MAF,5%), and , 38% were common (MAF$5%). In our simulation setting,

causal variants were not limited to be rare, because in real situations causal

variants could also be common.

Adaptive Combination of P-Values for Family Data
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Figs. 2 and 3 present the power for dichotomous traits and continuous traits,

respectively. When dichotomous traits were studied (Fig. 2), Kernel was the most

powerful method when m550 (signal proportion 50.1), whereas ADA had the

best performance when m5150 (signal proportion 50.033). When m5100 (signal

proportion 50.05), these two methods had comparable performance. Burden was

the uniformly least powerful test among the methods we compared, regardless of

the size of m (50, 100, or 150). To conclude, when the signal proportion was

larger, Kernel was more powerful; when the signal proportion was smaller, ADA

took the advantage of truncating noise variants and therefore was more powerful.

When continuous traits were studied (Fig. 3), Kernel was again the most

powerful method when m550 (signal proportion 50.1). When the signal

proportion was getting lower and lower (or, m was getting larger and larger),

Kernel had a more substantial power loss. Burden was again the least powerful

method, regardless of the size of m (50, 100, or 150). Compared with Kernel,

FFBSKAT and ADA were less vulnerable to the inclusion of neutral variants.

FFBSKAT became the most powerful method when m5100 (signal proportion

50.05) or when m5150 (signal proportion 50.033).

Application to Genetic Analysis Workshop 17 Simulated Data

We then applied the four tests to the Genetic Analysis Workshop 17 (GAW 17)

simulated data [41]. The GAW 17 data set was designed to mimic a subset of data

that might be generated in a full exome investigation for a complex disease. To

reflect realistic human genomes, real sequence data were generated based on the

1000 Genomes Project [53]. The data set consisted of 697 subjects from eight large

pedigrees, in which 202 founders had genotypes randomly selected from the 1000

Genomes Project. The MAFs ranged from 0.07% to 16.5%. These founders

included 66 Tuscan, 50 Luhya, 28 Japanese, 19 Han Chinese, 18 Denver Chinese,

12 CEPH (European-descent residents of Utah), and 9 Yoruban samples.

Pedigrees included four generations, and relatives were as distant as second

Table 1. Type-I error rates based on 10,000 replications.

When dichotomous traits were considered

nominal significance level 0.01 0.02 0.03 0.04 0.05

ADAa 0.0099 0.0201 0.0298 0.0399 0.0503

Kernel 0.0097 0.0197 0.0284 0.0375 0.0474

Burden 0.0107 0.0210 0.0311 0.0403 0.0501

When continuous traits were considered

ADAa 0.0105 0.0203 0.0301 0.0403 0.0502

Kernel 0.0085 0.0180 0.0282 0.0383 0.0484

Burden 0.0103 0.0201 0.0303 0.0402 0.0498

FFBSKAT 0.0105 0.0181 0.0278 0.0359 0.0464

aP-values were estimated based on 1,000 permutations.

doi:10.1371/journal.pone.0115971.t001
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cousins. The causal SNPs/SNVs were listed in Table 2. Phenotype simulations

were performed multiple times to generate 200 replications. With this simulated

data set, we could evaluate the power performance of the four statistical methods,

given a more general pedigree structure and a more realistic sequence

composition [41]. The b column was the change in mean quantitative trait due to

a copy of minor allele.

To analyze this data set, we first obtained residuals ( Y{Ŷ
� �

in Eq. (1)) by

regressing the trait values on age and smoking status. Table 2 listed the results by

FFBSKAT, ADA, Kernel, and Burden. The P-values of ADA were estimated based

on 1,000 permutations. Based on the power to detect causal genes, these methods

Fig. 2. Power Comparison for dichotomous traits. The figure shows the empirical power given the
significance level of 0.05. Top row: 50 variants included in the tests; middle row: 100 variants; bottom row: 150
variants. The x-axis is the overall population attributable risk (PAR) for all causal loci, whereas the y-axis is the
power.

doi:10.1371/journal.pone.0115971.g002
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were roughly ranked as FFBSKAT. ADA. Kernel < Burden. FFBSKAT was the

most powerful method. It was based on the linear mixed effects model, in which

the kinship relatedness was captured by the random effects terms (b*N 0,s2
bV

� �
,

as described in our Introduction section). In the GAW 17 data set, the eight

pedigrees were all quite large (see S2 Fig.). The linear mixed effects model

(y~XbzGªzbze) partitions the total phenotypic variance into several parts.

When pedigrees are larger, this model is a better choice because s2
b can be

estimated more accurately. (We used SeqSIMLA2 [54] to simulate 1,380 subjects

based on two pedigree structures: (A) 20 pedigrees each with 69 members (Fig. 1

of [54]), and (B) 115 pedigrees each with 12 members (Fig. 1). The variance of the

polygenic effects, s2
b, was specified at 45 in SeqSIMLA2 [54]. With 1,000

replications, the mean of ŝ2
b estimated by the lmekin function [55] was 44.33 and

Fig. 3. Power Comparison for continuous traits. The figure shows the empirical power given the
significance level of 0.05. Top row: 50 variants included in the tests; middle row: 100 variants; bottom row: 150
variants. The x-axis is the proportion of variance explained by causal SNPs, whereas the y-axis is the power.

doi:10.1371/journal.pone.0115971.g003
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Table 2. Analysis of the Genetic Analysis Workshop 17 simulated data.

Causal gene
No. of SNPs/
SNVs

No. of causal
SNPs/SNVs

Signal
proportion

Causal SNP/
SNV MAF b

Power to detect the causal genea

(significance level 50.05)

FFBSKAT ADAb Kernel Burden

ARNT 18 5 0.28 C1S6533 0.011478 0.589734 0.175 0.065 0.005 0

C1S6537 0.000717 0.642689

C1S6540 0.001435 0.323662

C1S6542 0.002152 0.488219

C1S6561 0.000717 0.625721

ELAVL4 10 2 0.20 C1S3181 0.000717 0.795093 0.19 0.07 0 0.005

C1S3182 0.000717 0.328748

FLT1 35 11 0.31 C13S320 0.001435 0.18047 1 0.76 0.335 0.38

C13S399 0.000717 0.457361

C13S431 0.017217 0.732566

C13S479 0.000717 0.839669

C13S505 0.000717 0.38582

C13S514 0.000717 0.549816

C13S522 0.027977 0.623466

C13S523 0.066714 0.653351

C13S524 0.004304 0.596704

C13S547 0.000717 0.549214

C13S567 0.000717 0.090586

FLT4 10 2 0.20 C5S5133 0.001435 0.120761 0.74 0.39 0.03 0.065

C5S5156 0.000717 0.385374

HIF1A 8 4 0.50 C14S1718 0.000717 0.251622 0.03 0.015 0 0

C14S1729 0.002152 0.329088

C14S1734 0.012195 0.220448

C14S1736 0.000717 0.228202

HIF3A 21 3 0.14 C19S4799 0.000717 0.174668 0.175 0.035 0.01 0.005

C19S4815 0.000717 0.51468

C19S4831 0.000717 0.265181

KDR 16 10 0.63 C4S1861 0.002152 0.598271 0.925 0.845 0.72 0.87

C4S1873 0.000717 0.715613

C4S1874 0.000717 0.503025

C4S1877 0.000717 1.17194

C4S1878 0.164993 0.149975

C4S1879 0.000717 0.610938

C4S1884 0.020803 0.318125

C4S1887 0.000717 0.312058

C4S1889 0.000717 1.17194

C4S1890 0.002152 0.417977

VEGFA 6 1 0.17 C6S2981 0.002152 1.13045 1 1 1 0.995

aPower to detect a causal gene 5
# declare significance among the 200 replicatesf g

200
:

bP-values were estimated based on 1,000 permutations.

doi:10.1371/journal.pone.0115971.t002
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47.51 for cases (A) and (B), respectively.) Therefore, FFBSKAT was more powerful

than other methods when analyzing the GAW 17 large pedigree data.

Discussion

Many statistical methods were proposed for rare variant association testing, but

most of them were designed for population-based studies. Among the family-

based rare variant association testing methods, some extend the transmission

disequilibrium test [56, 57] and focus on parent-child trio data [36, 37]. Some

methods are eligible for analyzing pedigree data (including but not limited to

trios), and they can be categorized as the burden tests and the non-burden tests

(e.g., famSKAT [31, 38], FFBSKAT [39], Kernel [32]). The non-burden tests were

shown to be more powerful than the burden tests in most situations [32, 33].

Among the non-burden tests compared in this work, FFBSKAT [39] (and

famSKAT [31, 38]) can only deal with continuous traits, but it is more powerful

than the other methods (ADA, Kernel, Burden) when the pedigree is larger (see the

GAW 17 data analysis) or when the signal proportion is smaller (see the bottom

two rows of Fig. 3).

In population-based studies, ADA is robust to the inclusion of neutral variants,

and therefore it has been shown to outperform the burden tests and the non-

burden tests (e.g., SKAT) [13, 21]. In this work, we extend ADA to family-based

studies and compare it with Kernel and Burden, the two commonly used methods

for dichotomous traits. Simulation studies show that ADA is more powerful than

other two competitors when the percentage of causal variants is smaller (see the

bottom row of Fig. 2). On the contrary, Kernel is more powerful when the

percentage of causal variants is larger (the top row of Fig. 2). Burden has the least

power across the simulation scenarios we have investigated. The comparison

between Kernel and Burden is consistent with that found by previous studies

[32, 33].

Kernel, Burden, and FFBSKAT can provide analytical P-values when the sample

size is large. ADA searches for the optimal threshold among multiple P-value

truncation thresholds. Therefore, permutation is required to assess the statistical

significance, and so ADA needs more computational time than other methods. To

be more computationally efficient, ADA can be combined with a sequential Monte

Carlo algorithm [58]. For simulated data sets containing 50 families and 50 SNPs/

SNVs, ADA on average needs ,168.2 sec, Kernel or Burden takes ,37.6 sec, and

FFBSKAT needs ,4.3 sec. This was measured on a Linux platform with an Intel

Xeon E5-2690 2.9 GHz processor and 2 GB memory. Although the computation

time of other competitors is much shorter than that of ADA, ADA is more robust

to the inclusion of neutral variants when dichotomous traits are studied (see

Fig. 2). But when continuous traits are analyzed, FFBSKAT/Kernel outperforms

ADA when the signal proportion is smaller/larger (see Fig. 3).

Rare causal variants may play an important role in the etiology of complex

diseases [59–64], but they are challenging to detect through single-locus tests
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[1, 2, 65, 66]. Combining variants’ signals in a chromosomal region and testing for

association with a grouping statistic is a commonly used strategy. Compared with

the burden test (Burden) and the non-burden test (Kernel), ADA is more robust to

the inclusion of neutral variants when dichotomous traits are analyzed. However,

there are some limitations for ADA. First, because this method is more

computationally intensive, it is not realistic to apply it to genome-wide

sequencing data. Second, pedigree structures and founders’ sequence data are

required for the permutation procedure implemented in ADA. Third, unrelated

controls cannot be included in the ADA analyses. This work shows that, for

family-based studies, the application of ADA is limited to dichotomous trait

analyses with full pedigree information.

Supporting Information

S1 Fig. The distribution of genotype relative risk (GRR) of causal SNPs/SNVs

when the overall population attributable risk (PAR) for all causal loci was

assumed to be 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Therefore, the

marginal PAR for each causal SNP/SNV was 0.01, 0.02, 0.03, 0.04, 0.05, and 0.06,

respectively.

doi:10.1371/journal.pone.0115971.s001 (PDF)

S2 Fig. Structures of the eight pedigrees (accordingly, from pedigree 1, 2, …, 8)

in the Genetic Analysis Workshop 17 data set, plotted by the R package

‘‘kinship2’’.

doi:10.1371/journal.pone.0115971.s002 (PDF)

Acknowledgments

The author would like to thank the anonymous reviewers for their insightful and

constructive comments, and the GAW17 workshop organizers for their

permission to use their data in this research. Preparation of the Genetic Analysis

Workshop 17 Simulated Exome Data Set was supported by the GAW grant, R01

GM031575, and in part by NIH R01 MH059490. The workshop used sequencing

data from the 1000 Genomes Project (http://www.1000genomes.org).

Author Contributions
Conceived and designed the experiments: WYL. Performed the experiments:

WYL. Analyzed the data: WYL. Contributed reagents/materials/analysis tools:

WYL. Wrote the paper: WYL.

References

1. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis strategies for association
studies involving rare variants. Nat Rev Genet 11: 773–785.

Adaptive Combination of P-Values for Family Data

PLOS ONE | DOI:10.1371/journal.pone.0115971 December 26, 2014 13 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115971.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115971.s002
http://www.1000genomes.org


2. Li B, Leal SM (2008) Methods for detecting associations with rare variants for common diseases:
application to analysis of sequence data. Am J Hum Genet 83: 311–321.

3. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations using a weighted sum
statistic. PLoS Genet 5: e1000384.

4. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic
association studies. Genet Epidemiol 34: 188–193.

5. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, et al. (2010) Pooled association tests for
rare variants in exon-resequencing studies. Am J Hum Genet 86: 832–838.

6. Han F, Pan W (2010) A data-adaptive sum test for disease association with multiple common or rare
variants. Hum Hered 70: 42–54.

7. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. (2011) Rare-variant association testing for sequencing
data with the sequence kernel association test. Am J Hum Genet 89: 82–93.

8. Lee S, Wu MC, Lin X (2012) Optimal tests for rare variant effects in sequencing association studies.
Biostatistics 13: 762–775.

9. Neale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, et al. (2011) Testing for an unusual distribution
of rare variants. PLoS Genet 7: e1001322.

10. Yi N, Liu N, Zhi D, Li J (2011) Hierarchical generalized linear models for multiple groups of rare and
common variants: jointly estimating group and individual-variant effects. PLoS Genet 7: e1002382.

11. Yi N, Zhi D (2011) Bayesian analysis of rare variants in genetic association studies. Genet Epidemiol 35:
57–69.

12. Cheung YH, Wang G, Leal SM, Wang S (2012) A fast and noise-resilient approach to detect rare-
variant associations with deep sequencing data for complex disorders. Genet Epidemiol 36: 675–685.

13. Lin WY, Lou XY, Gao G, Liu N (2014) Rare Variant Association Testing by Adaptive Combination of P-
values. PLoS One 9: e85728.

14. Schaid DJ, Sinnwell JP, McDonnell SK, Thibodeau SN (2013) Detecting genomic clustering of risk
variants from sequence data: cases versus controls. Hum Genet 132: 1301–1309.

15. Ionita-Laza I, Makarov V, Buxbaum JD (2012) Scan-statistic approach identifies clusters of rare
disease variants in LRP2, a gene linked and associated with autism spectrum disorders, in three
datasets. Am J Hum Genet 90: 1002–1013.

16. Fier H, Won S, Prokopenko D, AlChawa T, Ludwig KU, et al. (2012) ‘Location, Location, Location’: a
spatial approach for rare variant analysis and an application to a study on non-syndromic cleft lip with or
without cleft palate. Bioinformatics 28: 3027–3033.

17. Liu DJ, Leal SM (2010) A novel adaptive method for the analysis of next-generation sequencing data to
detect complex trait associations with rare variants due to gene main effects and interactions. PLoS
Genet 6: e1001156.

18. Li Y, Byrnes AE, Li M (2010) To identify associations with rare variants, just WHaIT: Weighted haplotype
and imputation-based tests. Am J Hum Genet 87: 728–735.

19. Lin WY, Yi N, Lou XY, Zhi D, Zhang K, et al. (2013) Haplotype kernel association test as a powerful
method to identify chromosomal regions harboring uncommon causal variants. Genet Epidemiol 37:
560–570.

20. Lin WY, Yi N, Zhi D, Zhang K, Gao G, et al. (2012) Haplotype-based methods for detecting uncommon
causal variants with common SNPs. Genet Epidemiol 36: 572–582.

21. Lin WY (2014) Association testing of clustered rare causal variants in case-control studies. PLoS One 9:
e94337.

22. Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, et al. (2010) Extending rare-variant testing
strategies: analysis of noncoding sequence and imputed genotypes. Am J Hum Genet 87: 604–617.

23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006) Principal components
analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904–909.

24. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, et al. (2006) A unified mixed-model method for
association mapping that accounts for multiple levels of relatedness. Nat Genet 38: 203–208.

Adaptive Combination of P-Values for Family Data

PLOS ONE | DOI:10.1371/journal.pone.0115971 December 26, 2014 14 / 16



25. Zhang Y, Guan W, Pan W (2013) Adjustment for population stratification via principal components in
association analysis of rare variants. Genet Epidemiol 37: 99–109.

26. Mathieson I, McVean G (2012) Differential confounding of rare and common variants in spatially
structured populations. Nat Genet 44: 243–246.

27. Lin WY, Zhang B, Yi N, Gao G, Liu N (2011) Evaluation of pooled association tests for rare variant
identification. BMC Proc 5 Suppl 9: S118.

28. Ionita-Laza I, Ottman R (2011) Study designs for identification of rare disease variants in complex
diseases: the utility of family-based designs. Genetics 189: 1061–1068.

29. Ionita-Laza I, Cho MH, Laird NM (2013) Statistical challenges in sequence-based association studies
with population- and family-based designs. Statistics in Biosciences 5: 54–70.

30. Saad M, Pierre AS, Bohossian N, Mace M, Martinez M (2011) Comparative study of statistical methods
for detecting association with rare variants in exome-resequencing data. BMC Proc 5 Suppl 9: S33.

31. Chen H, Meigs JB, Dupuis J (2013) Sequence kernel association test for quantitative traits in family
samples. Genet Epidemiol 37: 196–204.

32. Schaid DJ, McDonnell SK, Sinnwell JP, Thibodeau SN (2013) Multiple genetic variant association
testing by collapsing and kernel methods with pedigree or population structured data. Genet Epidemiol
37: 409–418.

33. Saad M, Wijsman EM (2014) Power of family-based association designs to detect rare variants in large
pedigrees using imputed genotypes. Genet Epidemiol 38: 1–9.

34. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X (2013) Family-based association tests for
sequence data, and comparisons with population-based association tests. Eur J Hum Genet 21: 1158–
1162.

35. De G, Yip WK, Ionita-Laza I, Laird N (2013) Rare variant analysis for family-based design. PLoS One 8:
e48495.

36. He Z, O’Roak BJ, Smith JD, Wang G, Hooker S, et al. (2014) Rare-variant extensions of the
transmission disequilibrium test: application to autism exome sequence data. Am J Hum Genet 94: 33–
46.

37. Cheng KF, Chen JH (2013) Detecting rare variants in case-parents association studies. PLoS One 8:
e74310.

38. Schifano ED, Epstein MP, Bielak LF, Jhun MA, Kardia SL, et al. (2012) SNP Set Association Analysis
for Familial Data. Genet Epidemiol 36: 797–810.

39. Svishcheva GR, Belonogova NM, Axenovich TI (2014) FFBSKAT: fast family-based sequence kernel
association test. PLoS One 9: e99407.

40. Oualkacha K, Dastani Z, Li R, Cingolani PE, Spector TD, et al. (2013) Adjusted sequence kernel
association test for rare variants controlling for cryptic and family relatedness. Genet Epidemiol 37: 366–
376.

41. Almasy L, Dyer TD, Peralta JM, Kent JW, Jr., Charlesworth JC, et al. (2011) Genetic Analysis
Workshop 17 mini-exome simulation. BMC Proc 5 Suppl 9: S2.

42. Jiang Y, Satten GA, Han Y, Epstein MP, Heinzen EL, et al. (2014) Utilizing population controls in rare-
variant case-parent association tests. Am J Hum Genet 94: 845–853.

43. Thornton T, McPeek MS (2010) ROADTRIPS: case-control association testing with partially or
completely unknown population and pedigree structure. Am J Hum Genet 86: 172–184.

44. Fan R, Knapp M, Wjst M, Zhao C, Xiong M (2005) High resolution T association tests of complex
diseases based on family data. Ann Hum Genet 69: 187–208.

45. Dudbridge F (2003) Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 25: 115–
121.

46. Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase
inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84: 210–223.

47. Chung RH, Shih CC (2013) SeqSIMLA: a sequence and phenotype simulation tool for complex disease
studies. BMC Bioinformatics 14: 199.

Adaptive Combination of P-Values for Family Data

PLOS ONE | DOI:10.1371/journal.pone.0115971 December 26, 2014 15 / 16



48. Liang L, Zollner S, Abecasis GR (2007) GENOME: a rapid coalescent-based whole genome simulator.
Bioinformatics 23: 1565–1567.

49. Hudson RR (2002) Generating samples under a Wright-Fisher neutral model of genetic variation.
Bioinformatics 18: 337–338.

50. Donnelly P, Tavare S (1995) Coalescents and genealogical structure under neutrality. Annu Rev Genet
29: 401–421.

51. Hudson RR (1983) Properties of a neutral allele model with intragenic recombination. Theor Popul Biol
23: 183–201.

52. Hudson RR (1990) Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary
Biology 7: 1–44.

53. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, et al. (2010) A map of human genome
variation from population-scale sequencing. Nature 467: 1061–1073.

54. Chung RH, Tsai WY, Hsieh CH, Hung KY, Hsiung CA, et al. (2014) SeqSIMLA2: Simulating Correlated
Quantitative Traits Accounting for Shared Environmental Effects in User-Specified Pedigree Structure.
Genet Epidemiol.

55. Therneau T (2012) R Package ‘coxme’. Version 2.2–3.

56. Terwilliger JD, Ott J (1992) A haplotype-based ‘haplotype relative risk’ approach to detecting allelic
associations. Hum Hered 42: 337–346.

57. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin
gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52: 506–516.

58. Besag J, Clifford P (1991) Sequential Monte Carlo p-values. Biometrika 78: 301–304.

59. Azzopardi D, Dallosso AR, Eliason K, Hendrickson BC, Jones N, et al. (2008) Multiple rare
nonsynonymous variants in the adenomatous polyposis coli gene predispose to colorectal adenomas.
Cancer Res 68: 358–363.

60. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, et al. (2004) Multiple rare alleles
contribute to low plasma levels of HDL cholesterol. Science 305: 869–872.

61. Hershberger RE, Norton N, Morales A, Li D, Siegfried JD, et al. (2010) Coding sequence rare
variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or
idiopathic dilated cardiomyopathy. Circ Cardiovasc Genet 3: 155–161.

62. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common
diseases. Nat Genet 40: 695–701.

63. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB (2010) Rare variants create synthetic
genome-wide associations. PLoS Biol 8: e1000294.

64. Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum
Genet 69: 124–137.

65. Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association
studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82: 100–112.

66. Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322: 881–888.

Adaptive Combination of P-Values for Family Data

PLOS ONE | DOI:10.1371/journal.pone.0115971 December 26, 2014 16 / 16


	Section_1
	Section_2
	Equation equ5
	Equation equ6
	Equation equ7
	Equation equ8
	Equation equ9
	Equation equ1
	Equation equ10
	Equation equ11
	Equation equ12
	Equation equ13
	Equation equ14
	Equation equ15
	Equation equ16
	Equation equ17
	Equation equ18
	Equation equ19
	Equation equ20
	Equation equ2
	Equation equ21
	Equation equ22
	Equation equ23
	Equation equ24
	Equation equ25
	Equation equ26
	Equation equ27
	Equation equ28
	Equation equ29
	Equation equ30
	Equation equ31
	Equation equ32
	Equation equ33
	Equation equ34
	Equation equ35
	Equation equ36
	Equation equ37
	Equation equ38
	Equation equ39
	Equation equ40
	Equation equ41
	Equation equ42
	Equation equ43
	Equation equ44
	Equation equ45
	Equation equ46
	Equation equ47
	Equation equ48
	Equation equ49
	Section_3
	Equation equ50
	Equation equ51
	Equation equ52
	Figure 1
	Equation equ3
	Equation equ4
	Equation equ53
	Equation equ54
	Equation equ55
	Equation equ56
	Equation equ57
	Equation equ58
	Equation equ59
	Equation equ60
	Equation equ61
	Equation equ62
	Equation equ63
	Equation equ64
	Equation equ65
	Equation equ66
	Equation equ67
	Equation equ68
	Equation equ69
	Equation equ70
	Equation equ71
	Equation equ72
	Equation equ73
	Section_4
	Equation equ74
	Equation equ75
	Equation equ76
	Section_5
	Section_6
	Section_7
	Section_8
	TABLE_1
	Equation equ78
	Figure 2
	Equation equ79
	Equation equ80
	Equation equ81
	Equation equ82
	Equation equ83
	Figure 3
	TABLE_2
	Equation equ77
	Section_9
	Section_10
	Section_11
	Section_12
	Section_13
	Section_14
	Section_15
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66

