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Abstract

DNA methylation is a key component of mammalian gene regulation and the most classical 

example of an epigenetic mark. DNA methylation patterns are mitotically heritable and stable over 

time, but they undergo considerable changes in response to cell differentiation, diseases and 

environmental influences. Several methods have been developed for DNA methylation profiling 

on a genomic scale. Here, we benchmark four of these methods on two sample pairs, comparing 

their accuracy and power to detect DNA methylation differences. The results show that all 

evaluated methods (MeDIP-seq: methylated DNA immunoprecipitation, MethylCap-seq: 

methylated DNA capture by affinity purification, RRBS: reduced representation bisulfite 

sequencing, and the Infinium HumanMethylation27 assay) produce accurate DNA methylation 

data. However, these methods differ in their ability to detect differentially methylated regions 

between pairs of samples. We highlight strengths and weaknesses of the four methods and give 

practical recommendations for the design of epigenomic case-control studies.
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Introduction

Twenty-five years of research on cancer epigenetics have firmly established the prevalence 

of aberrant DNA methylation in cancer cells1–5. Moreover, recent studies have investigated 

the role of DNA methylation for neural and autoimmune diseases, its correlation with 

physiological conditions and its response to environmental influences6–8. Comprehensive 

mapping of DNA methylation in relevant clinical cohorts is likely to identify new disease 

genes and potential drug targets, help establish the relevance of epigenetic alterations in 

diseases other than cancer, and provide a rich source for biomarker development9. In a 

biotechnology context, DNA methylation profiling could also facilitate quality control of 

cultured cells, exploiting the fact that cell states and differentiation potential of stem cells 

are reflected in their DNA methylation patterns10.

Several methods have been developed to enable DNA methylation profiling on a genomic 

scale. Most of these methods combine DNA analysis by microarrays or high-throughput 

sequencing with one of four ways of translating DNA methylation patterns into DNA 

sequence information or library enrichment: (i) Methylated DNA immunoprecipitation 

(MeDIP) uses an antibody that is specific for 5-methyl-cytosine to retrieve methylated 

fragments from sonicated DNA11,12. (ii) Methylated DNA capture by affinity purification 

(MethylCap) employs a methyl-binding domain protein to obtain DNA fractions with 

similar methylation levels13–15. (iii) Bisulfite-based methods utilize a chemical reaction 

that selectively converts unmethylated (but not methylated) cytosines into uracils, thus 

introducing methylation-specific single-nucleotide polymorphisms into the DNA 

sequence10,16,17. (iv) Methylation-specific digestion uses prokaryotic restriction enzymes 

to fractionate DNA in a methylation-specific way18–20.

The diversity of methods and absence of an uncontested commercial market leader raise 

questions about each method’s strengths and weaknesses – questions that researchers have 

to answer for themselves when selecting the most appropriate technology for any given 

project. The goal of this study was to perform a comprehensive benchmarking of four 

popular methods, with a special emphasis on their practical utility for biomedical research 

and biomarker development. We selected MeDIP-seq11, MethylCap-seq13, RRBS21 and 

the Infinium HumanMethylation27 assay16 for inclusion in this comparison, based on the 

following considerations: (i) All four methods are relatively easy to set up because detailed 

protocols have been published and / or commercial kits are available. (ii) We chose RRBS 

rather than genome-wide bisulfite sequencing because its per-sample cost are comparable to 

the other methods and realistic for large sample sizes. (iii) The Infinium 

HumanMethylation27 assay was included because of its wide use and easy integration with 

existing genotyping pipelines; it is the only microarray-based method in our comparison. 

(iv) Methods that utilize tiling microarrays were excluded because they have been 

benchmarked previously19 and because next-generation sequencing enables higher 

resolution and/or higher genomic coverage at competitive cost. (v) Methylation-specific 

digestion was excluded because no algorithm exists that could accurately infer quantitative 

DNA methylation data from digested read frequencies18. An outline of the experimental and 

analytical procedure of this technology comparison is shown in Figure 1.
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Results

DNA methylation mapping using MeDIP, MethylCap, RRBS and Infinium

Genome-wide DNA methylation mapping is most commonly used as a discovery tool, in 

order to identify differentially methylated regions (DMRs) as candidates for further 

research. Typical examples are cancer-specific DMRs, which play an increasing role as 

biomarkers for cancer diagnosis and therapy optimization9. To emulate the case-control 

approach that is widely used for epigenetic biomarker development, our study focuses on 

sample pairs that we statistically compare with each other. Specifically, we selected two 

human embryonic stem (ES) cell lines that were derived from genetically unrelated 

embryos22, and a matched pair of colon tumor and adjacent normal colon tissue obtained 

from the same donor. We applied each of the four methods (MeDIP, MethylCap, RRBS, 

Infinium) to all four samples (HUES6 ES cells, HUES8 ES cells, colon tumor, matched 

normal colon tissue), generating a total of 16 genome-scale DNA methylation maps. All data 

were processed with a standardized bioinformatic pipeline, and the technical data quality 

turned out to be similarly high across all samples and methods (Table 1).

When plotting the DNA methylation data as genome browser tracks we found excellent 

visual agreement between all four methods (Figure 2; tracks are available online for 

interactive browsing: http://meth-benchmark.computational-epigenetics.org/). MeDIP and 

MethylCap gave rise to peaks of methylated DNA that were similar in shape, size and 

location, indicating that MeDIP’s monoclonal antibody and MethylCap’s methyl-binding 

domain enrich for similar DNA fragments. However, MeDIP exhibited higher baseline 

levels and lower peak heights than MethylCap. This reduced dynamic range is already 

apparent from Figure 2 (note the different scale of the y-axis) and becomes more obvious 

when plotting MeDIP and MethylCap tracks along an entire chromosome (Supplementary 

Figure 1). This observation was quantitatively confirmed by plotting the mean read 

frequency for enriched and depleted fractions of the genome (Supplementary Figure 2). We 

also observed high visual agreement between RRBS and Infinium, with the limitation that 

Infinium covers two orders of magnitude fewer CpGs than RRBS (Table 1). Finally, the 

bisulfite-based methods (RRBS, Infinium) generally confirm the results of the enrichment-

based methods (MeDIP, MethylCap), although there are deviations in repeat-rich as well as 

in CpG-poor genomic regions (Supplementary Figure 3).

Accuracy of DNA methylation mapping

For a more quantitative assessment of measurement accuracy, we compared the results of 

the three sequencing-based methods (MeDIP, MethylCap, RRBS) with the Infinium 

HumanMethylation27 assay as a common reference. The Infinium assay was used as 

reference because its quantitative accuracy has been established in previous studies16,23, 

which reported correlation coefficients around 0.9 relative to the GoldenGate and 

MethyLight assays. Note however that the probes of the Infinium assay cover only a small 

percentage of all CpGs in the genome and are preferentially located in unmethylated 

promoter regions. To compensate for this potential source of bias, we calculate two 

correlation coefficients, one across the entire spectrum of methylation levels and the other 
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focusing only on those CpGs that exhibit at least 20% methylation according to the Infinium 

assay.

RRBS and Infinium data can be compared directly and without normalization, because both 

methods measure absolute DNA methylation levels. For a total of 5,088 single CpGs that 

were covered by both an Infinium probe and at least five RRBS reads, we observed a 

Pearson correlation of 0.92 across all DNA methylation levels, and a Pearson correlation of 

0.83 when we excluded unmethylated CpGs. Because neighboring CpGs tend to exhibit 

highly correlated DNA methylation levels17,24 we also evaluated the correlation for RRBS 

measurement averages over a 200 basepair sequence window around each Infinium probe. 

Again, we observed excellent agreement between the two methods (Figure 3C), with an 

overall Pearson correlation of 0.92 across all DNA methylation levels and a Pearson 

correlation of 0.84 when we excluded unmethylated CpGs. This second comparison supports 

the hypothesis that a single-CpG measurement can often act as an indicator of the DNA 

methylation levels at neighboring, unmeasured CpGs.

Comparison with MeDIP and MethylCap is less straightforward because both methods 

measure the relative enrichment of methylated DNA rather than absolute DNA methylation 

levels. When we correlated the number of sequencing reads per 1-kilobase region with the 

DNA methylation measurements of the Infinium assay, the Pearson correlation did not 

exceed 0.6 across all DNA methylation levels and 0.4 when we excluded unmethylated 

CpGs (Supplementary Figure 3A and B). High density of repetitive DNA was identified as 

the major source of spurious read enrichment in regions with low absolute DNA methylation 

levels, and low CpG density gave rise to low read numbers in regions with high levels of 

DNA methylation (Supplementary Figure 3C and D). The confounding effect of DNA 

sequence is also visible in Figure 2: Low read counts can indicate either the relative absence 

of CpGs (example: region 1 in Figure 2) or the absence of DNA methylation in the presence 

of CpGs (region 2); and strong peaks can occur in genomic regions that are incompletely 

methylated if the CpG density is sufficiently high to give rise to substantial read enrichment 

(region 3).

It has previously been reported that statistical correction for CpG density can improve the 

quantification of DNA methylation levels based on MeDIP data11,25. We therefore 

constructed a linear regression model that corrects for the confounding effect of DNA 

sequence (see Methods section for details), and we observe substantially improved results 

(Figure 3A and 3B). Across all DNA methylation levels the correlation between the 

statistically corrected read counts and the DNA methylation measurements of the Infinium 

assay amounted to 0.84 for MeDIP and to 0.88 for MethylCap. However, the correlations 

dropped to 0.57 (MeDIP) and 0.66 (MethylCap) when we excluded unmethylated CpGs. 

These results indicate that MeDIP and MethylCap can almost as precisely distinguish 

between methylated and unmethylated region as RRBS, but are less accurate for quantifying 

the DNA methylation levels in partially methylated genomic regions.

Genomic coverage of DNA methylation mapping

The single-basepair resolution of the two bisulfite-based methods comes at the cost of 

reduced genomic coverage compared to the two enrichment-based methods: RRBS reads are 
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clustered in approximately 1% of the genome10,26 and Infinium focuses on the methylation 

status of slightly less than 15,000 gene promoters, while MeDIP and MethylCap reads are 

theoretically able to identify methylated genomic regions located anywhere in the genome. 

To assess the empirical genomic coverage of each method, we calculated the number of 

reads (MeDIP, MethylCap) or CpG methylation measurements (RRBS, Infinium) for each 

of the following genomic regions: (i) CpG islands, (ii) gene promoters, and (iii) a 1-kilobase 

tiling of the genome. The results are shown in Figure 4, and coverage details for a total of 13 

types of genomic regions are available online (http://meth-benchmark.computational-

epigenetics.org/).

As expected, MeDIP and MethylCap provide broad coverage of the genome, whereas RRBS 

and Infinium are more restricted to CpG islands and promoter regions. However, the 

practically relevant differences in genomic coverage are lower than Figure 4 may suggest. 

This is because a minimum number of reads are required in at least one sample to reliably 

detect differential methylation among a given pair of samples. We illustrate this point by 

two statistical power calculations, which were performed with G*Power 327. Assume that a 

genomic region is covered by five MeDIP or MethylCap reads in one sample. Then it has to 

contain at least 20 reads in the second sample to be detected as hypermethylated (assuming a 

statistical power of 80% and a p-value of 5% without multiple-testing correction). Similarly, 

RRBS would detect a DNA methylation increase from 30% to 70% only when at least 25 

measurements are available in each sample (again assuming a statistical power of 80% and a 

p-value of 5% without multiple-testing correction).

Identification of differentially methylated regions with MeDIP, MethylCap and RRBS

Genome-wide DNA methylation mapping is most commonly used for detecting DNA 

methylation differences, for example between diseased and healthy tissue or between 

genetically modified and unmodified control cells. To assess how well MeDIP, MethylCap 

and RRBS perform on this task, we developed a bioinformatic method that identifies 

statistically significant DMRs from multiple types of sequencing data (the Infinium assay 

requires a different approach and is discussed in a separate section below). For a pre-defined 

set of genomic regions we count the numbers of sequenced reads (for MeDIP and 

MethylCap), or alternatively the numbers of methylated vs. unmethylated CpGs (for RRBS), 

and we test for statistically significant differences between two samples using Fisher’s exact 

test. When applied to a complete tiling of the human genome, this method performs 

genome-wide DMR detection. Alternatively, it can be targeted to specific region types such 

as CpG islands, gene promoters or putative enhancers, which can lead to more sensitive 

detection of small difference because the multiple-testing burden is reduced compared to 

genome-wide DMR detection. We pursued both the unbiased and the annotation-guided 

approach in parallel, focusing our comparison on three types of genomic regions: (i) CpG 

islands, (ii) gene promoters, and (iii) a 1-kilobase tiling of the genome (Figure 5, 

Supplementary Figures 4 to 8).

Overall, we observed high correlation for each of the two sample pairs, but also outliers 

suggesting the presence of DMRs. Based on the RRBS data we obtained Pearson 

correlations around 0.9 for all three region types, both between the two ES cell lines 
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(HUES6 and HUES8) and between the colon tumor and matched normal colon tissue. For 

MethylCap and MeDIP, the correlations were somewhat lower and ranged from 0.75 to 0.92 

(Figure 5, Supplementary Figures 4 to 8). Using the DMR detection algorithm (see Methods 

for details), we identified several hundred to several thousand DMRs in each of the two 

sample pairs. There was substantial, but by no means perfect, overlap between the DMRs 

identified by all three methods. For the two human ES cell lines, 277 out of 44,440 CpG 

islands were detected as differentially methylated by each of the three methods (Figure 5D), 

and pairwise comparisons for each sample and region type (Supplementary Figures 4 to 8) 

confirmed that the agreement between the three methods was statistically significant in all 

cases (p<0.01, Fisher’s exact test). In total, we observed that up to 1,000 CpG islands, 405 

promoter regions or 1,924 of the 1-kilobase tiling regions (i.e. less than 0.1% of the genome) 

were detected as differentially methylated by at least two methods. Note however that it is 

not possible to combine these values into a single sum of DMRs because many CpG islands 

overlap with promoter regions, and every CpG island and promoter region overlaps with at 

least one tiling region. Nor does the number of differentially methylated tiling regions 

provide an accurate estimate of the “true” number of DMRs because a sizable number of 

DMRs are not statistically significant anymore when split into 1-kilobase regions. Despite 

these conceptual difficulties, our data clearly indicate that – on average – MethylCap 

identifies more DMRs than RRBS, while MeDIP identifies the lowest number of DMRs. 

This order was observed not only based on the total number of DMRs per method, but also 

when focusing only on those DMRs that were detected by at least two methods, indicating 

that the comparison is not distorted by high numbers of method-specific artifacts.

Validation of method-specific differentially methylated regions

In order to pinpoint potential problems of MeDIP, MethylCap or RRBS, we manually 

inspected a large number of regions that were identified as significant DMRs by only one 

method. The most frequent reasons why method-specific DMRs were missed by the other 

methods were insufficient genomic coverage (RRBS, Infinium) and low read numbers 

conferring insufficient statistical power to detect differential DNA methylation (MeDIP, 

MethylCap). No cases were identified in which the RRBS and Infinium data were in direct 

contradiction with each other. However, we could identify a few cases in which MeDIP or 

MethylCap were inconsistent with RRBS and/or Infinium data. These were almost 

exclusively located in repetitive regions, indicating that high copy-number repeats can 

amplify minor differences in the efficiency of methylated DNA enrichment and give rise to 

a small number of spurious DMRs. In contrast, RRBS seems more robust toward such 

fluctuations because it measures DNA methylation based on the DNA sequence of the reads 

in a given region, rather than based on their read frequency. We also assessed whether copy-

number variation was a major confounding factor for DMR discovery. This does not seem to 

be case for our data: The vast majority of DMRs were shorter than 10kb (Supplementary 

Figure 9), while it is not uncommon for cancer-specific as well as germline-transmitted 

copy-number variations to extend for much longer distances28,29.

As an additional validation, we selected eight method-specific DMRs based on the ES cell 

comparison, and we investigated DNA methylation patterns in the two ES cell lines by 

clonal bisulfite sequencing (Table 2). These genomic regions were hand-picked such that 

Bock et al. Page 6

Nat Biotechnol. Author manuscript; available in PMC 2011 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



one method clearly identified them as DMRs while the two other methods did not show a 

trend in either direction. Note that this pre-selection makes the validation substantially 

harder than confirming randomly selected DMRs, because method-specific DMRs tend to be 

weaker than DMRs that are detected by multiple methods. As an additional complication, 

some of the selected DMRs are highly repetitive or overlap with known copy-number 

variations. Sequencing an average of 11 clones per sample and region we were able to 

confirm three out of three MethylCap-specific DMRs and two out of two RRBS-specific 

DMRs. In contrast, two MeDIP-specific DMRs could not be confirmed, and for the third 

region the agreement was marginal (Table 2, Supplementary Data 1).

To assess the practical relevance of the method-specific differences, we asked whether 

biologically interesting hits were missed by any of the three methods. For this analysis we 

focused on the colon samples because of the large number of genes with a known or 

suspected role in colon cancer. Our results show that several interesting DMRs are detected 

by all methods, including tumor-specific hypermethylation in the promoters of GATA230 

and GATA531. However, a significant number of interesting DMRs were missed by 

MeDIP, while MethylCap and RRBS both detect them. To give a few examples, this is the 

case for tumor-specific hypermethylation in the promoter regions of SOX1732, 

POU2AF133 and SEPT934. Somewhat more rarely, we also observed interesting DMRs 

being missed by MethylCap or RRBS. For example, MethylCap overlooked tumor-specific 

hypermethylation at the promoter of SFRP135, and RRBS missed tumor-specific 

hypermethylation at the promoter of DKK236.

The effect of sequencing depth on the performance of MeDIP, MethylCap and RRBS

The three sequencing-based methods use DNA sequencing as a way of counting DNA 

fragments, in order to determine the percentage of methylation-enriched reads that align to 

specific regions (MeDIP, MethylCap) or to calculate the ratio of methylated and 

unmethylated cytosines at single CpGs (RRBS). Conceptually, sequencing can be thought of 

as random sampling from a large pool of DNA fragments. It is therefore expected that the 

performance of these methods increases when sequencing more DNA fragments, until it 

levels off as the sequencing depth approaches saturation. To quantify this effect, we repeated 

the accuracy analysis (Figure 3) and the DMR detection (Figure 5) on randomly sampled 

subsets of sequencing reads. First, we benchmarked each method against the Infinium data, 

assessing their ability to quantify DNA methylation levels based on reduced read numbers 

(Supplementary Figure 10). The results show that all three methods give rise to accurate 

DNA methylation measurements based on as few as 20% of the total read coverage, and 

almost no improvement was observed between 50% and 100% sequencing depth. While 

these data suggest that relatively low sequencing depths are often sufficient for obtaining 

accurate DNA methylation levels, this cannot be generalized to the entire genome: Infinium 

probes tend to be located in CpG-rich genomic regions, which are also preferentially 

covered by MeDIP, MethylCap and RRBS measurements (Figure 4), such that saturation is 

reached earlier in the vicinity of Infinium probes than in CpG-poor genomic regions.

Second, we tested how many DMRs were still detected among the two sample pairs when 

the number of sequencing reads in each of the samples was reduced (Supplementary Figure 
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11). For MeDIP, the number of detected DMRs dropped to less than half when the 

sequencing depth was reduced to 50%, and there was little indication that the number of 

MeDIP DMRs approaches saturation even at the highest sequencing depth. For MethylCap 

the reduction is less dramatic and there is a trend toward saturation. RRBS quickly 

approaches saturation especially for the ES-cell comparison (Supplementary Figure 11). 

Overall, the saturation analysis reinforced a conceptual difference between RRBS on the one 

hand and MeDIP and MethylCap on the other hand: In RRBS, all sequencing is focused on a 

well-defined, CpG-rich “reduced representation” of the genome, which leads to relatively 

early saturation but limited coverage of DMRs in CpG-poor genomic regions. In contrast, 

MeDIP and MethylCap reads are widely distributed over the genome (albeit with a 

significant tendency toward high coverage in CpG-rich regions), and deep sequencing 

increasingly uncovers weak DMRs located in CpG-poor genomic regions.

DNA methylation mapping of repetitive DNA

DNA methylation differences in repetitive regions have frequently been ignored by genome-

wide studies, due to technical difficulties such as ambiguous read alignment (for 

sequencing) and cross-hybridization (for microarrays). This is unfortunate given that loss of 

DNA methylation in repetitive DNA was the first epigenetic alteration shown to play a role 

in cancer3 and has been an area of active research ever since37. In the current study, we 

explored two complementary approaches to test for repeat-associated DNA methylation 

differences. First, we included repetitive regions alongside non-repetitive regions in the 

DMR detection described above (Figure 5, Supplementary Figures 4 to 8), rather than 

discarding all sequencing reads that map to repetitive portion of the genome. It was thus 

possible to identify repeat-associated DMRs in a similar way as non-repetitive DMRs, and 

we could validate several such cases by clonal bisulfite sequencing (Table 2). However, the 

focus on specific genomic regions makes it difficult to detect global trends that affect certain 

repeat classes independent of their exact location in the genome. We therefore developed a 

second approach, which was motivated by the common origin of many repetitive regions 

from a small number of retrotransposons. The basic concept was to align sequencing reads 

to prototypic sequences (e.g., of Alu and L1 elements), in order to obtain DNA methylation 

measures per repeat class rather than per repeat instance.

To that end, we obtained a manually curated list of 1,267 prototypic repeat sequences that 

spans the spectrum of repetitive DNA present in the human genome38, and we aligned the 

sequencing reads of all three methods to this collection of repeat sequences. Approximately 

20% of all MeDIP, MethylCap and RRBS reads could be aligned with high confidence, 

enabling us to estimate the global DNA methylation levels for 553 prototypic repeat 

sequences. The results of the three methods were in excellent agreement with each other 

(Supplementary Data 2) and detected substantial differences in the DNA methylation levels 

of different repeat classes: Among Alu, SVA and satellite repeat sequences we observed 

consistently high levels of DNA methylation, while most LINE, LTR and DNA repeat 

sequences exhibited low levels of DNA methylation in the four samples that we 

investigated. However, we found that the repeat sequences with the highest copy-number 

throughout the genome were highly methylated for all repeat classes.
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When we compared the DNA methylation levels in the two sample pairs (Supplementary 

Data 3), we observed widespread but relatively moderate hypomethylation in the colon 

tumor relative to matched normal colon tissue. The most common targets were Alu, SVA 

and satellite repeat sequences, consistent with previous reports about cancer-specific 

hypomethylation37. An interesting difference was identified between the two ES cell lines 

on the one hand and the two colon samples on the other hand: the only human-specific LINE 

repeat sequence in our collection (L1HS_5end) exhibited high levels of DNA methylation in 

the two colon samples, but was largely unmethylated and even marked by histone H3K4 

trimethylation in the two ES cell lines (Supplementary Data 2). These data suggest that 

young retrotransposons find ways to evade silencing by DNA methylation in pluripotent 

cells, which may contribute to their ability to maintain activity in spite of an elaborate 

epigenetic genome defense39.

Utility of the Infinium HumanMethylation27 assay for DMR discovery

Our study used the Infinium HumanMethylation27 assay as a common reference for 

evaluating the accuracy of the sequencing-based methods, which was justified by prior 

studies showing high quantitative accuracy of the Infinium assay16,23. However, no prior 

study investigated the Infinium HumanMethylation27 assay’s power to detect DMRs on a 

genome-wide scale, hence we could not use the Infinium assay as reference when evaluating 

DMR discovery by the sequencing-based methods. In fact, one might expect that the utility 

of the Infinium assay for DMR discovery is quite limited (despite its well-established 

accuracy) because the assay’s genomic coverage is low (Figure 4). To systematically assess 

the utility of the Infinium HumanMethylation27 assay for DMR discovery, we initially 

performed statistical testing in much the same way as for Figure 5. However, most CpG 

islands were covered by only two Infinium probes, which resulted in low statistical power to 

detect significant differences. Specifically, paired-samples t-tests identified just three 

significant DMRs among the ES cell lines and two DMRs between the colon tumor and 

matched normal colon tissue (data not shown).

Thus, we reformulated our question and asked how many true DMRs exhibited suggestive 

(albeit insignificant) DNA methylation differences in the Infinium data. As an 

approximation of true DMRs, we focused on those CpG islands that were detected by at 

least two sequencing-based methods (which are unlikely to contain a high number of 

technical artifacts according to the comparative validations described above). Between the 

two ES cell lines a total of 1,000 consensus DMRs were identified (corresponding to the 

sum of all center fields in Figure 5), of which 251 were covered by at least one Infinium 

probe. Similarly, we identified 463 consensus DMRs between the colon tumor and matched 

normal colon tissue, of which 177 were covered by at least one Infinium probe. In most 

cases, the directionality of the difference was consistent between the consensus DMRs and 

the Infinium data (Supplementary Figure 10). But when we imposed a minimum threshold 

of 20 percentage points DNA methylation difference in the same way as for RRBS, the 

number of Infinium-detected DMRs dropped to 162 (ES-cell comparison) and 95 (colon 

cancer comparison). In other words, the Infinium assay detected approximately a fifth of the 

consensus DMRs that we identified by the sequencing-based methods.
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Discussion

Over the last decade, DNA methylation mapping played an important role in establishing the 

prevalence of altered DNA methylation in cancer40,41. Furthermore, researchers have 

started to systematically study the role of DNA methylation in a wide range of non-

neoplastic diseases42. This is indeed a good time to probe for epigenetic alterations that 

contribute to human diseases: Genome-wide association studies have been completed for all 

common diseases, and their results point to a major role of non-genetic factors in the 

etiology of most diseases43. Furthermore, it has been suggested that epigenetic events could 

provide a tractable link between the genome and the environment, with the epigenome 

emerging as a biochemical record of relevant life events44,45. Systematic investigation of 

these topics requires powerful, accurate and cost-efficient methods for identifying DNA 

methylation differences between samples.

The goal of this study was to evaluate current methods for global DNA methylation 

mapping and to compare their performance in a practical application scenario. To mimic a 

typical disease-centered case-control study, we worked with primary patient material (colon 

samples) and used lower amounts of input DNA than in most previous studies (MeDIP: 

300ng, MethylCap: 1µg, RRBS: 50ng, Infinium: 1µg). Furthermore, we focused on cell 

types that are known to exhibit relatively moderate DNA methylation differences30,46, in 

contrast to the massive DNA methylation alterations that are frequently observed in cultured 

somatic cells10 and cancer cell lines47. Finally, all four methods included in the current 

study are widely available and not excessively costly, such that there are few obstacles to 

using this technology comparison as a blue print for individual lab efforts as well as large-

scale epigenomic case-control studies investigating the epigenetics of human diseases.

Overall, the data confirmed that all four methods provide accurate DNA methylation 

measurements and can be used to detect DMRs in clinical samples. In terms of accuracy, the 

bisulfite-based methods (RRBS, Infinium) performed slightly better than the enrichment-

based methods and did not require any statistical correction of CpG bias. The genomic 

coverage was moderately higher for MethylCap than for MeDIP, RRBS coverage was by 

design focused on CpG-rich regions, and the Infinium assay covered a relatively small 

number of preselected genomic regions. Despite the striking differences in genomic 

coverage, a substantial fraction of DMRs detected by MeDIP or MethylCap were also 

identified by RRBS (and vice versa). This somewhat counter-intuitive observation can be 

explained by the role of region-specific read coverage for the ability to identify statistically 

significant DMRs: If a genomic region is CpG-poor and thus rarely sequenced by MeDIP or 

MethylCap, both methods have low statistical power to detect differential DNA methylation. 

In contrast, CpG-rich genomic regions tend to be more amenable to DMR detection by 

MeDIP and MethylCap and are also frequently covered by RRBS measurements. Finally, 

we observed that MethylCap was able to detect roughly twice as many DMRs as MeDIP at 

comparable sequencing depths, RRBS detected more DMRs than MeDIP but fewer DMRs 

than MethylCap, and the Infinium assay detected only 20% of the consensus DMRs 

identified by the sequencing-based methods. These differences could be reproduced in two 

independent pairwise comparisons, providing strong indication that they are robust across 

biological replicates and cannot be explained by random experimental variation. On the 
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other hand, we used one specific protocol for each method, and it is quite possible that 

protocol variations (e.g., different antibody for MeDIP, different elution procedure for 

MethylCap, or different size selection for RRBS) would produce different results.

Our study also reinforces the importance of sequencing depth as a key parameter 

determining to power to detect differential methylation with any of the sequencing-based 

methods. To allow for a fair and practically relevant comparison, we sequenced 

approximately 30 to 40 million reads for each sample and method. However, it became 

evident that deeper sequencing would identify further DMRs, especially for MeDIP and 

MethylCap (Supplementary Figure 11). For disease-centered studies it is therefore necessary 

to make an informed decision about how to distribute the available resources between 

sequencing few samples more deeply and sequencing more samples less deeply. Such a 

decision can be guided by statistical power calculations when some prior knowledge exists 

about the characteristics of expected DMRs (e.g., magnitude of difference, location in CpG-

rich vs. CpG-poor genomic regions), or they can be dictated by practical considerations such 

as the number of available samples. MeDIP, MethylCap and RRBS as performed in this 

study seem to provide a practically useful compromise between breadth and depth of 

sequencing. In contrast, whole-genome bisulfite sequencing48 provides comprehensive 

genomic coverage at the cost of having to sequence over a billion reads per sample. On the 

other end of the spectrum, low sequencing depths are often sufficient to detect strong 

differences such as global loss of DNA methylation but fail to provide reliable locus-specific 

information49.

Finally, genome-wide studies tend to ignore repetitive regions due to technical difficulties, 

and the few studies that focused specifically on mapping DNA methylation in repetitive 

regions did so at relatively low coverage50–52. The current dataset was well-suited to 

analyze DNA methylation in repetitive regions because the joint results obtained by three 

different experimental methods helped us to control for technical artifacts that can burden 

the analysis of repetitive DNA. We observed that repeat sequences are most highly 

methylated when they are CpG-rich and highly prevalent in the human genome 

(Supplementary Data 2). In contrast, the DNA methylation levels varied widely among 

repeat sequences that are either CpG-poor or infrequent in the genome. These results lend 

support to the hypothesis that DNA methylation provides a mechanism for keeping active 

retrotransposons in check53. They argue for a highly specific mechanism of repeat 

repression, which targets DNA methylation mostly to those repeat sequences that threaten 

genome integrity, while many “benign” repeat sequences may remain unmethylated.

In summary, we benchmarked four methods for genome-scale DNA methylation profiling in 

terms of their accuracy and power to detect DNA methylation differences. These results will 

facilitate the selection of suitable methods for studying the role of DNA methylation in 

human diseases.
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Methods

Sample origin and cell culture

Human ES cells were cultured in knockout serum replacement (KOSR) medium according 

to established protocols22 and genomic DNA was extracted as described previously54. 

DNA for the colon tumor and matched normal colon tissue was purchased from BioChain 

(lot number A704198). Both samples originate from the same donor, an 81-year-old male 

patient diagnosed with moderately differentiated adenocarcinoma.

Methyl-DNA Immunoprecipitation (MeDIP)

MeDIP11 was performed using the EZ DNA methylation kit (Zymo Research). A total of 

300ng DNA per sample was sonicated using Bioruptor (Diagenode) with 8 intervals of 

10min (30s on, 30s off), resulting in an average fragment size of 150 basepairs. Sonicated 

DNA was end-repaired and ligated with sequencing adapters as described previously11. 

Gel-based selection for fragment sizes between 100 and 200 basepairs was followed by 

methylated DNA immunoprecipitation according to the manufacturer’s protocol. A total of 

1µg of monoclonal antibody against 5-methyl-cytosine (included in the EZ DNA 

methylation kit) was used for immunoprecipitation. The immunoprecipitated DNA was 

PCR-amplified and the specificity of the enrichment was confirmed by qPCR for selected 

loci as described previously55. Two lanes of 36-basepair single-ended sequencing were 

performed on the Illumina Genome Analyzer II according to the manufacturer’s standard 

protocol. Maq with default parameters was used to align the sequencing reads to the 

NCBI36 (hg18) assembly of the human genome56.

Methylated-DNA capture (MethylCap)

MethylCap13 was performed in a robotized procedure using a SX-8G / IP-Star (Diagenode). 

2µg of His6-GST-MBD (Diagenode) was combined with 1µg of sonicated DNA in 200µl of 

binding buffer (BB, 20mM Tris-HCl pH 8.5, 0.1% Triton X-100) containing 200mM NaCl. 

This solution was incubated at 4°C for 2 hours. Magnetic GST-beads were prepared by 

washing 35µl of a well-mixed MagneGST glutathione particle suspension (Promega) with 

200µl of binding buffer plus 200mM NaCl at 4°C. Washing was repeated once and the 

supernatant was removed. The GST-MBD-DNA solution was added to the washed and 

collected beads, and this suspension was rotated for another hour at 4°C. After removal of 

the supernatant (this is the flow-through) the beads-GST-MBD-DNA complexes were eluted 

by washing. 200µl of binding buffer with different concentrations of NaCl was added and 

the suspension was rotated for 10min at 4°C. Beads were captured using a magnet, and the 

supernatant was collected. The elution procedure consisted of 1× 300mM (wash), 2× 

400mM (wash), 1× 500mM (“low” eluate), 1× 600mM (“medium” eluate), 1× 800mM NaCl 

(“high” eluate). The collected eluates were purified using QIAquick PCR purification spin 

columns (Qiagen), eluted with 100µl elution buffer and prepared for sequencing as described 

previously13. A single lane of 36-basepair single-ended sequencing on performed on the 

Illumina Genome Analyzer II was performed for the low, medium and high eluates, 

respectively. The sequencing reads were aligned to the NCBI36 (hg18) assembly of the 

human genome using Illumina’s analysis pipeline (ELAND) with default parameters. The 

lanes for each of the three eluates are shown separately in Figure 2, and we tested whether 
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the accuracy relative to the Infinium assay could be improved by taking this additional 

information into account. However, a linear model that was based on the separate read 

counts of the three lanes did not outperform a model that was based on the sum of the three 

lanes, which is why we used only pooled read data for the analyses described in this paper.

Reduced representation bisulfite sequencing (RRBS)

RRBS21 was performed according to a previously published protocol54 with some 

optimizations for clinical samples and low amounts of input DNA21. The main steps were: 

(i) A total of 50ng (ES cells) or 1µg (colon samples) genomic DNA was digested by 5U to 

20U of MspI (New England Biolabs, NEB) for up to 16h. (ii) End-repair and adenylation of 

digested DNA were performed in a 20µl reaction consisting of 10U of Klenow fragments (3’

→ 5’ exo-, NEB), 2µl premixed nucleotide triphosphates (1mM dGTP, 10mM dATP, 1mM 

5’ methylated dCTP). The reaction was incubated at 30°C for 30min followed by 37°C for 

additional 30min. (iii) Preannealed 5-methylcytosine-containing Illumina adapters were 

ligated with adenylated DNA fragments in a 20µl reaction containing of 1µl concentrated T4 

ligase (NEB), 1–2µl of 15µM adapters at 16°C for 16 to 20 hours. (iv) Gel-based selection 

for fragments with insertion sizes of 40 to 120 basepairs and 120 to 220 basepairs was 

performed as described previously21. (v) Bisulfite treatment with the EpiTect Bisulfite Kit 

(Qiagen) was conducted following the protocol designated for DNA isolated from formalin-

fixed and paraffin-embedded tissues. Two rounds of conversion were performed in order to 

maximize bisulfite conversion rates. The final bisulfite-converted DNA was eluted with 2× 

20µl pre-heated (65°C) EB buffer. (vi) To determine the minimum number of PCR cycles 

for final library enrichment, analytical (10µl) PCR reactions containing 0.5µl of bisulfite-

treated DNA, 0.2µM each of Illumina PCR primers LPX1.1 and 2.1 and 0.5U PfuTurbo Cx 

Hotstart DNA polymerase (Stratagene) were set up. The thermocycler conditions were: 

5min at 95°C, varied cycle numbers (10–20) of 20s at 95°C, 30s at 65°C, 30s at 72°C, 

followed by 7min at 72°C. PCR products were visualized by running on a 4–20% 

polyacrylamide Criterion TBE Gel (Bio-Rad) and stained by SYBR Green. The final 

libraries were generated by 8 of 25µl PCR reaction with each one containing 2–3µl of 

bisulfite-converted template, 1.25U PfuTurbo Cx Hotstart polymerase and 0.2µM each of 

Illumina LPX1.1 as well as 2.1 PCR primers. The libraries were PCR amplified and 

sequenced on the Illumina Genome Analyzer II as described previously21. The sequencing 

reads were aligned to the NCBI36 (hg18) assembly of the human genome using a custom 

alignment software that was developed for RRBS data10.

Microarray-based epigenotyping (Infinium)

Infinium16 analysis was performed by the Genetic Analysis Platform at the Broad Institute. 

A total of 1µg of genomic DNA per sample was bisulfite-treated according to the 

manufacturer’s protocol and hybridized onto Infinium HumanMethylation27 bead arrays 

(Illumina). We previously observed almost perfect agreement between technical replicates 

(Pearson’s r>0.98), which is why only a single hybridization was performed for each 

sample.
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Data preparation and quality control

For MeDIP and MethylCap, the aligned reads were extended to the mean fragment length 

obtained during sonication, and from each group of duplicate reads (i.e. reads aligned to the 

exact same start position on the same chromosome) all but one read were discarded, in order 

to minimize the impact of PCR bias on downstream analysis. For RRBS, the aligned reads 

were compared to the reference genome, and the DNA methylation status was determined 

using a custom software as described previously21. Infinium HumanMethylation27 data 

were processed with Illumina’s BeadStudio 3.2 software, using the default background 

subtraction method for normalization. UCSC Genome Browser tracks were constructed by 

custom scripts implemented in the Python programming language (http://www.python.org/).

Quantification of absolute DNA methylation levels

We used linear regression models to estimate the absolute DNA methylation levels from the 

MeDIP and MethylCap read counts. Based on a number of different feature selection 

experiments, we found that the following combination of variables was robustly predictive 

of DNA methylation levels: (i) the square root of the total number of MeDIP or MethylCap 

reads within the given region, (ii) the square root of the total number of whole-cell extract 

(WCE) reads within the region (based on a cross-tissue WCE track that we routinely use for 

ChIP-seq data normalization), (iii) the logit of the CpG frequency within the region, (iv) the 

relative GC content of the region, (v) the ratio of Cs relative to CpGs, and (vi) the relative 

repeat content of the region as determined by RepeatMasker (http://www.repeatmasker.org). 

For both MeDIP and MethylCap, we observed that the read frequencies were strongly 

positively associated with the absolute methylation level according to Infinium data, while 

the repeat content was moderately positively associated. In contrast, the logit of the CpG 

frequency was highly negatively associated with DNA methylation, and all other variables 

as well as the model’s intercept exhibited a moderately negative association. For model 

fitting and performance evaluation, the current dataset was split into equally sized training 

and test sets. All model fitting was performed using the R statistics package (http://www.r-

project.org/).

Identification of differentially methylated regions

In our experience, classical peak detection57,58 is not well-suited for DMR identification 

because of the high number of spurious hits encountered when borderline peaks are detected 

in one sample but not in the other (C. Bock, unpublished observation). Instead, we used a 

statistical test to compare two samples directly with each other. For a given region with 

RRBS data, we count the number of methylated vs. unmethylated CpGs in both samples and 

perform Fisher’s exact test to obtain a p-value that is indicative of the likelihood of the 

region being a DMR. Similarly, for MeDIP and MethylCap we count the numbers of reads 

that align inside the region for both samples and use Fisher’s exact test to contrast these 

values with the total numbers of reads that align elsewhere in the genome. And for the 

Infinium assay we use a paired-samples t-test to compare the two samples’ β-values of all 

Infinium probes inside the region. These tests are performed on a large number of genomic 

regions in parallel (e.g., on all CpG islands), and the p-values are corrected for multiple 

testing using the q-value method59. Genomic regions with a q-value of less than 0.1 are 
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flagged as hypermethylated or hypomethylated (depending on the directionality of the 

difference), but only if the absolute DNA methylation difference exceeds 20% (for RRBS 

and Infinium) or if there is at least a twofold difference in the read number (for MeDIP and 

MethylCap). These thresholds were chosen by their practical utility in a number of 

comparisons between different cell types and have no further justification. We also mark 

genomic regions with insufficient sequencing coverage, but do not exclude them from DMR 

analysis. For MeDIP and MethylCap we require at least ten reads per 10 million total reads 

for the sample with higher read coverage, and for RRBS we require a minimum of five 

CpGs with at least five reads each in both samples.

This statistical approach to DMR identification requires us to define sets of genomic regions 

on which the analysis is being performed. We pursued a two-way strategy to maximize the 

chances of finding interesting DMRs. One the one hand, we focused specifically on CpG 

islands and gene promoters, which are prime candidates for epigenetic regulation. This 

approach provides increased statistical power for regions with well-known functional roles 

because the relatively low number of CpG islands and gene promoters reduces the burden of 

multiple-testing correction compared to the genome-wide case. On the other hand, we used a 

1-kilobase tiling of the genome to detect DMRs that are located outside of any candidate 

regions. And to cast an even wider net, we collected a comprehensive set of 13 types of 

genomic regions, which includes not only CpG islands and gene promoters, but also CpG 

island shores30, enhancers60, evolutionary conserved regions and other types of genomic 

regions. DMR data for all of these region sets were calculated using a set of Python and R 

scripts and are available online (http://meth-benchmark.computational-epigenetics.org/).

Experimental validation

Based on the CpG islands that were detected as differentially methylated between the two 

ES cell lines (Figure 5), we manually selected eight method-specific DMRs for experimental 

validation. To that end, those CpG islands that were identified as statistically significant 

DMRs by one method (but not by the other two methods) were visually inspected in the 

UCSC Genome Browser, and regions were selected for validation only if the data fully 

supported their classification as method-specific DMRs. In particular, regions were not 

selected if a second method already picked up a suggestive but insignificant trend in the 

same direction as the first method, or when the data of the first method already suggested 

that the DMR was a false-positive hit (e.g., because of contradictory trends in the vicinity of 

the DMR). Experimental validation was performed by clonal bisulfite sequencing following 

established protocols61. Primers were designed using MethPrimer62 such that the amplicon 

overlapped with those CpGs that exhibited the highest levels of differential methylation 

according to our original data. To prepare for bisulfite sequencing, 1µg of DNA was 

bisulfite-converted using the EpiTect kit (Qiagen); 50ng of bisulfite-converted DNA was 

PCR-amplified (see Supplementary File 1 for primer sequences); and purified amplicons 

were cloned using the TOPO TA cloning kit (Invitrogen). For each region an average of 11 

clones were randomly chosen for sequencing. All sequencing data were processed using the 

BiQ Analyzer software63, and the results are summarized in Supplementary File 1.
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Analysis of repetitive DNA

Repeat sequences were obtained from database version 14.07 of RepBase Update38, which 

is publicly available online (http://www.girinst.org/server/RepBase/index.php). From a total 

of 11,670 prototypic repeat sequences we selected those 1,267 that were annotated either to 

human or to its ancestors in the taxonomic tree, and we combined these prototypic repeat 

sequences into a pseudo-genome file. Maq with default parameters was used to align 

MeDIP, MethylCap, RRBS, ChIP-seq (H3K4me3) and whole-cell extract (WCE) 

sequencing reads against this pseudo-genome56. For RRBS, both the reads and the reference 

genome were bisulfite-converted in silico prior to the alignment. The epigenetic status of 

each prototypic repeat sequence was quantified as follows: (i) For MeDIP, MethylCap and 

ChIP-seq we calculated the odds ratios relative to the WCE data. (ii) For RRBS we 

computed the number of methylated CpGs, total number of CpG measurements and 

percentage of DNA methylation based on the comparison of the aligned reads with the 

prototypic repeat sequence.

We discarded rare repeats with WCE coverage below 100 aligned reads or RRBS coverage 

below 25 CpG measurements, resulting in 553 prototypic repeat sequences that were used 

for further analysis. Among these were 97 LINE class sequences (92 of them from the L1 

family), 51 SINEs (48 of them from the Alu family), 6 SVAs, 62 DNA repeats, 15 satellite 

repeats, 315 LTRs, 1 low-complexity repeat and 6 RNA repeats (Supplementary File 2). To 

quantify differential methylation between a pair of MeDIP and MethylCap samples, we 

calculated the pairwise odds ratio of the read coverage for each prototypic repeat sequence, 

while the absolute DNA methylation difference was used in the case of RRBS 

(Supplementary File 3). The significance of the difference was assessed using Fisher’s exact 

test in the same way as for the non-repetitive genome (described above).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Outline of the DNA methylation technology comparison
Four methods for DNA methylation mapping were compared on two pairs of samples. The 

resulting 16 DNA methylation maps were bioinformatically analyzed and benchmarked 

against each other. In addition, clonal bisulfite sequencing was performed on selected 

genomic regions to validate DNA methylation differences that were detected exclusively by 

one method.
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Figure 2. Comparison of DNA methylation maps obtained with MeDIP, MethylCap, RRBS and 
Infinium
DNA methylation maps were generated using MeDIP (first two tracks, in green), MethylCap 

(three tracks in blue, grey and red), RRBS (stacked blue tracks) and Infinium (single black 

track with percentage values) and converted into UCSC Genome Browser tracks. The 

screenshot shows the HOXA cluster in a human ES cell line (HUES6). Each track represents 

data from a single sequencing lane (MeDIP, MethylCap, RRBS) or microarray hybridization 

(Infinium). MeDIP and MethylCap data are visually similar to ChIP-seq data, with peaks in 

regions that exhibit high density of the target molecule (5-methyl-cytosine) and troughs in 
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regions with low density of methylated cytosines. The height of the peaks represents the 

number of reads in each genomic interval, for each track normalized to the same genome-

wide read count (note the twofold compressed scaling of the MethylCap tracks relative to 

the MeDIP tracks, which is indicative of higher dynamic range for MethylCap compared to 

MeDIP). RRBS gives rise to clusters of CpGs with absolute DNA methylation 

measurements, separated by regions that are not covered due to the reduced-representation 

property of the RRBS protocol. Each data point corresponds to the methylation level at a 

single CpG, and dark blue points indicate higher methylation levels than light blue points. 

Infinium data is represented in a similar way as the RRBS data, and the methylation levels at 

single CpGs are shown as percentage values. The three grey columns highlight regions that 

are illustrative of specific properties of the enrichment methods: (1) A promoter region that 

is CpG-poor and therefore not detectable by MeDIP or MethylCap – independent of its 

DNA methylation level; (2) a promoter region that contains many CpGs but low levels of 

DNA methylation, which also results in the absence of MeDIP and MethylCap peaks; and 

(3) a CpG island that exhibits a strong enrichment peak for both MeDIP and MethylCap 

although the RRBS data indicates that it is only partially methylated. For reference, the CpG 

density is indicated by stacked points (black) at the bottom of the diagram, and CpG islands 

(red) as well as known genes (blue) are listed as described previously64,65. All DNA 

methylation maps are available online as custom tracks for interactive visualization in the 

UCSC Genome Browser (http://meth-benchmark.computational-epigenetics.org/).
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Figure 3. Quantification of DNA methylation with MeDIP, MethylCap and RRBS
Absolute DNA methylation levels were calculated from the data obtained by MeDIP (panel 

A), MethylCap (panel B) and RRBS (panel C), respectively, and compared to DNA 

methylation levels determined by the Infinium assay. For MeDIP and MethylCap, 

sequencing reads were counted in 1-kilobase regions surrounding each CpG that is 

interrogated by the Infinium assay, and a regression model was used to infer absolute DNA 

methylation levels. Scatterplots and correlation coefficients were calculated on a test set that 

was not used for model fitting or feature selection. For RRBS, the DNA methylation level 

was determined as the percentage of methylated CpGs within 200 basepairs surrounding 

each CpG that is interrogated by the Infinium assay. Data shown are for the HUES6 human 

ES cell line, and regions that did not have sufficient sequencing coverage were excluded.
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Figure 4. Genomic coverage of MeDIP, MethylCap, RRBS and Infinium
Genomic coverage was quantified by the number of DNA methylation measurements that 

overlap with CpG islands (top row), gene promoters (center row) and a 1-kilobase tiling of 

the genome (bottom row). For MeDIP and MethylCap, the number of measurements is equal 

to the number of unique sequencing reads that fall inside each region. For RRBS, it refers to 

the number of valid DNA methylation measurements at CpGs within each region (one 

RRBS sequencing read typically yields one measurement, but can also give rise to more than 

one measurement if it contains several CpGs). For Infinium, the number of measurements is 

equal to the number of CpGs within each region that are present on the 

HumanMethylation27 microarray. CpG islands were calculated using CgiHunter (http://

cgihunter.bioinf.mpi-inf.mpg.de/), requiring a minimum CpG observed vs. expected ratio of 

0.6, a minimum GC content of 0.5 and a minimum length of 700 basepairs64. Promoter 

regions were calculated based on Ensembl gene annotations, such that the region starts one 

kilo-base upstream of the annotated transcription start site (TSS) and extends to one kilobase 

downstream of the TSS. The genomic tiling was obtained by sliding a 1-kilobase window 

through the genome such that each tile starts at the position where the previous tile ends. No 

repeat-masking was performed for any of the three types of genomic regions. Data are 

shown for the HUES6 human ES cell line.
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Figure 5. Detection of differentially methylated regions with MeDIP, MethylCap and RRBS
Average DNA methylation measurements were calculated for each CpG island and 

compared between two human ES cell lines (HUES6 and HUES8). Total read frequencies 

are shown for MeDIP (panel A) and MethylCap (panel B), and mean DNA methylation 

levels are shown for RRBS (panel C). Regions with insufficient sequencing coverage were 

excluded. The Venn diagram (panel D) displays the total number and mutual overlap of 

differentially methylated CpG islands that could be identified by each method. CpG islands 

were classified as hypermethylated or hypomethylated (depending on the directionality of 

the difference) if the absolute DNA methylation difference exceeded 20% (for RRBS) or if 

there was at least a twofold difference in read number between the two samples (for MeDIP 

and MethylCap) – but only if Fisher’s exact test with multiple-testing correction gave rise to 

an estimated false-discovery rate of differential DNA methylation that was less than 0.1.
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