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Cross-sectional body imaging can provide valuable 
objective data on internal tissues and organs. In particular, 
CT scans can quantify bone mineral density, visceral 
and subcutaneous fat, skeletal muscle, liver fat, and 
arterial vascular calcification, amongst other organ-based 
assessments [1,2]. When these body composition measures 
are incidental to the clinical indication for imaging, their 
consideration has been referred to as “opportunistic 
screening” [3]. To date, the labor-intensive nature of 
manual (or even semi-automated) body composition 
measurements has largely prevented their translation from 
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the research realm to routine clinical practice or large-
scale population health. However, the emergence of fully-
automated artificial intelligence (AI)-based approaches has 
now paved the way for both population-based studies and 
efficient prospective clinical reporting [2,4,5]. The initial 
results to date for predicting downstream adverse clinical 
events based on automated body composition analysis are 
very encouraging [6-9]. The convergence of “explainable” 
AI solutions with robust predictive value along with the 
generally high CT utilization rates now holds great promise 
for improved pre-symptomatic detection of patients at 
unsuspected cardiometabolic risk. 

A host of non-invasive approaches other than cross-
sectional imaging exist for estimating body fat, including 
body mass index (BMI), hydrostatic densitometry, air 
displacement plethysmography, bioelectrical impedance 
analysis, and dual-energy X-ray absorptiometry (DXA) [10]. 
However, the importance of the relative distribution of 
adipose tissue, as well as ectopic fat in the liver (hepatic 
steatosis) and skeletal muscle (myosteatosis) elevate the 
status of cross-sectional imaging with CT or MR over these 
other techniques. To more fully extend the focus of body 
composition analysis beyond limited fat-based concerns 
and include vascular calcium load and bone mineral density 
assessment, CT becomes the clear comprehensive modality 
of choice [1,2]. 

Although abdominal CT is an ideal tool for objective 
non-invasive assessment of internal organs and tissues, in 
current practice nearly all of this valuable data is either 
completely ignored or only subjectively noted (eg, the 
presence of calcific aortic plaques). A number of manual 
measures utilizing regions-of-interest (ROI) to assess mean 
attenuation (in Hounsfield unit [HU]) have been around 
for many years, including L1-level trabecular bone for 

Korean J Radiol 2021;22(12):1934-1937

eISSN 2005-8330
https://doi.org/10.3348/kjr.2021.0775

Editorial

Take-home points
•  The emergence of AI-based fully automated 

methods for the CT-based body composition 
analysis could revolutionize how this information 
is utilized.

•  The true potential value of automated CT-based 
body composition analysis lies in its ability to 
identify patients at greatest risk for downstream 
adverse clinical events.

•  Broad validation and widespread clinical 
implementation could add substantial value to 
existing patient care.
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osteoporosis [3,11] and liver assessment for non-alcoholic 
fatty liver disease (NAFLD) [12,13]. More recently, it has 
been shown that liver HU at unenhanced CT correlates with 
the MR-based proton density fat fraction (PDFF) [14,15]. 
CT-based skeletal muscle assessment for sarcopenia includes 
both low density (myosteatosis) and low bulk (myopenia) 
measures [16]. In general, HU assessment for intra- and 
inter-muscular adipose tissue appears to be the more 
valuable measure, and is also easier to assess manually. 
Manual and semi-automated quantification of visceral and 
subcutaneous fat has also been in existence for many years 
(for both CT and MR) [17,18]. In particular, we have found 
the visceral-to-subcutaneous fat ratio to be a particularly 
useful singular measure [19]. Semi-automated quantification 
of abdominal aortic calcification using a coronary calcium 
scoring tool is feasible [20], but somewhat arduous and 
seldom used in clinical practice. As noted above, although 
analogous fat, liver, and muscle quantification is possible 
with MR, a more comprehensive cardiometabolic evaluation 
that considers osteoporosis and atherosclerosis favors 
the use of CT (Fig. 1). Furthermore, overall abdominal CT 
volumes continue to dwarf MR numbers [21].

The emergence of fully automated methods for the CT-
based body composition analysis described above could 
revolutionize how this information is utilized [19,22-25]. 
Importantly, AI-based solutions that are “explainable” 
and analogous to previously validated manual and semi-
automated approaches should be more acceptable to 
patients and the wider medical community (including 

payers) over more complex “black box” approaches that 
cannot be easily verified. For example, automated single-
slice segmentation at the L1 or L3 level for bone, fat, 
and muscle analysis is more reproducible and can be 
readily confirmed for quality control purposes (Fig. 1). 
Appropriate multi-slice segmentation for aortic calcification 
or whole-organ analysis can also be visually verified by 
the radiologist. Examples of additional fully automated 
algorithms that further broaden the scope of CT-based 
analysis include abdominal organ volumetry (such as liver 
and spleen), detection of urolithiasis and volumetric stone 
burden, liver fibrosis staging, and focal lesion detection 
(such as fractures and tumors) [26,27]. Of course, robust 
computer-aided detection (CAD) of colorectal polyps at CT 
colonography has existed for many years [28].

The true potential value of automated CT-based body 
composition analysis lies in its ability to identify patients 
at greatest risk for downstream adverse clinical events. Our 
initial single-center investigations have demonstrated that 
CT-based measures can equal or outperform the current 
multivariable clinical reference standards for predicting 
future osteoporotic fractures, major cardiovascular events, 
and death [6,7]. More sophisticated models that also 
incorporate relevant demographic factors will further 
enhance CT-based performance, perhaps generating 
a “biological age” that may belie a patient’s actual 
chronological age [29]. Opportunistic use of automated 
body composition analysis would leverage the unused data 
embedded in the many millions of body CT scans performed 
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Fig. 1. Fully automated CT-based body composition analysis 
in a 93-year-old female with history of both colon and breast 
cancer. Post-contrast CT image at the L1 vertebral level demonstrates 
automated segmentation and display of skeletal muscle (red), visceral 
fat (amber), subcutaneous fat (blue), aortic calcium (bright yellow), 
liver (brown), spleen (orange), and trabecular bone (green). These all 
represent examples of “explainable artificial intelligence” that can be 
visually confirmed and compared against analogous manual measures, 
if desired.

Fig. 2. The OSCAR. OSCAR represents a group of investigators 
interested in image-based body composition analysis.  In particular, 
a multi-center trial will seek to develop and validate a process for 
applying CT-based opportunistic cardiometabolic screening utilizing 
fully automated body composition tools.  This large-scale effort aims 
to address variations related to patient demographics and different 
technical environments, as well as explore the prognostic value of the 
combined body composition measures for predicting future adverse 
events. The ultimate goal is to provide a generalizable, vendor-
neutral CT solution that can translate to routine clinical use and add 
substantial value to patient care without the need for additional 
patient time or dose exposure. OSCAR = Opportunistic Screening 
Consortium in Abdominal Radiology
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each year throughout the world. Ultimately, if the overall 
benefit related to these combined measures is great 
enough, a case could be made for “intended” CT screening, 
whereby adults undergo a virtual physical exam at a certain 
age. Such screening could also be combined with the 
already accepted CT screening indications for colorectal and 
lung cancer. 

To address the enormous clinical potential of CT-based 
body composition analysis, as well as remaining issues prior 
to widespread implementation, we have gathered together a 
group of interested investigators to form the “Opportunistic 
Screening Consortium in Abdominal Radiology” or OSCAR 
(Fig. 2). This multi-center effort seeks to establish a 
generalizable, vendor-neutral automated body composition 
solution for clinical translation. A large retrospective CT 
trial will seek to fully characterize the normal distribution 
of automated bone, muscle, fat, liver, and aortic calcium 
measures according to patient age, sex, race/ethnicity, and 
socioeconomic status, as well as assess generalizability 
among different CT vendors and diverse scanning protocols. 
Future investigations may incorporate federated learning 
to improve generalizability across multi-national patient 
populations [30]. We will also further assess the ability 
of automated CT body composition analysis for predicting 
subsequent adverse clinical events and outcomes. 

In summary, fully automated CT-based body composition 
analysis is now entering an exciting phase of investigation. 
Broad validation and widespread clinical implementation 
could add substantial value to existing patient care, without 
the need for additional patient time or dose exposure. 
Specifically, pre-symptomatic identification of patients at 
greatest cardiometabolic risk could translate into improved 
health care outcomes if appropriate interventions are 
implemented.
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