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Abstract: The 17p13.3 chromosome region is often deleted or duplicated in humans, resulting in se-
vere neurodevelopmental disorders such as Miller–Dieker syndrome (MDS) and 17p13.3 duplication
syndrome. Lissencephaly can also be caused by gene mutations or deletions of a small piece of the
17p13.3 region, including a single gene or a few genes. PAFAH1B1 gene, coding for LIS1 protein,
is a responsible gene for lissencephaly and MDS and regulates neuronal migration by controlling
microtubules (MTs) and cargo transport along MTs via dynein. CRK is a downstream regulator of
the reelin signaling pathways and regulates neuronal migration. YWHAE, coding for 14-3-3ε, is also
responsible for MDS and regulates neuronal migration by binding to LIS1-interacting protein, NDEL1.
Although these three proteins are known to be responsible for neuronal migration defects in MDS,
there are 23 other genes in the MDS critical region on chromosome 17p13.3, and little is known about
their functions in neurodevelopment, especially in neuronal migration. This review will summarize
the recent progress on the functions of LIS1, CRK, and 14-3-3ε and describe the recent findings of
other molecules in the MDS critical regions in neuronal migration.

Keywords: neuronal migration; chromosome 17p13.3; lissencephaly; Miller–Dieker syndrome;
PAFAH1B1 (LIS1); YWHAE (14-3-3ε); CRK

1. Introduction

The formation of the human brain requires the accurate completion of neurogenesis,
neuronal migration, and the formation of appropriate connections of more than 100 billion
neuronal cells during brain development. Neuronal migration in the developing cortex
is composed of multiple steps, including multipolar migration, locomotion, and terminal
translocation, and all steps are essential for creating a functional brain. If neuronal migration
is disrupted, it results in a wide range of diseases, including brain morphological disorders
such as Miller–Dieker syndrome (MDS), epilepsy, and neuropsychiatric disorders such
as schizophrenia, attention-deficit hyperactivity disorder (ADHD), and autism spectrum
disorder (ASD) [1–9]. Lissencephaly is a human brain malformation characterized by a
smooth cerebral surface where the characteristic gyral folding pattern of the cerebral cortex
is reduced or absent. Isolated lissencephaly sequence (ILS) is a heterogeneous disorder
consisting of lissencephaly with no other major malformations. Causative mutations and
deletions in PAFAH1B1 (also known as LIS1) as well as centromeric chromosome deletions
in 17p13.3 account for most cases of ILS [10]. Mutations in other chromosome regions have
also been associated with ILS, such as RELN on human chromosome 7q22.1, DMRTA2 on
1p32.3, and TUBA1A (tubulin alpha 1a) on 12q13.2 [11–14]. X-linked lissencephaly results
from mutations in X chromosome-residing genes—the Aristaless-related homeobox gene
(ARX), and doublecortin (DCX)—which are the two most notable X-linked genes causing
lissencephaly [15]. By contrast, MDS consists of severe classical lissencephaly associated
with other symptoms, such as facial anomalies, and MDS patients have larger heterozygous
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deletions that include the PAFAH1B1 (LIS1) and YWHAE (14-3-3ε) genes, compared with
patients with ILS. The 17p13.3 region is well conserved, and genes within the human
17p13.3 chromosome region are syntenic to mouse chromosome 11 [16,17]. A previous
study clarified that an approximate 1.4-M deletion region (MDS critical region) from the
PAFAH1B1 gene to the YWHAE gene in the 17p13.3 region is critical for the development of
MDS [18].

Mechanistically, regulation of MTs and F-actin organization, as well as regulation
in cell adhesion and neurotrophic stimulation, is essential for neuronal migration, and
the coordination between these mechanisms makes it possible for the neurons to migrate.
Cortical neurons typically migrate by two modes of migration: radial migration and
tangential migration. Some neurons also display more complicated migration called
switching migration [19]. In lissencephaly, radial migration defects account for the majority
of the cause, although defects in tangential migration are also implicated [15]. During
migration, neurons polarize to form a leading process and a trailing process. The tip
of the leading process is enriched in F-actin and actin motor proteins (i.e., myosins),
whereas the stem region of the leading process is enriched with MTs. In locomotion,
post-mitotic neuron migration occurs along the radial glial cells, and adhesion molecules
help neurons to attach to the radial glial cells, creating traction force for the movement.
MTs form a cage-like structure surrounding the nucleus, which helps the nucleus move
during migration [20]. The retraction of the trailing process in migrating neurons is mainly
mediated by actomyosin but is also mediated by MTs [21].

There are 26 genes from PAFAH1B1 to YWHAE in the human chromosome 17p13.3
region that are deleted in MDS patients (Figure 1). So far, 3 out of the 26 genes (PAFAH1B1,
CRK, and YWHAE) in the MDS critical region have been widely known to be involved
in cortical development, including neuronal migration [18,22,23]. Pafah1b1, Ywhae, and
Crk knockout mice display cortical dysplasia. In patients, multiple genes in the 17p13.3
region are disrupted. Therefore, it is difficult to prove which genes are involved in neuronal
migration defects in addition to these three genes. Patients with either ILS or MDS have a
heterozygous loss of the PAFAH1B1 gene in the 17p13.3 locus and display combinatorial
defects, including neuronal migration defects, epilepsy, and craniofacial defects. However,
brain malformation is the most characteristic and prominent phenotype in ILS and MDS
patients. PAFAH1B1, YWHAE, and CRK genes are involved in brain malformation caused
by the neuronal migration defects observed in MDS patients. However, it is unclear if
the other 23 genes are also important for proper cortical formation and involved in brain
malformation in MDS patients. Therefore, it is important to fill gaps in our knowledge about
the functions of the remaining 23 genes in cortical development. The purpose of this review
paper is to summarize the knowns of the three most notable genes—PAFAH1B1, YWHAE,
and CRK—and to collect the pieces related to neuronal migration in the other genes in the
17p13.3 region since these have not gained much attention previously. This will shed light
upon the etiology of MDS as well as the fundamental mechanisms of cortical development.
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2. The Roles of YWHAE, PAFAH1B1, and CRK in Neuronal Migration
2.1. YWHAE/14-3-3ε

14-3-3 proteins are conserved and ubiquitously-expressed [24]. The 14-3-3 family is
composed of seven isoforms in mammalian cells (denoted by Greek letters β, γ, ε, η, σ, τ,
and ζ). These 14-3-3 proteins bind to more than 100 targets and are involved in multiple cel-
lular functions, including cell cycle control, apoptosis, and cancer [24]. The protein 14-3-3ε
is coded by a gene, YWHAE (Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase
Activation Protein Epsilon), located in the 17p13.3 chromosome region. Mechanistically,
14-3-3ε regulates MT organization via protection of the nuclear distribution protein nude-
like 1 (NDEL1, formerly known as NUDEL) from postmodification (Figure 2A). The 14-3-3ε
protein interacts with the NDEL1, and this binding prevents phospho-NDEL1 from dephos-
phorylating by protein phosphatase 2 (PP2A). Thus, NDEL1 stays active and positively
regulates the interaction between LIS1 and dynein. We have previously demonstrated that
14-3-3ε is a critical factor in neuronal migration, indicating that the YWHAE gene is a strong
candidate as one of the major genes responsible for the more severe lissencephaly pheno-
type displayed by MDS patients [25]. Using human patient samples, we also demonstrated
a strong correlation between deficiency of the YWHAE gene and the severity of cerebral
cortical malformations in MDS patients [18]. In addition to the 14-3-3ε functions in loco-
motion, 14-3-3ε regulates earlier cortical development, including neurogenesis, neuronal
differentiation, and the distribution of intermediate progenitor cells (IPCs), suggesting the
importance of 14-3-3ε in multipolar migration [26], and 14-3-3ε KO resulted in an increased
number of proliferating progenitor cells and a broader distribution of the cells in the cortex,
as well as an altered progenitor cell differentiation into neurons in the mouse model.

YWHAE is also implicated in the 17p13.3 microduplication syndrome [27]. It has been
reported that microduplications in the 17p13.3 region result in a new genetic syndrome
termed “the 17p13.3 microduplication syndrome”, which is associated with neurological
disorders [28–36]. Specifically, 17p13.3 microduplication syndrome is characterized by
various-sized duplications in the 17p13.3 chromosome locus, resulting in severe develop-
mental defects, including autism spectrum disorder (ASD), epilepsy, intellectual disabilities,
and malformation in the hands and feet. Importantly, the microduplication minimal re-
gion, a 72kb region within the 17p13.3 locus, has been defined, and this region exclusively
contains the YWHAE gene encoding the 14-3-3ε protein and is strongly associated with
ASD [30,33]. Although no pathological analyses have been performed in patients with
17p13.3 microduplication syndrome before, ASD patients show defects in neuronal mor-
phogenesis, including neurite formation and spine formation [37–39]. Therefore, the defects
in neuronal morphogenesis and spine formation and synaptogenesis caused by YWHAE
overexpression may be an associated cause of ASD seen in patients with this syndrome
and provide the first pathological findings. These studies strongly implicate YWHAE as
a causative gene for ASD. We confirmed that Ywhae overexpression resulted in defects
in neurite initiation during cortical development in vivo, mechanistically involving the
aforementioned X-linked lissencephaly-associated gene DCX [40]. In addition, an associa-
tion of YWHAE with schizophrenia has been recently recognized [41]. Interestingly, the
14-3-3 protein family, which consists of 7 isoforms, has been implicated in schizophrenia,
ADHD, and general brain development, either when disrupted individually or together.
This poses a possibility of cross-talk between the 14-3-3 isoforms. For instance, expression
alteration in 5 out of 7 14-3-3 family members—YWHAB (14-3-3β), YWHAE, YWHAH (14-3-
3η), YWHAZ (14-3-3ζ), and SFN (14-3-3σ)—is seen in cases of ASD and schizophrenia [41].
Moreover, the Ywhae/Ywhaz double KO mice show more defects in neuronal migration
and additional disruptions in other neurodevelopmental stages, such as proliferation in
neuronal progenitor cells compared with single KO Ywhae or Ywhaz in mice, suggesting a
strong genetic interaction between YWHAE and YWHAZ [25,26,42].

Hence, 14-3-3ε is a gene responsible for MDS by regulating neuronal migration but is
also implicated in multiple steps of cortical development, including neurogenesis, neuronal
differentiation, and neuronal morphogenesis.
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Figure 2. Schematic diagrams illustrating the molecular mechanisms of PAFAH1B1 (LIS1), CRK,
and 14-3-3ε in regulating neuronal migration. (A) Phosphorylated NDEL1 (NUDEL) protected
by 14-3-3ε from dephosphorylation. NDEL1 is phosphorylated by CDK5. Once phosphorylated,
14-3-3ε interacts with NDEL1 and protects it from the protein phosphatase 2 (PP2A)-mediated
dephosphorylation. Therefore, NDEL1 could stay activated. Active NDEL1 transiently interacts with
PAFAH1B1 (LIS1) and helps PAFAH1B1 (LIS1) bind to dynein, therefore promoting the movement of
dynein along microtubules (MTs). However, it is unclear whether 14-3-3ε stays with dynein in the MTs.
(B). PAFAH1B1 (LIS1) promotes dynein “open” conformation. When dynein is in an autoinhibited
state, it has a low microtubule on rate and a reduced ability to bind to dynactin. PAFAH1B1 (LIS1)
binds to “open” state dynein and stabilizes dynein at the “open” state. This allows dynein to stay at a
high microtubule-binding status. Afterward, PAFAH1B1 (LIS1) dissociates from the dynein–dynactin
complex. In this way, PAFAH1B1 (LIS1) promotes microtubule mediate migration by regulating
dynein function. (C) CRK plays an essential role in the Reelin signaling cascade. Reelin pathways
are activated by Reelin interacting with the transmembrane Reelin receptors, ApoRE2, and VLDLR.
This triggers the phosphorylation of Dab1 by SFK at the inner leaflet of the plasma membrane. DAB1
then recruits CRK and activates CRK by phosphorylation. Activated CRK promotes the activation of
the Crk SH3-binding guanine nucleotide-releasing/exchange factor (C3G)/Ras-proximate-1 (RAP1)
pathway, which activates the cell matrix adhesion molecule α5β1 integrin, thus promoting cell
migration. The illustrations were created with BioRenders.com (7 December 2021).

2.2. PAFAH1B1 (LIS1)

The PAFAH1B1 (LIS1) gene localizes at the telomeric region of chromosome 17p13.3 [30,43].
The implication of PAFAH1B1 in neuronal migration and Lissencephaly/MDS has been
extensively analyzed and reported [44–50]. PAFAH1B1 was first identified as a subunit of
platelet-activating factor acetylhydrolase (PAF-AH) [51], and functions as a regulator of
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microtubule (MT) motor proteins have been reported [52]. Point mutations and intragenic
deletions in PAFAH1B1 were identified in ILS patients who showed no gross structural
chromosomal rearrangements [53,54]. Although the more severe neuronal migration
phenotype displayed by MDS patients suggests that genes other than PAFAH1B1 are
responsible for this phenotype, PAFAH1B1 is a major responsible gene for lissencephaly
phenotypes seen in MDS patients. In addition, PAFAH1B1 mutations in humans and mice
result in seizures, and PAFAH1B1-deficient mice show sociability defects related to ASD but
not the repetitive behavior, implicating PAFAH1B1 in the proper establishment of neural
circuits in addition to neuronal migration [55–59].

Studies about PAFAH1B1 functions in dynein regulation not only in neurons but also
in other cell types have been extensively performed, and numerous pieces of evidence
have been accumulated [47,50,60]. Previous studies suggest multiple functions of LIS1 in
dynein regulation (Figure 2B). For example, PAFAH1B1 is important for binding to MTs
and dissociating dynein from MTs [61,62]. The structural analysis of PAFAH1B1 functions
in dynein also revealed that PAFAH1B1 induces a persistent microtubule-bound state in
dynein by acting on its linker domain [63]. Furthermore, PAFAH1B1 proteins seem to
be dissociated from dynein after the dynein–dynactin complexes are composed [64]. In
addition to the PAFAH1B1 functions in MTs and dynein, recent studies have reported
PAFAH1B1 functions in actin regulation [65,66]. In migrating NIH3T3 cells, Pafah1b1
knockdown resulted in a reduction in traction force and disorganization of the microtubules
and actin filaments [67]. This suggests that PAFAH1B1 might regulate actin in addition to
MTs, and PAF1H1B1-driven traction force might be essential for neuronal migration.

2.3. CRK

The CRK gene is also localized in the 17p13.3 region, encodes an adapter protein
that binds to tyrosine-phosphorylated proteins, and is involved in the Reelin signaling
pathway [68]. Reelin is a secreted extracellular glycoprotein encoded by one of the ILS-
associated genes, RELN, as we briefly mentioned in the introduction [11]. The reeler
mice were first reported in 1951 [69], and their brain defects were extensively charac-
terized [70,71]. Reelin binds to its two receptors: very-low-density lipoprotein receptor
(VLDLR) and apolipoprotein E receptor 2 (apoER2). The two receptors then activate the
adaptor protein Disabled-1 (Dab1), recruiting and activating the Src family tyrosine kinases
(SFK), such as Src and Fyn, as well as interacting with various adaptor proteins, including
Crk and Crk-like (CrkL) [72–75] (Figure 2C). Since homozygous Crk and CrkL knockout
mice are lethal in early development, the functions of Crk and CrkL in neuronal migration
were not clear [76,77]. By producing and analyzing the double Crk and CrkL conditional
deficient mice, it has been found that Crk and CrkL are essential for neuronal migration [77].
After Reelin binds to its receptor, α5β1 integrin is activated through the intracellular path-
way involving Dab1, Crk/CrkL, C3G, and Rap1, and this signaling pathway is vital for
terminal translocation, the final step of neuronal migration [78,79]. Patients with chromo-
some 17p13.3 deletions involving CRK and YWHAE but not PAFAH1B1 were reported, and
they showed generalized epilepsy, growth retardation, and macrocephaly, implicating Crk
deficiency in epilepsy [80]. Another patient who had 730Kb deletion containing 11 genes in
chromosome 17p13.3, including YWHAE and CRK but not PAFAH1B1, showed infantile
spasms syndrome [81]. These data suggest that the CRK gene is one of the causative genes
for more severe neuronal migration defects and may be partially responsible for the seizure
phenotypes in MDS patients.

Moreover, in ASD patients, Reelin protein expression is reduced, predicting a down-
regulation of CRK signaling in ASD [82,83]. Interestingly, RELN mRNA is a target of the
fragile X mental retardation protein (FMRP), coded by ASD risk gene FMR1 [84]. Therefore,
the reduced RELN may be due to alteration of FMRP expression. FMR1 mutations result
in fragile X syndrome, one of the most common heritable forms of ASD [85]. Neuronal
migration and neurite formation defects, as well as altered synaptic plasticity, have been
demonstrated in FMRP deficiency models [38,86–89]. The Fmr1-deficient mice display repet-
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itive behavior and sociability defects [90]. Social behavior phenotypes are also observed
in different loss-of-function models for Reelin functional study. However, no repetitive
behavioral abnormality has been described so far [91,92].

In conclusion, CRK might be also one of the causes of the autistic phenotype in MDS
patients and might be functionally associated with FMRP.

3. The Functions of Other Genes in the 17p13.3 Region and Their Potential Roles in
Neuronal Migration

There are 23 genes in the critical region of chromosome 17p13.3 MDS, aside from
the most notable ones (i.e., PAFAH1B1, CRK, and YWHAE). Some of them are involved in
non-neuronal cell migration and microtubule and actin regulation (Table 1). Therefore, it
could be worthwhile to study them in neuronal migration and dissect their functions in the
onset and development of lissencephaly. Here, we focus on four genes that are involved in
neuronal development, cytoskeletal organization, or engaging in protein interactions that
have been implicated in cell migration.

SERPHINF1 is a member of the superfamily of serine protease inhibitors (Serpin) en-
coding the 50-kDa secreted protein pigment epithelium-derived factor (PEDF) [93], which
was originally purified from the culture media of human retinal pigment epithelial cells [94].
PEDF is a non-inhibitory serpin, and PEDF acts as a multifunctional factor, such as neu-
rotrophic, anti-tumorigenic, and anti-angiogenic factor [95–97]. Serpinf1 KO mice show
multiple defects in the retina, particularly vessel formation [98]. Although the Serpinf1 gene
is localized in the 17p13.3 chromosome region and often deleted or duplicated, resulting in
neurodevelopmental disorders, few studies have taken into account the roles of Serpinf1
(PEDF) in brain development [43]. Our group recently analyzed Pedf’s function in cortico-
genesis and found that Pedf deficiency by specific shRNA resulted in multiple defects in
neuronal development [43]. These include radial glial cell morphogenesis, neuronal migra-
tion, neurite formation, and spine formation [43]. We performed in utero electroporation
(IUE) at the E15.5 embryos with Pedf-specific shRNA to target the upper layer neurons.
Pedf-deficient post-mitotic neurons could migrate and reach the cortical plate (CP), suggest-
ing no effects on multipolar migration from the ventricular zone to the subventricular zone
and locomotion from the intermediate zone to the CP. However, Pedf -deficient neurons
are sparsely distributed within the CP, suggesting defects in terminal translocation. PEDF
is a secreted protein, and four receptors have been identified. They are PEDF-R, ribosomal
protein SA (RPSA), plexin domain containing 1 (PLXDC1), and plexin domain containing 2
(PLXDC2) [99–101]. PEDF-R, also known as ATGL, is responsible for mediating PEDF’s
effect on vascular hyperpermeability and triglyceride degradation, as well as protection
against apoptosis induced by glucocorticoid [102,103]. RPSA, previously termed the 37-kDa
laminin receptor precursor/67-kDa laminin receptor, is a laminin receptor that contributes
to cell adhesion, migration, neurite outgrowth, and a variety of other events. PLXDC1, also
known as tumor endothelial marker 7 (TEM7), and PLXDC2, also known as a mitogen for
neuroprogenitors, are homologous membrane proteins [104,105]. Rpsa knockdown (KD) by
shRNA in combination with IUE at E15.5 resulted in similar results to Pedf KD in neuronal
migration and neurite morphogenesis [43]. Rpsa-deficient neurons in the upper cortical
layers could migrate the CP but were sparsely distributed in the CP, suggesting defects in
the terminal translocation. The lower layer neurons were also analyzed by performing IUE
at E13.5 and showed more severe defects in terminal translocation. Thus, the Pedf-Rpsa
signaling pathway is important for the proper completion of neuronal migration by regu-
lating terminal translocation during cortical development. This is a new observation that
implicates another gene in neuronal migration in addition to three genes: PAFAH1B1, CRK,
and YWHAE.

Myosin 1c (MYO1C) is an unconventional myosin belonging to the class one myosin
family. MYO1C is composed of three major domains: the N-terminal actin motor domain,
regulatory neck domain that can bound to regulatory molecules, and the C-terminal tail
domain that contains a pleckstrin homology domain. MYO1C has been indicated to regulate
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actin organization and lipid transportation, which are two aspects that are important for
cell migration. As for actin regulation, MYO1C has been shown to be important for the
regulation of cell cortical actin networks. The motor and tail regions of MYO1C cooperate to
tether F-actin to the plasma membrane, thereby facilitating the establishment and dynamics
of the cell shape. MYO1C not only works as a hook but also as a support point to power
the F-actin to slide. Moreover, MYO1C promotes the formation of filamentous actin by
transporting the globular actin [106]. On the other hand, the transportation of lipids to
the cell membrane provides material for membrane extension. It has been found that
MYO1C is involved in lipid recycling by promoting lipids to recycle to the cell membrane
in HeLa cells [107]. In addition, the MYO1C PH domain can bind to phosphatidylinositol
(4,5)-bisphosphate, which is intensively involved in molecular signals that associate with
cell proliferation, polarity, and migration. Although, to the best of our knowledge, no
previous studies showed MYO1C being involved in cortical neuronal migration, a selection
of papers reported MYO1C regulating migration in tumor cells, such as glioblastoma cells
(1321 N1 cell) and endometrial carcinoma cells [108,109].

Scavenger receptor class F member 1 (SCARF1), also known as scavenger receptor
expressed by endothelial cells (SREC), encodes a transmembrane protein of the scavenger
receptor family. Although its name implies its expression in endothelial cells, it is present in
various cell types, including neuronal cells and epithelial cells [110]. In addition, SCARF1 is
widely expressed throughout different tissues, including the brain [111]. The fundamental
function of SCARF1 is to mediate the uptake of chemically modified low-density lipopro-
teins (LDLs) into cells via the extracellular domain. Other functions that have been revealed,
although very limited, indicate SCARF1 might be important in neuronal migration. Shibata
et al. have reported that the cytoplasmic domain of SCARF1 is important for actin organiza-
tion via interacting with the actin regulatory protein Advillin [111]. Patten et al. found that
SCARF1 acts as a critical adhesion regulator in the endothelial cells and leukocyte adhesive
interaction. In this way, SCARF1 regulates leukocyte migration. However, the SCARF1
ligand in leukocytes that mediates this adhesive cascade is still unknown [110]. To the
best of our knowledge, SCARF1 has not yet been studied in neuronal migration. However,
SCARF1 could be a strong candidate gene for regulating neuronal migration due to its
known functions in actin organization, cell adhesion, and non-neuronal cell migration.

Serine racemase (SRR) is an enzyme that was first discovered in the rodent brain,
and it is enriched in glial cultures of the rodent cerebral cortex [112]. SRR is responsible
for synthesizing D-serine from L-serine. The former is an agonist for the N-methyl-D-
aspartate (NMDA) receptor and is essential in the NMDA signaling. SRR also helps to
produce pyruvate and ammonia in the process of D-serine or L-serine alpha through beta
elimination, which is a way to dehydrate serine [113]. While generating D-serine, SRR
promotes N-methyl-D-aspartate (NMDA) receptor signaling, one of the most important
machinery-regulating neuronal activities and neurodevelopmental events. NMDA recep-
tors mediate pathways essential for neuronal migration by activating NMDAR-mediated
calcium signaling and activating extracellular signal-regulated kinase (ERK) signaling
cascades [114,115]. Aside from the catalytic functions, SRR is also involved in direct interac-
tions with other proteins. One in particular is Disrupted-in-Schizophrenia-1 (DISC1), whose
name alludes to its correlation with the neurodevelopmental disease schizophrenia [116].
Indeed, DISC1 was found to be involved in multiple neurodevelopmental events, including
neuronal migration [117]. DISC1 plays a determinative role in the radial migration of the
hippocampal pyramidal neurons as well as tangential migration of the cerebral cortical
interneurons [118,119]. Furthermore, a DISC1 interacting protein, CAMDI, has been shown
to regulate radial migration in the cortical neurons [120]. Although the interaction between
DISC1 and SRR is important for D-serine synthesis, SRR can also generate agglomerates
with DISC1 in cortical neurons, which also promotes NMDAR activity [121]. According
to these findings, it is possible that SRR might also be implicated in neuronal migration.
However, direct analysis of SRR in neuronal migration has not been performed, leaving a
niche in the neuronal migration research field.
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4. Conclusions

Abnormal neuronal migration is associated with neurodevelopmental diseases, most
notably lissencephaly and more severely MDS. In this review, we have discussed the most
well-studied three MDS critical genes—PAFAH1B1, CRK, and YWHAE—in the human
chromosome 17p13.3, as well as those that have been unexplored in the brain development
area, such as PEDF, SCARF1, SRR, and MYO1C. It is interesting to find that a lot of the genes
have been studied in the migration of many cell types other than neurons. Additionally,
some of these genes have been demonstrated in the regulation of cytoskeletal components,
namely microtubules and F-actin. Therefore, they pose some level of potential to be
involved in neuronal migration. We think this is extremely important, because MDS is
not caused by a single gene but rather by a combination of PAFAH1B1, CRK, and YWHAE
deletion. In fact, a large portion of the patients have a piece of gene deletion or mutation
spanning from PAFAH1B1 to YWHAE, including the under-examined genes. We hope this
review can curtain up for studying the other 23 genes in neurodevelopment, especially in
the neuronal migration research field.

Current animal models for lissencephaly and MDS are Pafah1b1, Ywhae, and Crk single-
KO models and the Pafah1b1/Ywhae double-KO model [25,49,77]. Models for other genes
have been generated, such as Srr KO mice, Serpinf1 KO mice, and Scarf1 KO mice. Neuronal
migration analysis using those single-gene KO mice may help us understand the functions
of the other 23 genes in neuronal migration. Human-induced pluripotent stem cells
(hiPSCs) derived from MDS patients are currently available, and cerebral organoids derived
from the hiPSCs have become a useful model for neuronal migration research [122,123].
Comparisons between hiPSCs derived from patients carrying different MDS critical gene
deletions or mutations could become useful for dissecting the functions of each MDS
critical gene.

Table 1. Genes’ functions and involvements in cell migration.

Gene Functions of the Protein Involvement References

MNT Regulator of the MYC/MAX/MAD network

• Affects migration in the human
hepatocellular carcinoma
(HCC) cells

• Mnt KO mice have
craniofacial defects

[124] Wu et al., 2012
[125] Toyo-oka et al., 2004

SGSM2 GTPase-activating protein involving in the
modulation of the GTPases RAP and RAB

• Interacts with E-cadherin and
enhances migratory cell adhesion in
the human epithelial T47D cells

[126] Lin et al., 2019

SRR Production of D-serine from L-serine

Interacts with
Disrupted-in-Schizophrenia-1 (DISC1), and
DISC1 KD causes a defect in cortical
neuron radial migration

[121] Jacobi et al., 2019

HIC1 Transcription repressor and
tumor suppressor

• Important for cranial neural crest
migration via regulating cadherin
protein expression pattern and
canonical Wnt signaling

• Hic1 KO mice show
craniofacial defects

[127] Ray et al., 2020
[128] Valenta et al., 2006
[129] Carter et al., 2000

DPH1 (OVCA1) Responsible for diphthamide biosynthesis
Dph1 KO causes craniofacial abnormalities

in mice, but no observations indicate a
defect in neuronal migration

[130] Yu et al., 2014

RTN4RL1 (NGR3)
• Cell surface receptor
• Regulate the phosphorylation of SRC

and FAK
Regulates epithelial cell migration [131] He et al., 2018
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Table 1. Cont.

Gene Functions of the Protein Involvement References

RPA1 Replication protein A Overexpression causes 17p13.3 instability [36] Outwin et al., 2011

RILP

• Endocytosis regulator
• Induces the recruitment of

dynein–dynactin to Rab7-containing
late endosomes and lysosomes

• Promote the transport of endosomes
and lysosomes along MTs

• Interact with Ral guanine nucleotide
dissociation stimulator

RILP inhibits cell migration in cancer cells [132] Margiotta et al., 2017
[133] Wang et al., 2015

SCARF1 A member of the Scavenger receptor.
Regulates endocytosis

• Regulates cell adhesion in human
endothelial cells.

• Expresses in the embryonic brain.
• Interacts with actin-regulatory

protein, Advillin in mouse
neuroblastoma cell (N2a)

[110] Patten et al., 2017
[111] Shibata et al. 2004

SLC43A2 Amino acid transporter for
methionine uptake

Essential for mouse
embryonic development [134] Guetg et al., 2015

MYO1C Unconventional actin motor

• Regulates cell cortex tension
• Regulates F-actin polymerization by

transporting G-actin at the leading
edge of migrating endothelial cells

• Promotes migration of 1321 N1
glioblastoma cell

[106] Fan et al., 2012
[108] Edimo et al., 2016
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