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Invariants underlying shape inference are elusive: A
variety of shapes can give rise to the same image, and a
variety of images can be rendered from the same shape.
The occluding contour is a rare exception: It has both
image salience, in terms of isophotes, and surface
meaning, in terms of surface normal. We relax the
notion of occluding contour and, more accurately, the
rim on the object that projects to it, to define closed
extremal curves. This new shape descriptor is invariant
over different renderings. It exists at the topological
level, which guarantees an image-based counterpart. It
surrounds bumps and dents, as well as common interior
shape components, and formalizes the qualitative
nature of bump perception. The invariants are
biologically computable, unify shape inferences from
shading and specular materials, and predict new
phenomena in bump and dent perception. Most
important, working at the topological level allows us to
capture the elusive aspect of bump boundaries.

Introduction

Intuitively, shape inferences seem uniform, accurate,
and holistic: Glancing at an image of a bump, one
would “see” the bump (almost) regardless of how
it was rendered or lit, and would probably have the
impression that the bump percept was physically
veridical. Such intuition has driven computational
approaches to shape-from-shading, which seek maps
from the given image directly to the surface that
gave rise to it. Thus far, this goal has been elusive.
Instead, to find a well-defined image-to-surface map,
computational researchers constrain the problem by,
for example, limiting reflectance (say, to Lambertian
materials), limiting surfaces (say, to elliptical patches),
or training deep neural networks with limited data sets
(references below). We propose an alternative approach.
Instead of limiting the problem in this fashion, we
seek a more general solution. To achieve this, we
sacrifice the unique surface as our goal and instead

postulate an intermediate stage between the image and
the surface. This intermediate stage is topological in
nature and different from previous approaches. With
it we are able to identify those areas of the image
that are most informative about shape and on which
shape inferences could be anchored. This leads to a
novel invariant between collections of images and
collections of surfaces. The images could derive from
different material, lighting, and rendering physics or
from different observers. The invariant provides an
explanation for certain aspects of shape psychophysics.
Perhaps the most radical aspect of our invariant, for
the perception community, is that it is defined over a
neighborhood—a portion of the image or surface—that
surrounds certain types of curves. These are the
extremal contours mentioned in the title and which are
developed in this article.

Since our characterization of the invariant is
abstract and involves mathematics not normally used in
perceptual modeling, we include background material
and try to make the development conceptual rather
than rigorous; see Appendix B. The article is a corollary
to—and extends to bumps—an earlier model of critical
contours (Kunsberg & Zucker, 2018). Since the earlier
work was more formal, the first part of this article is
an informal review of the relevant material. The hope
is this will make the material more accessible to the
perception community. The new technical contribution
in this article is the specialization of our invariant
to defining bumps and dents (i.e., protrusions up to
the convex/concave ambiguity).1 This specialization is
nontrivial, since it involves showing that the definition
of a bump is generic. While bumps are classical
components of shapes, and we all seem to “know one
when we see one,” finding a definition for them has been
problematic. In fact, there is even disagreement around
where the boundary of a bump should be located (Watt
&Morgan, 1983; Georgeson et al., 2007; Morgan, 2011;
Subedar & Karam, 2016). We embrace this ambiguity;
in fact, it is precisely what our topological invariant
captures.
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Figure 1. Isophotes concentrate near features of interest. (a) The occluding contour. Notice how the isophotes (green), an image
property, are parallel to the occluding contour on the object side, while the (projected) normal (red), a surface property, is orthogonal
to it. (b, c) Isophote behavior in interior regions of a Lambertian shape. When the illumination shifts from “in front” (b) to “above” (c),
notice how the isophotes change drastically in the blue region but remain stable in the red “sausage.” (d) This sausage is at the heart
of our theory. Mathematically, the (red) sausage � surrounds a curve α (blue), a critical contour. � encloses a region within which the
isophotes follow a pattern; notice how the image gradient (blue arrows) point away and how the critical contour α cuts directly across
the isophotes. This pattern is consistent with certain surface configurations. Possible cross sections of the surface along the red
dashed contour (d, bottom) could be among the profiles shown (d, top). Because of this variability, we employ topological methods
that constrain the ridge-like profile to be within the sausage. A curve on the surface—the extremal contour—is the analog of the
critical contour (not shown in this figure). It lives within a similar sausage. Figures (b) and (c) adapted from Kunsberg et al. (2018); (d)
from Kunsberg and Zucker (2018).

Occluding contours

The occluding contour (Appendix A) provides
motivation for what an invariant should comprise.
It has an image signature (parallel isophotes), and it
has a corresponding contour on the surface, the rim
contour. Thus, the occluding contour links an image
salient property to a surface property (the normal; see
Figure 1a). This link between the two-dimensional
(2D) image domain and the three-dimensional (3D)
shape domain is formal and generic, in the sense
that it holds across different rendering and viewing
situations (Huggins et al., 2001; Huggins & Zucker,
2001). It is perceptually useful (Palmer & Ghose,
2008; Mooney et al., 2019; Ghose & Peterson, 2021),
and computationally, it provides a kind of “anchor”
structure for shape reconstruction: Regardless of the
shape, it must lie within the occluding contour or its
deformation (Wang et al., 2018). But all of this obtains
because—and only because—occluding contours are
mathematically special. Occluding contours are the
projections of rim curves of maximal slant. But therein
also lies their limitation; occluding contours exist only
at exterior boundaries and self-occlusions, that is, at
very special locations within the image. Our goal in this
article is to generalize such constructs to interior shape
features, specifically bumps (and dents). In effect, we
seek to “extend” the occluding contour into the interior

of a shape. Just as the occluding contour bounds
shapes, we study how to bound bumps (and dents and
ridges, etc.). Importantly, the well-defined crispness of
the occluding contour is relaxed into a neighborhood
on the shape and thus into a neighborhood in the
image. This is specifically where our sacrifice (from
the opening paragraph) manifests: It is within these
neighborhoods that the image and surface salient
properties are defined.

Critical contours

To emphasize: Bump boundaries are, mostly, fuzzy;
occluding contours are crisp. Another subtlety: While
traditional measures of shape, such as normals and
curvatures, are local and defined pointwise, bumps
extend over a region. (This is the holistic comment in
the opening sentence.) In generalizing the occluding
contour to bumps, then, we shall need to capture
this transition from sharp to fuzzy and from a point
to a neighborhood. Our proposal to do this extends
the geometry of surfaces with constructions from
topology. Instead of seeking the shape, the uniqueness
requirement is relaxed (partly). Bumps, in our theory,
have a boundary but it is only implicit; it may differ
for individuals, for renderings, and for viewings, but
it always “lives” within a band of uncertainty—a
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neighborhood. This neighborhood has a small diameter
(an ε-neighborhood of the bump boundary); for
illustration, see Figure 1b–d. The red “sausage” is the
heart of our approach. Regardless of how the ridge
bends, there is a sausage that surrounds it. But there is
more: The sausage has a special geometric structure,
through which contours can be defined. When the
sausage is over the image, we call the contour a critical
contour. Its counterpart on the surface is an extremal
curve of slant. The sausage contains an image pattern
relating to a surface property that is invariant of the
rendering function. In the spirit of how an artist’s
drawing can convey the impression of shape rather than
its exact coordinates, the critical contour constrains the
possible shapes. Taken in cross section, the surface is
ridge-like but only partly constrained (see Figure 1d,
top). As the rendering changes a little, or the viewpoint
changes a little, the critical contour will always be in a
similar red sausage. As the ridge becomes steeper, the
sausage gets thinner; the limiting process is defined in
Kunsberg and Zucker (2018). The image in the interior
of the sausage may change a little with changes in
material or lighting, but the existence of the boundary
and the presence of the sausage are invariant. In effect,
the meaning derives from the sausage and what it
implies. The technical contribution in this article studies
what happens when the critical contours are closed (i.e.,
when they surround bumps).

Because of its importance, we underline the
difference between the blue and the red regions in
Figure 1. Others have observed that the isophotes
change drastically with changes in lighting or reflectance
(e.g., Todd et al., 2014). While this observation is true in
many—perhaps most—places in an image, it is not true
in the red sausage neighborhood around critical contours.
This is the image side of the invariant we shall be
developing.

Put in psychophysical terms, our approach
is motivated by the many observations that
shape inferences are qualitatively similar, but not
quantitatively identical, across subjects and conditions.
That is, different individuals infer similar—but not
identical—3D surfaces from the same image. There is a
huge literature confirming this, sometimes emphasizing
material or lighting influences and sometimes
emphasizing over/underestimation of surface normals
(Sun & Schofield, 2012; Mamassian & Kersten, 1996;
Mingolla & Todd, 1986; Todd et al., 2014; Egan &
Todd, 2015; Christou & Koenderink, 1997; Egan &
Todd, 2015; Seyama & Sato, 1998; Curran & Johnston,
1996; Khang et al., 2007; Koenderink et al., 1996;
Marlow et al., 2015; Nishida & Shinya, 1998; Nefs
et al., 2006; Vangorp et al., 2007; Ohara et al., 2020;
Bernhard et al., 2016; Faisman & Langer, 2013). Since
we are studying shape descriptions, we are working at
a scale different from textures and surface coverings,
and we are not seeking to estimate lighting directions

(cf. Koenderink et al., 2004) or material versus blur
properties (Mooney et al., 2019). Nevertheless, the
psychophysical results in Mooney et al. (2019), which
explore how boundary orientations compare to shading
gradients, are close in spirit to what we are attempting,
although they do not yet capture the global, qualitative
content in our topological approach. Further along
these lines, we hope that our research will help to convey
the qualitative aspect of shape perception discovered
by the psychophysics community to the computational
community.

We were particularly motivated by an example
from the laboratory of J. Todd, which we review here
(Figure 2a, b). Subjects viewed a pattern of bumps and
their 3D percepts were estimated. Notice the loose but
not exact perceptual agreement (Figure 2b) between
them. This variation is not arbitrary; subjects agreed
about what we might call the “bumpiness”, but not
the magnitudes and precise locations. In our terms, we
will say that the subjects agreed about the topology
but not about the geometry. Subjectively, it is as if
the variation across subjects were constrained by a
“band of uncertainty” (Figure 2c) around each bump.
This band of uncertainty prefigures the difficulty in
specifying precisely where a bump begins—somewhere
within the band—and is why we were attracted to a
topological approach. The difference between viewers is
effectively a “stretch” between their inferences, but not a
completely arbitrary stretch. Rather, this “stretch” band
is localized to a neighborhood (the sausage) and thus is
central to our definition of a bump. For an invitation to
the relevant topological ideas, see Appendix B.

We now consider the sausage from a photometric
perspective. It is well known that the intensity
distribution will change as the rendering, material,
lighting, and viewing angle change, sometimes by a
large amount. The computational challenge, as it is
classically applied, is to “explain” (i.e., model) all of
these changes. Perhaps it is because these changes can
be so extreme that it explains why one is tempted to
simplify the problem to, say, Lambertian reflectance.
But it is still difficult to define priors and regularizers
so that they ameliorate all of these changes for the
entire object. Here topology again provides the payoff:
The isophote2 structure within the sausage follows a
particular template for a wide range of renderings.
While the intensity distribution changes almost
everywhere, it does not change everywhere. It follows
a plan within the sausage, as is illustrated by the blue
and red regions in Figure 1 and first characterized in
Kunsberg and Zucker (2018), Kunsberg et al. (2018).
Notice in particular how the (image) gradient points
away from the sausage on both sides (Figure 1d).
Consistency in this gradient orientation will be
important in linking different sausages together and in
finding the generic surface configuration corresponding
to it.
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Figure 2. Overview of results. (a) Example image from an experiment in the Todd Lab. (b) Reconstructions of surface profiles along the
scan lines in (a). Note the differences between subjects. (c) Zoom on a single bump from (a) showing (an estimate of) the sausage
(yellow); the blue arrow indicates corresponding locations. The sausage surrounds a possible critical contour (dashed).
(d) Mathematical abstraction of (a piece of) a sausage. Note the critical contour α(t ) starts at a and ends at b. Nearby is another
contour φ(t ) that derives from the surface; its starting and ending points are close to a and b. In general, as the sides of the bump
become steeper, the sausage box in (d) gets narrower and the curves approach each other. This diagram is explained more fully in
Extremal contours: Image salience. (e) Example of a critical contour α(t ) surrounding a bump; note how it cuts directly across the
isophotes. (f) Example of an extremal contour φ(t ) on the slant function of the bump in (e). Notice how the circular critical contour
and the circular extremal contour are close. As we will explain, the red dot is minima and the green dots are maxima of either the
intensity or the slant functions. Such maxima and minima are central to the topological approach. Figures (a) and (b) from Nartker et
al. (2017); (d) from Kunsberg and Zucker (2018).

The sausage surrounds critical contours through
a consistent image orientation flow. Above we talked
about variation across subjects, implying that different
subjects, if asked, might draw different contours around
the bumps. Earlier theoretical activities sought to
explain where (minima vs. inflections, etc.) the bump
boundary might be placed (Watt & Morgan, 1983;
Georgeson et al., 2007; Morgan, 2011; Subedar &
Karam, 2016), not to capture its variability. In addition,
different contours could also arise from lighting or
rendering changes. For any of this to be useful, there
must be a connection back to the scene domain. Here is
the key point: The critical contour can also arise directly
from properties of the surface and hence indicates
surface properties. In particular, if surface slant is
used as a rendering function, an image is created.
Since there are then curves from the image (say, from
a Lambertian rendering) and curves from the surface
(say, from the slant renderer), we have our invariant:
Both curves are within the sausage. To be concrete,

consider the bump in Figure 2. In the image domain,
there is a special contour—a critical contour—that cuts
across the isophotes in a particular fashion (Figure 2e).
This could be a boundary of the bump as seen in the
image. In the scene domain, there is a corresponding
contour—what we shall later describe as an extremal
curve of slant—that anchors the bump in surface terms
(Figure 2f). Although in this artificial example, the
critical contour in the image and the extremal curve
of slant on the surface correspond closely, in general,
they are only formally guaranteed to be contained in
the sausage (Figure 2d).3 Importantly, the presence
of either one implies the existence of the sausage,
which implies the existence of the other. Changing
the rendering solely moves the critical contour around
inside the sausage. All of this is proved in Kunsberg and
Zucker (2018). We summarize this informally with the
slogan:

critical contour⇐⇒ sausage⇐⇒ extremal curve of slant
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The sausage is thus the heart of our theory. It
signifies the existence of regions in images that are
especially informative about shape and implies the
existence of structures that can anchor our shape
percepts. But the sausage does not need to be explicitly
computed. Computationally, we work instead with the
critical contours and the extremal curves of slant. These
can be estimated for individuals and can be calculated.
While this intermediate sausage is implicit, the contours
establish the intermediate stage from which the rest of
the shape has to be interpolated or filled in. They serve
as a kind of anchor, just as shapes are perceptually
“filled in” from artists’ drawings.

Before moving on, we note another delicacy in
Figure 2e, f. The slant function is a kind of opposite
to the image function; namely, bright image patches
can correspond to low-slant portions of the surface.
This duality is inherent in the topology and will be
discussed further in Critical contours and qualitative
shape representations.

Comparisons with other approaches

In this section, we provide a brief review of earlier
approaches to shape-from-shading, to compare and
contrast with our current proposal. We set the stage
with classical computer vision approaches and then
proceed to recent deep network approaches.

Traditional computer vision approaches were either
differential or integral (Zhang et al., 1999). Mach
(1965) and Horn and Brooks (1989) set the stage with
the differential approach; for expository reasons, we
illustrate the second one, formulated as a minimization.
The problem is to find the normalN(x, y) to the surface
at every point that best matches the image I (x, y) for
a known light source at L subject to regularization
constraints involving the partial derivatives of the
normal:

min
N(x,y)

∫
||I (x, y) − N(x, y) · L||2︸ ︷︷ ︸

1

dx dy

+λ

∫
||Nx + Ny||︸ ︷︷ ︸

2

dx dy (1)

The normals enter through a Lambertian model, and
the argument in Term 1 pushes them to agree with the
image. The argument in Term 2 is a smoothness term.
λ is a parameter for trading off data fidelity (Term 1)
with regularization (Term 2). Without regularization,
the problem is ill-posed; regularization is needed to
reduce the possible solutions to a unique one. Loosely,
minimizing the partial derivatives reduces surface
undulations. Since the regularization and norms are
evaluated over the entire image (or surface), each point
matters and smoothness is reduced uniformly. This

approach assumes the model is known, and estimating
its parameters (e.g., L) can be problematic. Clearly, the
model is far from general and the regularization can
be extreme, especially in areas of high curvature. Some
generalization was attempted by placing probability
measures over models and parameters (e.g., Barron &
Malik, 2012), but this led to a much higher dimensional
minimization. Such computational problems are
delicate and the results are extremely fragile.

Learning rather than explicit modeling is the
current preferred approach for many vision problems
(Saxena et al., 2005), often using deep neural networks
(DNNs) (Lindsay, 2021). Instead of postulating a
specific image formation model, DNNs function in
(semi)supervised fashion, using training data given
as pairs, (xn, yn), n = 1, 2, ...,N. The deep network
can be viewed as a function f that “learns” the
relationship yn ≈ f (xn); that is, it learns to interpolate
between images and surfaces by, for example, solving a
variational problem of the form:

min
f

n=N∑
n=1

loss( f (xn), yn) + λ|| f ||2 (2)

Note that, again, there are two terms, one for data
fidelity and another for regularization (Parhi & Nowak,
2021). For shape-from-shading networks, xn might be
an (RGB) input image and yn is the associated depth
map (Eigen et al., 2014) or surface normal map (Tang et
al., 2012; Wang et al., 2020). Although this follows the
traditional model of seeking surface normals at every
point, now it is the function f that is being solved for.
Some loss functions add in Lambertian terms (Tang et
al., 2012) (or other physical rendering models; Wu et al.,
2015). Others argue that these models amount to latent
variables and should be learned (Storrs & Fleming,
2021), introducing constraint through selected training
data. Examples include, for example, “faces” (Sengupta
et al., 2018) or “chairs”or “dormitory rooms” (Kulkarni
et al., 2015); review in Breuß et al., 2021 In any case, the
DNN architecture is tuned to interpolate the given data,
so that the resulting algorithms can be brittle outside
of it. Progress in generalizing from, say, chairs to cars
is limited (Sitzmann et al., 2019). While particular
solutions engineered for particular applications can be
useful (Parhi & Nowak, 2021), especially when the data
set is acquired from natural scenes, it can be difficult
to understand why the interpolation works (Hutson,
2018). One might speculate that “faces” work because
there is an underlying invariance—a template (Blanz
& Vetter, 1999)—that guides the interpolation. In
any case,the robustness of our visual systems remains
elusive.

While we applaud DNN researchers’ advances
in building practically useful vision systems, we
remain convinced of the importance of a deeper
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level of understanding for achieving the generality
and robustness of biological vision systems. The first
artificial neural network for the shape-from-shading
problem (Lehky & Sejnowski, 1988) provides a
cautionary tale. This three-layer network was trained to
indirectly classify shaded images of elliptical surface
patches. That is, an image generation model was used
to build the data set – Lambertian reflectance of
elliptical paraboloids with different curvature – and
the network was trained to classify curvature. The
connections learned by the network yielded receptive
fields resembling those for endstopped neurons. At the
time, this result was surprising, because endstopping
was a property thought to be associated with edge
detection, not with shape-from-shading. In retrospect,
however, endstopped neurons signal curvature generally,
so the network could be understood as signaling the
isophote curvature (Dobbins et al., 1987). In effect,
the training data had the “result” built in directly: The
elliptical patches were readily separable by the isophote
curvatures, and the curvatures also specified the surface
patches. The danger, to put it more generally, is that
such networks learn to approximate the inverse to
the data generator. To paraphrase Storrs (Storrs &
Fleming, 2021), to “learn about the world by learning
about images” depends on which images are chosen.
Elliptical patches were a special case where a few
curvature parameters specified the solution.

To avoid confounds such as this, a deeper
understanding of the relationship between images and
surfaces is required. We hope that our invariant can
contribute to this.

Overview of the article

The article is organized as follows. We begin
with background material, first introducing critical
contours and the topological framework from
which they derive (Critical contours and qualitative
shape representations). Here we provide a pictorial
introduction to the Morse-Smale complex (M-S
complex). As background, we include two appendices
to this article, an invitation to the general fields
of differential topology (Appendix B) and a brief
discussion of the M-S complex (Appendix C).
Following this, we begin the new contributions in this
article. In Extremal curves of slant, we extend the
introductory discussion of the occluding contour to
the boundary of bumps. Since bump boundaries are
not occluding, we relax the global maximum slant
requirement. The key derivation is within Figure 4. The
result is a schematic definition of a bump as consisting
of an extremal curve of slant that must be closed. It
passes from a maximum of slant through a saddle.
Examples illustrate how critical contours in the image

domain relate to extremal curves of slant in the surface
domain.

Since we are only working with slant and not with
a full description of the surface, the tilt coordinate
remains unspecified. To constrain it, we use a notion of
a generic surface, Extremal contours: Surface meaning,
and show how this constrains the tilt so that the normals
point consistently toward (or away from) the bump.
Otherwise, a small change in viewpoint could lead to a
large change in the image, a nongeneric situation.

To argue for the biological plausibility of our
approach, we briefly discuss two approaches to
computing critical contours (Computing extremal
contours). The first is abstract; the second leads to a
round, closed image flow; critical contours are integral
curves through it, and its extent suggests the sausage
from the Introduction. The importance of such circular
flows has been known for some time, but the connection
to bump shapes is, we believe, new. Examples illustrate
its application to differently rendered bumps, from
Lambertian (with different light sources) to specular
(with different scene backgrounds).

Finally, we end with several phenomenological
observations. First, since the extremal curves can
provide a form of segmentation, we show how
different bump constructs can spontaneously flip from
convex to concave, without affecting their surrounds.
Second, we extend the generic argument to show
how normals must follow a consistent orientation,
like the way figure and ground remain organized
along contours. Although both the computational
experiments and the psychophysical demonstrations are
only proofs-of-concept, we hope that they will stimulate
others to explore the rich possibilities that arise in
applying (differential) topological ideas to perception.

An earlier version of this material was presented at
(Zucker & Kunsberg, 2019).

Critical contours and qualitative
shape representations

“Quantitative,” as the term is typically used, connotes
accurate, numerical, and formal, while “qualitative”
can suggest vague and “informal.” We use the term
“qualitative” in a formal, mathematical sense, to denote
topological mixed with geometrical ideas. Topology
studies bumps and valleys; differential geometry studies
curvatures. Topology is global (invariance over rubber
sheet deformations), and differential geometry is
concerned more with local properties, such as curvature
at a point. We shall exploit this idea of smooth
deformations when we define extremal contours.

Just as a sketch is a union of thin black lines on white
paper, critical contours (Kunsberg & Zucker, 2018) are
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Figure 3. Brief introduction to the Morse-Smale complex. (a) Consider a scalar function f (x, y) as a smooth mountain range (top view
in (b)). Note how the level sets are nested and circle the maxima. (b) Imagine pouring water on the central peak (M*); most will flow
downhill to nearby minima m along the gradient (blue arrows), cutting across the level sets. A special flow would follow distinguished
paths along ridge lines (black arrows) from the maxima to saddle points (+) and then to minima. Should the flow deviate from the
path, it will fall directly toward a minimum (red arrow). Other maxima may flow into these saddles (green arrows) so that in general,
for each saddle, there are two entering and two leaving paths. (c, d) The Morse-Smale complex is a graph, in which the nodes (0-cells)
are extrema (maxima, minima, and saddles) and the edges (1-cells) connect maxima to saddles and saddles to minima, thereby
linking the black arrows. The graph forms quadrilaterals, called 2-cells, that provide a tesselation of the domain into components.
(e) Illustration of a simplified M-S complex for a random figure: Red is computed from the intensities and blue from the slant function.
Notice how they are close but do not coincide exactly. Figures (a) to (d) modified from Gyulassy (2008); see further discussion in
Kunsberg and Zucker (2018), Kunsberg et al. (2018), and the Appendix.

a concentration of shading. Imagine a drawing of a
ridge: A thin line, perhaps drawn by an artist, would
be the limiting case in which the ridge has infinitely
steep intensity “walls” surrounding it (see Figure 7 in
Kunsberg et al., 2018). Informally, critical contours can
be viewed as a sketch of the shading inside a shape, just
as an occluding contour is a sketch of the boundary of
a shape. Qualitative judgments, such as relative depths,
can still be made in some circumstances (Koenderink
et al., 2015). Formally, the critical contours are those
edges (technically, 1-cells) of the M-S complex that have
large transverse second derivatives.

Before explaining these words, a little of the
historical background provides intuition. Maxwell
(1870), building on Cayley, started the topological
description of landscapes in the 19th century
by examining how water flows downhill from
mountaintops to valleys, along ridge lines and courses,
and settles in minima. In brief, water flows down the
gradient to minima, except when it follows a ridge
line exactly and flows from a maximum to a saddle
(Figure 3a, b). These ridge lines are special because they
separate the flows toward one minimum from those
toward another; any deviation off the ridge line and
the water is drawn toward a minimum rather than the
saddle. Of course, once the saddle is encountered, the
flow is then toward a minimum. Note, in particular,
that the flow is along the gradient of the surface; this is
perpendicular to the level lines everywhere and that it

would remain relatively unchanged (i.e., qualitatively
similar) if the (x, y) domain were smoothly stretched or
compressed.

In the 20th century, Poincaré, and later Morse,
developed the idea that the maxima, minima, and
saddles—the critical points of a 2D function in
3D—could inform enormously the topology of the
surface on which they were located. This idea is one of
the foundations of modern topology and is introduced
in Appendix B. Considering not the function, but the
gradient of the function, was Smale’s contribution.
This gradient of the function could be thought of as a
vector field on the surface, parts of which are illustrated
in Figure 3b.4

The modern form of these observations is elegantly
captured in the Morse-Smale complex, a rigorous
way to qualitatively describe a scalar field via a set
of curves (Biasotti et al., 2008; Smale, 1961); see
Figure 3c, d and Appendix C.5 It results, in effect, in an
abstract, graphical version of what was just described.
The mountain range becomes the value of a scalar
function f (x, y). The nodes of the graph (0-cells) are
the extrema of this scalar function, or places where
its derivative is 0; edges in the graph (1-cells) connect
maxima to saddles and saddles to minima. Notice, in
particular, how cycles of four edges (2-cells) are formed,
connecting a maximum, a minimum, and two saddles
in alternating order. These 2-cell quadrilaterals segment
the mountain range into characteristic domains. We
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shall shortly be modifying these components to develop
the abstract definition of a bump as a special type of
domain.
Remark 1. The Morse-Smale complex is a topological
description of a function; it makes certain of its
shape features explicit but does not specify the precise
function values everywhere. Values on the complex can
be used to get a “weak” representation of the original
function.

We use the Morse-Smale complex as the foundation
for our shape description. Just as a sketch is a union
of thin black lines on white paper, critical contours
(Kunsberg & Zucker, 2018) are a concentration of
shading. Imagine a drawing of a ridge: A thin line,
perhaps drawn by an artist, would be the limiting case in
which the critical contour has infinitely steep intensity
“walls” surrounding it (see Figure 7 in Kunsberg et
al., 2018). Informally, critical contours can be viewed
as a sketch of the shading inside a shape, just as an
occluding contour is a sketch of the boundary of a
shape. Formally, the critical contours are those edges
(technically, 1-cells) of the Morse-Smale complex
that have large gradients surrounding them. Critical
contours are computable from the image, and a main
result of that theory is critical contours are abstractly
invariant to changes in the rendering function. They are
contained within the sausage and, in effect, they define
a type of scaffold on which a shape can be built.

The 1-cells of the M-S complex lie along the gradient
flow, which is orthogonal to the level sets everywhere. A
delicacy arises because, although many have suggested
that the shading flow (along level sets) is the foundation
for shading analysis (Koenderink & van Doorn, 1980;
Breton & Zucker, 1996), others have observed that the
level sets change drastically with changes in lighting
or reflectance (e.g., Todd et al., 2014). While this
observation is true in many places, it is not true in a
neighborhood around critical contours (Figure 2); see
also the detailed examples in Kunsberg et al. (2018).
Second, across neighborhoods like this, the intensities
change rapidly (the image gradient is large), from dark
along the critical contour to bright in either direction
normal to it. These two observations illustrate the basis
for critical contours, and they hold generically for a
wide class of intensity and surface variations (Kunsberg
& Zucker, 2018).

While the Morse-Smale complex was built for a
general scalar function, we here emphasize the two
scalar functions utilized in our work. First, there is
the image scalar function, the height of which is the
brightness. Level sets, curves of constant brightness,
are the isophotes. The gradient flow cuts across
the isophotes. The second scalar function is the
slant function on the surface. Assuming orthogonal
projection, it can be aligned with the image intensities.
The level sets are curves of constant slant. The gradient

cuts across these, so it specifies the direction in which
slant is changing most rapidly. An example is shown
in Figure 3e, where the red complex is computed from
the slant and the blue from the intensities. Notice how
they are close but not in exact agreement (i.e., are in the
same sausage neighborhood).
Remark 2. Critical contours provide a topological
signature of key interior shape components, stable
under generic lighting and rendering variations.

We illustrate these constructs for shape in detail after
we specialize them to bumps.

Extremal curves of slant

We now begin the technical contributions in this
article. At the outset, we note a difference in direction.
Our previous development (Kunsberg & Zucker, 2018)
began with the image, developed the limiting process
for shading, and then connected it to surface properties.
We now work in the other direction. Extremal curves of
slant are motived from the rim, a surface property, and
analysis of the slant function. We then develop image
signatures for them.

The main challenge is how to define an analogous rim
in the interior of the shape, so that it could surround
a bump. This requires a relaxation of the slant along
the occluding contour to something less than the global
maximum value at every point, since the tangent plane
never rotates enough to include the line-of-sight for a
smooth bump. (This would cause an occlusion.) One
might naively try to relax from the global maxima to
some version of local maxima of slant along a contour,
but this is impossible for technical reasons. (The surface
has to be generic.) For Morse functions, this requires
critical points to be nondegenerate (their Hessian, or
second, derivatives must be full rank). Mathematically,
for a generic Morse function, there are no appropriate
contours consisting entirely of local maxima of slant.

There is a modification for the general surface shown
in Figure 3 that does work. The closest analogue to the
maximal slant contour is a Morse Smale 1-cell that
includes maximal critical points while also existing for
generic surfaces. This is why we call it an extremal curve
of slant. In effect, we are seeking a curve around a
bump that is steep everywhere and such that every step
across it is a large step toward the top.

Before proceeding, it is helpful to recall from the
Introduction that the Morse-Smale complex can be
defined over any scalar field. We are working with two
scalar fields here, one for the slant (extremal curves) and
one for the image (critical contours). The main result is
that they coincide, at least to the level of the sausages
overlapping, so what is said about structure in one
domain has an analogue in the other.
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Figure 4. Development of the M-S complex for bumps on the slant function. (a) Starting with the standard MS cycle, (b) smoothly
deform the domain so the saddles begin to (c) approach one another until (d) they merge. Notice how bringing the saddles together
forces the minimum (in slant) toward the inside; this slant min is the top of the bump. Furthermore, the integral curves (cyan) deform
along with the saddles. These will become important when studying this configuration in the image domain, because they then
denote isophotes.

To start, we focus on extremal curves of slant. Recall
(Figure 3) that the 2-cell, the basic building block of
the M-S complex, consists of a region surrounded by
a special flow from a maximum to a pair of saddles
and then to a minimum. While all flows are along
the gradient, the 1-cells (the edges of the 2-cells) are
special—they delimit the building blocks with the flows
into saddles and then into minima.

We now seek the appropriate generalization from
the occluding contour to an interior curve, that is, the
closed extremal curves that could surround a bump
(more technically, the closed curves that anchor the
sausages). These are the contours following the gradient
flow that go through local maxima and saddles, but
with a modification of the MS-complex, in which the
saddles have been joined. To derive these (Figure 4),
begin with the standard 2-cell from the M-S complex
for a scalar function, say the slant, and deform it by
allowing the saddles to approach one another until
they merge. This deformation is smooth and generic,
and amounts to a distortion of the surface. It is
helpful to imagine this deformation starting from the
configuration in Figure 3. In the end, when the saddles
merge, the associated minimum is forced into the
center. Importantly, this configuration remains generic.
Furthermore, corresponding to this evolution of the
slant function, there is a corresponding evolution of the
image function. This latter has been considered in the
computer vision literature (Nackman, 1984; Griffin &
Colchester, 1995) before, but not the slant version. Nor,
to our knowledge, has anyone previously exploited its
topological implications for perception. It gives rise to a
distinct type of 2-cell typical for a bump.

It is instructive to analyze an image of a bump
(Figure 5) in detail. First, we illustrate part of the

definition of a Morse function. Recall that these were
functions whose critical points were isolated. This
would discount flat planes or ridges, for example. So, to
make the surface Morse, we added slight undulations;
these are easily visible in the surface on which the bump
sits.6 Now, viewed from above, notice how the slant is
minimal (Figure 5f), then increases to its maximum on
the steep sides, and then decreases again. While this
maximum is not π/2, it is large. The M-S complex for
this is shown in Figure 5j. A blue extremal curve passes
through a maximum (of the slant function) (yellow dot)
and a (green) saddle point. The circular curve is the
extremal line of slant, because this is the only part of
the M-S complex that has “steep sides” of the slant
function. The minimum is somewhere inside it. The
template for this pattern (Figure 5b) schematizes this;
in effect, this template is the definition of a bump in
the slant domain. By passing from the max to saddles,
it illustrates how the extremal curve is a relaxation of
the occluding contour. The M-S complex on the slant
function shows how the extremal contour encircles the
bump, with a slant minimum (and no other maximum)
inside it.

Also shown in Figure 5c, d, e are three different
renderings of the bump. The first two are Lambertian,
and the third is a nonlinear and somewhat artificial mix
of lights. Each image of the bump shows a different
intensity distribution and, necessarily, different isophote
arrangements. Notice how the (image) critical contour
is the same circular curve, however; moving the light
source or changing the reflectance moves the max
position and the isophotes, but not how the critical
contour cuts through them. This cut, the gradient
flow through the level sets along a distinguished path,
remains essentially invariant over lighting and rendering
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Figure 5. An artificial bump on a slightly bent (i.e., generic) surface. (a) The bump is colored by the Gaussian curvature; the arrow
points to the parabolic curve along which the Gaussian curvature is zero. (b) The defining template for a bump, shown in the slant
domain so that an extremal curve surrounds a minimum. (c, d) A Lambertian reflectance function on the bump illuminated from two
different positions. (e) An artificial rendering function based on a nonlinear combination of Lambertian reflectances. (f) The slant
function for the bump viewed from above. (g–i) The isophotes and M-S complex for the three images and (j) for the slant function.

changes. The cut defines an integral curve through
the gradient flow, and this curve anchors the sausage
neighborhood around it.

Comparing the intensity images to the slant figure
reveals a reverse in sign: The brighter parts of the image
correspond to darker parts of the slant. This makes total
Lambertian sense: The bright part of the bump points
toward the light source, while the slant is minimal. In
topological terms, this is handled by the “stable” and
“unstable” components of the M-S complex. They are
related, informally, by taking the flow along the scalar
function, where the water runs downhill, or the flow
along “minus” the scalar function, where the water runs
uphill. That is, maxima and minima are interchanged.
These are the “ascending” and “descending manifolds”
technically, and the M-S complex is their “transverse
intersection.” For our purposes, however, it is useful to
consider them separately.

Our next example is an image from the Todd
database (Figure 6). Beginning with the slant function,
notice how each bump is surrounded by an extremal
curve that passes through a maximum and a saddle;
this maximum is the “steepest” part of the bump. As we
saw above for the Lambertian example, interior to the
bump is a minimum in slant that often corresponds to

a maximum in intensity. Note that the extremal curve
clings to the high-slant portion of the function and
that this bright region (high slant) encloses—and is
surrounded by—darker, low-slant neighborhoods.

In multibump images such as these, the M-S complex
provides some constraint on the “space” between
bumps (Figure 6c). This space can undulate slowly; it
supports a number of saddle points that can connect
the bumps together. Unlike the extremal curves, these
1-cell/saddle connectors are not stable; they can move
a good distance with changes in lighting or material.
The intensity change across them is not as extreme
as with critical contours. As we show later, however,
they do provide some constraint on the bump/dent or
protrusion/intrusion ambiguity.

Stating the previous discussion concisely, we have:
Definition 3.1. Slant extremal contours are the
saddle-maxima 1-cells of the M-S complex of the slant
function.

Slant extremal contours are interior contours,
defined on the surface, that pass through the maxima
of the slant function, follow the gradient flow, and,
at the same time, segment the surface into regions.
For brevity in the remainder of this article, we will
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Figure 6. Illustration of a bump max, saddle, and unknown interior minimum on a Todd example. (a) Intensity image. (b) Slant function
for the surface. Typically, the slant function has a minimum somewhere in the interior, while the intensity function often has a
corresponding maximum (e.g., for Lambertian renderings). Notice how the extremal curve passes through the bright region denoting
high values of slant; the portions of the M-S complex other than the closed extremal curves are not critical contours. (c) A sketch of
the topological network (part of an M-S complex) corresponding to several bumps. Although this sketch was not built directly from
the more complex example in (b), notice how there are saddles that link maxima of slant on nearby bumps together. These 1-cells,
shown as dashed contours, do not have significant slant changes across them, so are not as stable as the extremal curves surrounding
each bump. The iso-slant contours surrounding each bump minimum will be discussed shortly.

drop the word “slant” and call them simply “extremal
contours.”

In general, extremal contours will not be closed.
However, motivated by the previous examples, we are
especially interested in the special case when an extremal
contour connects back to itself.
Definition 3.2. Extremal rings are closed slant extremal
contours.

Putting these pieces together, we have (up to a
concave/convex reversal):
Definition 3.3. A bump/valley is an interior region
within an extremal ring.

Extremal rings and occluding
contours

We now investigate extremal contours and extremal
rings and show that these features define the surface
topologically while also being visually salient for many
rendering functions. It will formalize the previous
observations. In particular, we show that, in all
likelihood, these extremal contours have the same two
properties that the occluding contour had: surface
meaning and image salience, provided the surface and
rendering are generic.

Extremal contours: Surface meaning

We first show that extremal contours represent
boundaries of bumps and valleys of the surface. The
argument will be based on the conclusion that the
surface normal field near the extremal contour (i.e.,
within the sausage) should generically point uniformly

to the interior (or exterior) of the region bounded by
the extremal contours. Our argument is based on a
generic prior for vision, in which small changes (e.g., in
lighting) should imply bounded changes in the image
(cf. Freeman, 1994). This section is slightly technical
and may be perused quickly to get the gist.

Consider Figure 7, and focus on the enlarged portion
of the extremal ring. This was defined to cut across
the level sets of the slant function but, by definition,
it does not inform the tilt function. Here we show
that, for generic surfaces, the tilt must be constrained
along the extremal ring to prevent self-occlusion and
image instability. There are two basic possibilities:
In the first case, the surface behaves like a bump
boundary, where the surface normal on the extremal
ring points consistently; the second case leads to rather
wild surfaces with “crazy” curvatures. While this
second case is a mathematical possibility (developed
next), it violates our requirement that the surface be
generic in the perceptual sense. That is, a small change
in the lighting would lead to a drastically different
image (Figure 8). This is typically not the case for
natural surfaces, since their image does not change
drastically for small changes in viewpoint. For the wild
surfaces, the extensive changes happen because the
normal points in many different directions in very small
neighborhoods, covering a very large portion of the
Gauss map (introduced in Appendix D).

More technically, let α(t) denote an extremal
ring that bounds a region R, and let {x, y} be image
coordinates under orthographic projection. Let σ (x, y)
represent the slant in a neighborhood of a point
(x0, y0) on α(t). Rotate the frame so that the slant
gradient (tangent direction to α(t)) points locally in
the y direction. We compare two possible solutions for
the local surface depth S(x, y) by defining two pairs of
Taylor expansions for the slant and tilt functions. Let
σ1(x, y) = σ2(x, y) = c1 + c2y + σxxx2 + σxyxy + σyyy2.
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Figure 7. Extremal curves and surface normals. (a) Consider a portion of a maximal curve of slant. Two distinct types of local surfaces
could have caused this local slant function, one with no twist and another with substantial twist. The first surface, without twist, is
much more likely than the second surface. Note the normal field for the first surface consistently points to the same side (left) of the
extremal curve. (b) Taking the most likely interpretation for each portion of the extremal curve, the normal field must point uniformly
outside (or inside) the entire contour.

Figure 8. Comparing possible surface explanations for a maximal slant curve. Each row depicts different properties of the surfaces
shown in the first column. Although both are technically solutions, the twisted surface covers most of the Gauss map (Gaussian image
shown) and, when rendered under slightly different lightings, gives rise to drastically different images. The generic surface solution
occupies a small portion of the Gauss map and renders almost the same image under different light sources. Both arguments show
that the twisted surface (top row) is much less likely.

(There is no linear x term here due to the slant gradient
pointing along the y axis.) Let τ1 = x and τ2 = y. Now,
{σ1, τ1} defines a surface S1 and {σ2, τ2} defines an
alternative surface S2. Which of these is more likely?

Both S1 and S2 have the same magnitude tilt
gradient. However, S1 (generic surface) has the tilt
change along the contour while S2 (twisted surface) has
a tilt change perpendicular to the extremal contour.

Let N1(x, y),N2(x, y) represent the normal fields for
each of these two solutions. We compare the relative
probability of each of these surfaces by considering
the term Ti = ∫

�
det(DNiDNT

i ) for each surface.

This is essentially the Gaussian curvature of each
solution integrated over the patch.7 The solution with
higher Gaussian curvature will be the solution that
is less smooth, more dependent on lighting direction
(Freeman, 1994), and with a higher chance of occlusion.
We compare the relative likelihood of the two solutions
L1
L2

by considering the inverse of the ratio T2
T1
. A simple

calculation shows

L1

L2
∝ T2

T1
∝ σ 2

xx

σ 2
y

(3)
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where σxx is the transversal second derivative of the
slant across α(t) while σy is the gradient along α(t).
Since the slant on α is extremal, its gradient will
necessarily be small. In addition, since the slant is
changing rapidly across α, σxx will be large. Thus, for a
slant patch as shown in Figure 7a, the ratio σ 2

xx
σ 2
y
will be

large. This statement is illustrated by the comparison
in Figure 8. We conclude that the image patch derives
from a surface patch with a surface normal field that
is not twisted. In other words, it is most likely that the
normal points to a single side of the curve in the entire
Taylor expansion.

Applying the above argument completely around
the extremal ring α(t) shows that the most probable
interpretation of the surface normal field along α(t) is
that it does not have a twist and therefore must point
uniformly outside (or inside) the region bounded by
α(t). It then follows that the region R is “higher” (or
“lower”) than the surrounding area. More precisely, one
can see that the R must be an ascending or descending
manifold of depth; in other words, the region is a bump
or a valley.
Remark 3. The surface normal along an extremal
contour points consistently to the interior or exterior,
almost always. When closed, the normal points
consistently to a bump or a dent.

Extremal contours: Image salience

We now show that the second important property of
the occluding contour, image salience, also exists for
extremal contours. Since extremal contours are related
to critical contours (Kunsberg & Zucker, 2018), image
salience will follow from the image invariance of critical
contours, which we now review.

A given surface, when rendered differently (e.g., with
a different light source), can yield drastically different
images overall. This was illustrated in Figures 1 and 5.
However, many rendering functions such as Lambertian
shading, specular shading, texture, and so on, as well as
line-drawing algorithms (DeCarlo et al., 2003; Judd et
al., 2007), all involve the surface normal field in order to
create an image.

The surface normal field N(x, y) can be defined as
a map from the image domain R2 to the unit sphere
S2. It is then natural to define a rendering function F
as a smooth map from the unit sphere to the real line,
that is, F : S2 → R. The image is then expressed as the
combined map I (x, y) = F (N(x, y)). The orientation
field (for a smooth rendering function) is then computed
perpendicular to the gradients ∇I .

In Kunsberg and Zucker (2018), we defined critical
contours that were computable from the image.
Generally,

Definition 4.1. Critical contours are gradient flows in
the image with large transversal second derivatives.
Remark 4. Critical contours are computable from
the image gradients, whereas extremal contours are
computable from the slant gradients.

In Kunsberg and Zucker (2018), we showed critical
contours had an invariance to the choice of F . More
precisely, to show image invariance of a critical contour
for a wide class of rendering functions C, we proved:
Theorem 1. Given a surface normal field N(x, y) and any
two choices of generic rendering functions F1,F2 ∈ C,
construct I1 = F1(N(x, y)), I2 = F2(N(x, y)). If a critical
contour is present in I1, then there is a arbitrarily close
critical contour in I2.

A corollary of this statement (Corollary 10 in
Kunsberg & Zucker, 2018) can be restated:

Corollary 4.1. An extremal contour must lie in the
tubular neighborhood of a critical contour and have
the same endpoints.

This tubular neighborhood is the formal version
of the red sausage that has appeared throughout the
article, and the above statement is a formal version of
Figure 2d. Informally, the tubular neighborhood is a
region of points on the manifold displaced from the
critical contour in the orthogonal direction.

As extremal contours lie near the critical contours,
the invariance statements from Kunsberg and Zucker
(2018) show that extremal contours will nearly always be
salient from the image, regardless of rendering function.
Extremal contours delineate the surface features while
the critical contours delineate image features. We can
observe a critical contour, infer an extremal contour
next to it, and then use the previous section to attribute
surface protrusions to image regions. The sausage links
the two; in the limiting case, when the sausage collapses,
the extremal contour coincides with the occluding
contour. This is what lies behind the slogan in the
Introduction.

Thus far, we have only considered single bumps. But
since the M-S complex is global, multiple bumps can
be identified from portions of the M-S complex. We
provide an example of this in Figure 9, a collection of
figures from the Todd experiment. Although closed
critical contours are evident, variations are clearly
present. Part of this variation is due to rendering
differences, such as around the large bump on the far
right. As just explained, these variations are to be
expected and live in the sausage. Another part is due to
the manner in which critical contours are computed;
examples of this are evident in the breaks connecting
to the exterior bump. We elaborate on computational
issues in the next section.
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Figure 9. Critical contours on differently rendered images by
persistence simplification. Top row: A sequence of images of a
surface rendered with specular and Lambertian shading; the
light source moves from left to right. Bottom row: Closed
critical contours on the image; our theory implies that these
will contain “bumps.” Note that some bumps are “connected”
by 1-cells. Although these are part of the simplified M-S
complex, they are not critical contours. See text for further
discussion. Top figures courtesy J. Todd.

Computing extremal contours

Topological constructs, such as the Morse-Smale
complex, are defined using continuous mathematics.
They involve real numbers. But when noise and
sampling are introduced, technical problems can arise
in assessing topological signatures. For example, since
pixels are discrete, what is the precise location of a
singularity? To compute the gradient at a fine scale,
in a practical sense, we are restricted to computing
differences in the image coordinate directions: Will
algorithms converge to the actual gradient? Finally,
is there a real tiny hole in the shape or are values
missing because of noise or quantization? The field of
computational topology is being developed to answer
questions such as these and to develop algorithms that
run correctly on discrete domains such as images.

There are two different ways in which this can be
approached (Günther et al., 2014), one topological
and the other based on the gradient flow. We used the
first approach in Kunsberg and Zucker (2018), and we
used it to compute all of the examples in this article.
The second approach is more relevant to biological
realizations. We discuss both in turn.

Persistence simplification (Edelsbrunner & Harer,
2010; Carlsson, 2009) is one of the important
developments in computational topology. Basically,
take a discrete structure, cover it with a smooth
object, and then use it to calculate topological features
such as critical points. By the above arguments,
sampling and noise can introduce singularities that
are irrelevant to the actually continuous structure.
Just as blurring can smooth over tiny holes due to
noise in an image, persistence simplification is a
globally consistent way to reveal overall structure
while removing those tiny holes and “irrelevant” noisy
details that derive from quantization and discretization.

Figure 10. Concentration of isophote tangent orientation
around bumps. (a) The slant extremal contour from Figure 4.
Note the gradient integral curves in cyan. (b) A corresponding
image from Figure 5. Notice how the closed critical contour
(corresponding to the slant extremal contour) cuts across the
isophotes. Moving slightly interior, the isophotes form
concentric rings; this is cartooned in (c) by the concentric
iso-slant contours in green. Such families of nested level sets
can serve as an image signature for the identification of bumps.

Critical points that are extremely fine scale and local are
eliminated in a kind of structure-preserving smoothing.
Algorithms to compute the Morse-Smale complex from
discretized images (i.e., a mesh) have been developed
by Reininghaus and Hotz (2011), Sahner et al. (2008),
and Weinkauf et al. (2010), among others. We use the
algorithm of Reininghaus and Hotz (2011) in all of our
experiments. However, because persistence only involves
how much smoothing a critical point can survive, the
explicit “steep sides” in the critical contours definition
are not always incorporated. This explains the variation
in the cobblestone image in Figure 9. Some artifacts
(noise/discretization loops) were eliminated, and by and
large, almost all bumps are localized in every example.
But the result is not perfect and more work would be
required to fully implement the critical contours “steep
sides” criterion.

Instead, a more biological approach to computing
extremal contours would work directly on the
orientation flow rather than the discrete image,
and builds on the fact that cells in visual cortex
are orientation selective. We illustrated earlier how
isophotes concentrate near the occluding contour
(Figure 1); similar properties hold around bumps. In
particular, focusing on the level sets during the evolution
shown in Figure 4 makes clear that they concentrate
in an analogous fashion near the critical contour; see
Figure 10. In effect, as the saddles converge, they “pull”
the isophotes with them. This leaves a special signature
where the isophotes form a concentric flow within and
around the critical contour. Here, discretization works
in our favor, because exceptions could be regularized
away with co-circularity (Ben-Shahar & Zucker, 2004).

This observation connects to another body of
literature. Perceptual sensitivity to closed contours
(Kovacs & Julesz, 1993; Elder & Zucker, 1993) and
circular textures (e.g., Wilson & Wilkinson, 1998;
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Figure 11. Max slant cycles—closed critical contours—can be
found via maximum compression in shading images. Across
each of the rows, we show original image, “flow compression,”
an enlarged region, and the “flow direction.” Notice the
similarities in the flow compression and flow direction across
the different renderings. The width of the flow provides an
indication of the red sausage.

Dumoulin & Hess, 2007; Dakin & Bex, 2002) is well
known. What remains to be explained is why this
sensitivity is so common. Our answer is that these
concentric flows are the image-domain signature of
bumps and dents. Importantly, just as concentric flows
are not particularly sensitive to positioning and other
perturbations (e.g., Achtman et al., 2003), the details
required for accurate computational algorithms in
topology are regularized away. Furthermore, there is
an accumulating body of evidence that orientation
structure is at the basis of related shape perception (Li
& Zaidi, 2000; Fleming et al., 2011; Marlow et al., 2019)
and has been interpreted as a component of shape
representation at an intermediate stage (Gallant et al.,
2000). In total, all of this evidence has a particular
advantage from our perspective: Our result about
concentric flows formally connects an image salient
property with 3D shape interpretation. To speculate
even further, this connection suggests how intermediate
visual areas, such as V4, could be sensitive to 3D
structure (of bumps). Some preliminary evidence in
support of this is presented in Kunsberg and Zucker
(2018a).

In Figure 11, we show the oriented shading flow
around two pebble examples, plus an integral curve8
through it. Notice how this curve surrounds the
bumps just as the extremal ring did. The extent of the
parallel flow correlates with the sausage around the
contour, which could provide a means for estimating
it. Since these flows are a type of oriented texture,
we speculate that working with nested flows also
supports a generalization from shape-from-shading
to shape-from-texture. Formally, this follows because
texture compression induces similar flows (Cholewiak
et al., 2014). Finally, we show a number of specular
examples, in which the oriented flows arise from

Figure 12. Critical contours on specular images (from Fleming et
al., 2004). (Row 1) Examples of five specular images. Note the
organized flows apparent around the bumps and dents. (Row 2)
A segmentation of the images according to integral curves
through the structure tensor direction. (Row 3) The integral
curves. (Row 4) The colorized orientation map. In Extremal
contour relational constraints, we suggest why these examples
appear as dents rather than bumps.

compression of the visual scene around the object
(Fleming et al., 2004; Mooney & Anderson, 2014); see
Figure 12.

In all of these examples, the flow compression was
computed by a classical technique in image processing,
the structure tensor (Rao & Schunck, 1991; Bigün et al.,
1991), from which the primary direction was derived.
Compression was assessed by the ratio of eigenvalues.
In effect, the structural tensor is an ellipse, and the
compression is a measure of elongation. There are more
biological ways to compute these flows (Ben-Shahar &
Zucker, 2004). We use the structure tensor here only as
an easy proof-of-concept. Although more experimental
work is needed, we hope that these examples illustrate
how topological ideas could inform different ways of
thinking about relatively well-understood biological
constructs (namely, orientation selectivity and its
uses) and how orientation flows could make abstract
topological ideas more concrete, more computable, and
more robust. Several other directions for future study
are described next.

Directions for future study

We have just illustrated how the theory can be used
to find “bumps” in images with unknown rendering
and illumination, and how there is at least the potential
for biological realization. We now move up to the
phenomenological level. First, we show how the theory
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Figure 13. Multistable bumps and dents. Top: (a, b) Images with bistable perceptions governed by an extremal curve segmentation.
The inner disk is carved out by an extremal contour and can be seen as coming out or going into the page. At first glance, (a) often
looks like an indentation and (b) like a protrusion; as in the crater illustration, (b) is the inversion of (a). Staring at either one shows
that it can flip to the other. (c, d) Possible surface interpretations of images in (a) and (b). (e) Nested bumps provide a higher-order
multistable illusion. Again, components can be flipped independently. Bottom: An extension in which the bump is not directed at the
viewer and the object is asymmetric. Bistability still maintains.

predicts a novel 3D bistable illusion. Following, we show
an illustrative example applying the theory to nonclosed
extremal curves; a constraint labeling problem arises.
Finally, we show a demonstration comparing the
importance of these extremal contours over other image
regions. While none of these excursions is complete, our
goal, in this section, is to illustrate directions for, and
perhaps stimulate, future study.

Bistable dimples and bumps

The definitions of extremal contours and closed rings
were in terms of the M-S complex, and involved only
singularities and their (global) relationships. However,
since the singularities are organized through their
indices (Appendix C), maxima and minima can enjoy a
complementary relationship. For example, we showed
in Figure 5 how maxima in the image can correspond to
minima in slant, which follows from Lambertian (and
other) rendering functions. Formally, we discussed how
this arose in the context of ascending and descending
manifolds. We here show how this duality is perceptually
present.

Closed extremal contours, and their image-equivalent
closed critical contours, can each signal the existence
of bumps and valleys, which immediately brings the
convex/concave illusion to mind (Ramachandran,
1988b). Set up properly, this is a classical instability in
shape perception, often disambiguated by the common
light-source-from-above heuristic. Since an extremal

ring perceptually creates either a bump or a valley, that
is, does not resolve the convex/concave ambiguity, it
follows that similar instabilities should be demonstrable
using extremal curves as well.

Here is a key difference from changing the overall
light direction: The extremal curve provides a different
kind of organization. Since the extremal contour
actually segments the bump or valley, it follows that
these segmented parts should be independent of other
portions of the image. This raises a prediction: that the
individual parts of an image should also be subject to
the multistability individually.

To confirm this prediction, that is, to show that
the individual parts—and not the full image—can be
flipped separately, we created the bistable images in
Figure 13 with an extremal ring in the center whose
interior region is a disk. The extremal ring creates a
perceived segmentation but does not specify whether
the interior disk is a bump or a valley. The normal
vectors along the ring, which we showed had to point
consistently once projected into the image, can, in this
case, point into or outside the ring. Thus, the interior
part can be seen as a bump (pointing out of the page) or
a dimple (into the page); because it is ambiguous, they
can be perceptually flipped. Normally, one might expect
this to be solely an effect of lighting (Ramachandran,
1988a; Morgenstern et al., 2011, 2014), but this
example emphasizes different structural aspects. An
asymmetric version of this illusion is shown in Figure 13
(bottom). The concept of segmentation facilitates
describing this perceptual phenomenon; it is cleaner
than representing the two solutions as independent
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Figure 14. From bumps to extended ridges. (a) Top row: Images of the same surface illuminated from different positions. Bottom row:
Persistence-simplified Morse-Smale complexes showing the extremal curves in blue. (The short horizontal segments should be
ignored; they are not extremal contours.) (b) Four possible labelings of the surface normal field on these curves. (b,i) A ridge above
the surface; (b,ii) a valley; (b,iii; b,iv) two extended slopes. (c) The surface corresponding to (b,i). (d) The surface corresponding to
(b,iv). Note, in this case, the gradient points inconsistently, so that the surface continues to decline. (See profile at edge of ridge.)

depth fields. The bistable bumps can be nested as
well.
Remark 5. This is not the concave/convex (“hollow
face”) illusion in disguise because the surface portion
outside the extremal ring is stably perceived as convex
in depth. This is due to the portions of the occluding
contour that are visible at the edges of the image. This
example could be generalized to include N extremal
“rings” leading to possible 2N ambiguous perceptions.
Rather than a single concave/convex ambiguity on the
global object, we could have concave/convex ambiguity
on individual parts governed by the extremal curves.

Extremal contour relational constraints

The bistable illusion above arises from the binary
choice of the normal field on the extremal ring—it can
either point consistently toward the “inside” (as in a
dent) or the “outside” (as in a bump). We previously
argued that, to be generic, such consistency is required
almost everywhere along an extremal contour. We now
elongate the bumps to show how a combinatorial logic
of normal constraints develops. This logic may indicate
why concave/convex ambiguities are less frequent in
natural vision than they might be.

Like closed extremal contours, individual nonclosed
slant extremal curves can also provide information
about protrusions and other features within a shape.
The result in Extremal contours: Surface meaning can
be summarized as the normal field along an extremal
curve must point to one side of the curve (almost
always). This can be thought of as a labeling of the
curve, just as the “border” side of a curve is indicated
by the Gestalt notion of “border ownership” (Zhou
et al., 2000). If extremal curves are extended toward
an occluding contour without introducing other
structure, then the logic can be applied. For each of

Figure 15. An extension of Figure 14 in which the critical
contours partition the surface into several parts. These can
then be interpreted as ridges and valleys through a consistent
labeling scheme.

the two extremal curves in the example surface shown
in Figure 14a, we get the four qualitatively different
labelings depicted in Figure 14b. The red arrows
depict the binary choice for the surface normal on
the curve and the green arrows depict the necessary
normal constraints due to the occluding contour. These
labelings are simply a choice of orientation for the
surface normal on each of the two blue curves.

Although we have not done formal psychophysics
on this, the authors perceive labeling (a) although one
can construct surfaces with precisely the same images in
Figure 14a from the other labelings also; see Figure 14d.
Similar labeling constraints can be applied to more
complex imagery (Figure 15), and we would speculate
that the reason the dents appear fixed in Figure 12 is
because the “arrow” along the occluding boundary
must point outward. Further examination of these
issues is warranted, at least to extend our understanding
of generic lighting and surface interactions.

Critical contours as 3D shape anchors

Our basic hypothesis is that critical contours are key
to 3D shape perception. As part of the Morse-Smale
complex, they are like the pencil lines that might be
drawn by an artist. In both cases, they provide a scaffold
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Figure 16. (a) A random blob with a vivid shape percept. (b) Its (simplified) Morse-Smale complex. (c) A flattened image. The
intensities on the M-S complex match the image intensities while, for each region within them, the intensity is replaced by the
average. (d) A pseudo-heat equation blur of image (c). Notice how this shape appears similar to the original (a), even though the
image intensities differ. (e) Histogram of intensities in the different images. Red corresponds to (a), blue corresponds to (c), and green
corresponds to (d).

on which qualitative shape inferences could be based.
This radical hypothesis—that only selected areas in
an image anchor shape perception—needs far more
exploration. In a related article (Kunsberg et al., 2018),
we exploited a color-shape interaction to demonstrate
that the neighborhood around critical contours, and
not the space between them, sufficed to ground 3D
inferences. We now provide additional support for this
observation with two new displays. Both exploit the
blur/shape ambiguity developed at length in Mooney et
al. (2019), which should be consulted for discussion and
many references.

The placement of critical contours is key to 3D
shape perception, as we now demonstrate. We start by
illustrating the relative unimportance of shading values
away from the critical contours by modifying images.
We first isolate the critical contours, extend a small
sausage around them, and then set the intensity within
this to the underlying value of the critical contour. The
areas between critical contours (the 2-cells) are set to a
constant, which is the mean value of intensity within it.
Finally, the resultant discontinuous image is smoothed
by a pseudo-heat equation, thereby implementing a blur
operation. While the intensities in the resultant image
differ from those in the original by a nonlinear function,
the shapes appear about the same; see Figure 16.
Importantly, many of the pixel intensities differ—see
histogram—while, at least informally, the shapes do
not.

The second demonstration in Figure 17 complements
the above and builds explicitly upon the blur
investigated in Mooney et al. (2019). We begin with
a set of contours of constant intensity against a
neutral background. Blurring these provides a rich 3D
percept, not the impression of blurred lines, with the
same multistability properties discussed previously.
Importantly, it is the arrangement of the starting
contours that matters—notice in particular that they
are placed in threesomes with alternating contrast.
After blurring, these replicate the isophote structure
that must surround critical contours.

Figure 17. (a) A set of image contours in black and white on a
gray background arranged as nearly parallel triples. (b) A simple
blurring operation on these contours yields a rich 3D percept,
not the flat appearance of blurred lines. Note in particular the
appearance of ridges and bumps, how the curvature of the
contours induces curvature in the ridges, and how the
discontinuities are smoothed over. (c) When the original
contours are inverted (black to white and vice versa), the
percept is also inverted.

While these two demonstrations are only suggestive,
we include them to (hopefully) stimulate others to
examine these questions more rigorously. Modifications
of the example in Figure 17 could include different
orderings, arrangements, thicknesses, and contrasts of
the original curves. These could provide further insight
into the necessary structure of the sausage and of the
perceptual basis for critical contours.

Conclusions

Our visual systems readily infer aspects of 3D shape
across renderings, lightings, and contexts. Although
the solutions seem veridical, the ill-posedness of
the problem suggests this is unlikely. The standard
approach, both in classical computer vision and in deep
networks, is to introduce (directly or indirectly) some
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form of regularization and to solve for parameters (e.g.,
surface normal) over the entire image. We have argued
that, instead, a qualitative 3D surface representation
is helpful. We formalized this in topological terms and
were able to use it to link measurable 2D image features
invariantly with surface properties. We summarized this
with a slogan emphasizing how the image-based critical
contour is constrained to lie within a sausage; this
sausage, in turn, also contains extremal curves of slant.
Fundamentally, the slogan works in the other direction
as well.

In this article, we focused on bumps and dents, and
advocated for the use of slant extremal curves as the
candidate surface representation. To summarize the key
points in our development, we argued:

1. Bumps exist in the interior of a shape. The occluding
boundary delimits the full extent of an object. We
showed that bumps have a description that is a
relaxation of the occluding contour in a precise
mathematical sense.

2. Bumps are qualitative.While bumps have a boundary,
precisely where it lies is less clear. Evidence suggests
that shape perception is qualitative: That is, while
different subjects agree on certain basic properties
of shape, they disagree on quantitative details. We
encompass this qualitative aspect of shape inferences
in a topological representation. The uncertainty in
precision of the bump boundary was represented
as a topological sausage around the critical
contour.

3. Bumps are global objects; they are defined not at a
point, such as the curvature at the peak, but over
a neighborhood. Like a mountain, a bump is a
collection of material that builds to a peak; they
can be climbed from many sides. We characterized
the global nature of bumps with the Morse-Smale
complex, a global topological descriptor for
surfaces. The M-S complex was attractive because
the level sets in climbing a bump are nested and
increasing.

4. Bumps have both image and scene signatures. To be
perceivable, there must be some image signature
to the bump. To define this, we built on previous
theoretical ideas of critical contours. Bumps were
defined using extremal curves of slant. We prove
invariance to many aspects of lighting and material
changes.

5. Bumps are distinct parts of a shape. As such, they
are bounded from one another and should be
manipulable separately. We introduced several visual
illusions that illustrate this multistability.

6. Bumps have consistent normals The M-S complex
also indicates how surface normals fit together,
providing a constraint system that operates on the
surface normal and can be extended to the occluding
contour.

Image structure is highly dependent on the object
material and rendering function. For example, a simple
change in illumination will cause the vast majority
of image pixels to change. In addition, rendering
function changes (e.g., Lambertian vs. specular)
can lead to unpredictable pixel changes in most of
the image. Instead, by focusing on extremal slant
curves, we ignore many of the “nuisance” positions
in the image and many of the “nuisance” parameters
in different rendering functions. By doing so, the
computation becomes more straightforward and
biological: We showed that there is a direct route from
local image orientations to global surface parts without
having to solve a particular differential equation, for
example.

Much work remains to be done. First, the theory
of critical contours and extremal curves leads to
psychophysical tests; we mention the predictions
inherent in the multistable displays and the extended
ridges. Initial demonstrations show that those regions
away from extremal curves do not carry much 3D
information (Figures 16, 17 and Kunsberg et al., 2018).
Second, computational issues remain. The image
extremal contours may be incomplete due to noise
and occlusion; some type of contour completion may
be needed. Also, as shown in Figure 14, a labeling
algorithm may be developed to compute the “side” to
which the normal field points. Finally, the transition
from the critical contour “scaffold” to a full surface
realization needs to be studied. Initial experiments on
reconstruction of the entire slant field from its extremal
curves are promising (Kunsberg & Zucker, 2018), and
related work exists in the computational literature (e.g.,
Allemand-Giorgis et al., 2014; Weinkauf et al., 2010).
Whether this is analagous to the filling-in processes
around Kanizsa figures, neon color spreading, and
so on (van Lier et al., 2009; Pessoa & De Weerd,
2003; Bressan et al., 1997) remains an enticing
possibility.

In summary, we have shown a path toward 3D
shape inference based on stable and simply expressed
intermediate image features. It captures the qualitative
nature of shape perception while guaranteeing a degree
of constancy even when the rendering function is
unknown.

Keywords: shape from shading, shape invariance,
topological descriptor
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Footnotes
1For brevity, we will ignore the convex/concave ambiguity until later in the
article.
2Isophotes yield a smooth flow—their tangent map—when sampled by
visual cortex (Ben-Shahar & Zucker, 2004; Kunsberg et al., 2018), so they
are appropriate as a model of how image structure is represented in visual
cortex.
3Note: The sausage in Figure 2d is the mathematical abstraction of the
sausage in Figure 1d.
4As a tangential aside, but to build intuition, recall the “hairy ball
theorem.” Suppose that there is a closed surface covered in hair, just as
the gradient covers our function. Now, having a smooth gradient field
on a ball amounts to being able to “comb the hair” on the ball all over.
If the ball is one-dimensional (i.e., a circle), then this is easy. However
if the ball is 2D, this is impossible. Consider how the North and South
poles are singularities of the lines of longitude and latitude. That is,
one-dimensional (1D) spheres can support smooth vector fields, and 2D
spheres must have critical points. In general, these results extend to higher
(even and odd) dimensions, showing how critical points inform what we
can deduce about surface topology.
5Shortly we shall instantiate this scalar field in two ways, either as an
image, or brightness at a point, or as the slant function, or the value of
slant at a point.
6It is perhaps worth emphasizing how the slightly undulating surface
is generic. If one were to add a bit more undulation, or to move the
undulations around, the topological description would not change.
Adding a tiny undulation to a plane, however, changes it significantly.
7For an explanation of these terms, see Holtmann-Rice et al. (2018).
8An integral curve through a vector field is a curve whose tangent agrees
with the vector at each point.
9http://www.math.stonybrook.edu/Videos/IMS/Differential_Topology/.
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Appendix A: Maximal slant along
the occluding contour

We show how the occluding contour relates image
and scene domains and implicates isophotes. We begin
with standard definitions (see, e.g., Marr, 1982).

The rim of an object in R3 is composed of all
noninterior points where the view vector “glances” the
object, that is, where the view vector lies in the tangent
plane to the surface. The occluding contour is defined as
the projection onto the image of the rim of the object.
A powerful (but often elusive) cue, it has been studied
in Koenderink (1984, 1990) and Lawlor et al. (2009),
among many others.

Two properties are key. First, the occluding contour
directly informs the viewer of the local surface normal;
since the view vector lies in the tangent plane, it has

Figure 18. The orientation of a normal vector to the surface at a
point can be specified in slant σ and tilt τ coordinates. Since
there is a normal at every point, these coordinates define a
scalar function over the object. Note how the occluding
contour is given by maximal values of the slant.

surface meaning. Second, the occluding contour has a
consistent flow “signature,” so it also has image salience.
We develop these in turn, starting with a standard
representation for surfaces.

The slant σ (x, y) is the polar angle between the
surface normal and the view direction. The tilt τ (x, y)
is the azimuthal angle between the surface normal
and the view direction; see Figure 18. Both can be
considered scalar functions on the image domain. Of
course, these functions are unknown when the surface is
unknown.

The surface normal and the view vector are
perpendicular at every point on the rim, so the slant
on the occluding contour is π/2. Thus, the occluding
contour directly informs the viewer of the slant.
This is a rare and unique property for a contour
identifiable from the image. From the geometry, we get
the important
Remark. The slant achieves a global maximum on the
occluding contour, since the slant of the visible surface
must always be bounded by π/2.

Appendix B: An invitation to
differential topology

In this article, we exploit techniques and
constructions from the field of differential topology,
which tends to be unfamiliar to many students of
perception. In this appendix, we provide a gentle
introduction to some of the ideas that we shall use. The
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discussion is informal, intended to give the flavor rather
than the formal content, and at least some intuition
about ideas and some technical terms. With this basis,
we hope the reader will then be able to approach our
use of the Morse-Smale complex. This invitation was
influenced by the presentations in Milnor (1997) and
Forman (2004); the primary reference is, as always,
the classic lectures in Milnor (1963); see also Wallace
(2006). Two inspiring videos are available from the
1960s, one from Morse (2007) and Milnor’s 1965
Earle Raymond Hedrick Lectures.9 It goes without
saying that Morse’s actual contributions (Bott, 1980)
and their implications (Bott, 1988) are far deeper and
wide-reaching than the brief introduction here.

Topology is normally thought of as “rubber sheet”
geometry, or the study of which shapes can be made
to coincide by stretching and twisting, but not tearing.
By this logic, we have the famous example of a coffee
cup and a donut being topologically equivalent, because
they both have one hole. Stated a little more formally,
topology studies which shapes are equivalent under
certain types of deformation maps. Extending the coffee
cup example, we see that topological equivalence can be
characterized by how many handles there are and how
they are attached.

Although we focus on smooth shapes here, topology
also studies combinatorial ones. They all come together
under the idea of constructing complex shapes by
joining simpler ones, either for smooth shapes or
piecewise linear ones (say, triangles).

We illustrate how this works as follows. A circle
drawn on a piece of paper is a collection of tiny drops
of lead—think of each as a point. Sets of these points
indicate which ones belong together. The collections of
these points into sets comprise neighborhoods; some
points are neighbors, or neighbors of neighbors, and
some are not. Removing a single point from this set of
points yields two sets. More familiarly, one set consists
of the point and the other an interval, or part of a
line (R1); put back together, they comprise the sphere
S1 ∈ R2.We note that the interval is open—loosely, a set
that does not include its endpoints—written differently,
the set of points indicated by t in 0 < t < 1, as opposed
to closed, which would include its endpoints (the
set t such that 0 ≤ t ≤ 1). Taking a big leap into the
combinatorial side of topology, such components
are called cells. Their dimension matters: Points are
0-cells, lines are 1-cells, and so on. Cells comprise
basic topological building blocks. The donut, or torus,
can be decomposed as follows. First, remove a circle
to leave a cylinder. The circle is a 0-cell and a 1-cell.
Now, cut the cylinder along a line, which yields a
1-cell and a 2-cell. The result is a description of the
torus as a cell complex, an object constructed by
attaching cells together in a specific manner. Notice that
we have not specified the geometric details (e.g., the
curvature of the circle or how the 1-cell was “bent”).

This is the basic sense in which topology addresses
shapes—as neighborhoods of points and how they
fit together—and how it differs from (differential)
geometry, which is concerned with curvature at
a point.

More structure can be added by placing a coordinate
system onto it. The sphere S1 is a manifold—a
generalized curve or surface or higher-dimensional
surface—without boundary. You could wander around
S1 forever, feeling like you just walked along an interval
of the line R. Going up one dimension, pieces of the
sphere S2 are equivalent to 2D Euclidean space and
can be embedded in R3. Coordinates can be put on the
sphere like latitude and longitude. Similarly for the
torus. By “equivalent,” here we stress one aspect of
the coordinate systems: If you select a point p on the
manifold, then the points around p on the manifold—a
neighborhood of p—are like a neighborhood of
points around the origin of a Euclidean space of
the same dimension. Locally, then, a manifold is
like a surface. The local coordinate patches connect
with smooth distortions (diffeomorphisms) and, with
a little more structure, one can do calculus on it
(Spivak, 2018). This gives rise to the notion of a smooth
manifold.

Differential topology studies (among other
things) which smooth manifolds are equivalent—up
to the cell complex—under smooth maps. In addition
to supporting a differentiable structure, the manifolds
should be compact and bounded, so that intervals
contain limit points and cells are complete.

Two example situations are illustrative. First,
consider a torus in general position under water, and
slowly start to drain the water away. At first, the level
just decreases, but then, suddenly, the “top” of the torus
appears. Initially, it cuts the water level at a single point,
but the cut—the level set of points on the torus at the
height of the water—grows around it. Soon the level
set splits into two components, when the hole in the
torus appears. The level sets join at the bottom of the
hole and, finally, the surface of water is unbroken again
below the torus. The level sets, then, are a series of
planar curves cut across the torus; together, they convey
information about the shape of the torus. Thinking
of “height” as a function on the torus, we note that
the “interesting” shape changes occur at the critical
points—places where the derivative of the height
function is zero. One immediately identifies the top and
the bottom of the torus with the maximum and the
minimum of the height function. Between these critical
points, the surface could vary somewhat geometrically,
but the critical points would not change. For pictures of
this, see Chapter 3 in Banchoff (1990).

The second situation takes us a deeper into the
critical points and is inspired by Forman (2004).
Now imagine the torus is magnetic, and place an iron
marble at the top. The tiniest displacement will cause
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the marble to roll away under gravity—and it could
roll in any direction. That is, it can roll in any of the
2D dimensions on the cap of the torus. Placing the
marble at the bottom, it just stays there; there are no
dimensions for rolling. It cannot roll up the sides of
the bowl. Finally, at the top and bottom of the central
hole, there are critical points where there is one free
dimension for rolling (downhill) and another dimension
along which the marble cannot roll uphill. Thus, the
critical points have an index: the degrees of freedom
for the marble to roll. While this is informally related
to the dynamics of marbles under gravity, technically,
the index is the number of negative eigenvalues of the
Hessian (matrix of second derivatives).

Morse theory is the study of how the critical points
of a function on a smooth manifold inform about the
topology of the manifold. As we hope to have shown
in the above example using the height, if the function
is chosen properly, then critical points inform us about
a lot! Critical points are nondegenerate when they
are isolated and well behaved (i.e., when the matrix of
second derivatives is full rank). Quoting Forman (2004),
the main theorem of Morse theory can be stated:
Theorem. Let M be a closed, compact, smooth
submanifold of Euclidean space (of any dimension). Let
E : M → R be a smooth, real-valued function on M.
Suppose that every critical point of E is nondegenerate.
Then M can be built from a finite collection of cells, with
exactly one cell of dimension i for each critical point of
index i.

With this theorem in mind, let us revisit the sphere.
There are two basic singularities of functions on it, such
as the height function, one at the top and another at the
bottom. This is the content of Reeb’s theorem: Each
singularity implies a disc—a neighborhood of structure
around the singularity—and a topological model of the
sphere as two discs “attached” (say) at the equator. That
is, a sphere is a cup attached to a bowl; each is signaled
by a critical point. These discs, abstract components of
the shape, identify parts of the cell complex with parts
of the shape, almost regardless of geometric details.
Since we shall be looking at aspects of shape around
1-cells of the Morse-Smale complex, one final aspect is
needed.

Morse placed smooth functions on manifolds;
Smale differentiated them. That is, Smale emphasized
dynamical systems within the Morse framework (Smale,
1961). Instead of working with critical points of the
function, he worked with critical points of a gradient
flow—that is, evaluate the gradient of the function
at every point on the manifold and think of this as a
vector. Placing a vector at every point on the manifold
defines a vector field on it such that a marble, if dropped
at the any point, will roll in the direction of the gradient
to a (very close) nearby point, and it will keep rolling
until a critical point is encountered. The vectors define
the instantaneous velocity.

Smale’s motivation was in solving a fundamental
problem in topology (the Poincaré conjecture) (Smale,
2007), so for him, the dynamical systems view was a
tool. The story of solving the Poincaré conjecture is
itself fascinating (Morgan et al., 2007), but it takes us
well beyond what we shall need. The significance (for us)
is that we can now talk about trajectories—integral
lines—through the flow. These integral lines are
generally curved paths through the flow, as would
be traced out by the marble. Importantly, some of
these trajectories form the 1-cells of the Morse-Smale
complex, which is described in the text and the
next appendix. As will be seen, it is understanding
a neighborhood around 1-cells—what we call a
sausage—that drives our main result.

Appendix C: Introduction to the
Morse-Smale complex

The Morse-Smale complex is a qualitative
representation emphasizing the different stable and
unstable regions of a smooth scalar function on a
manifold. In this work, we choose the function to be the
slant function of the image surface σ (x, y) : R2 → R.
We will assume σ is a Morse function: All its critical
points are nondegenerate (meaning the Hessian at those
points is nonsingular), and no two critical points have
the same function value. Should the surface not be
Morse, we can always perturb it slightly to obtain one.

For a smooth surface, the gradient∇σ =
(∂ f /∂x, ∂ f /∂y) exists at every point. A point p ∈ R2 is
called a critical point when ∇σ (p) = 0. This gradient
field gives a direction at every point in the image,
except for the critical points, which are rare (a set of
measure zero). Following the vector field will trace out
an integral line. These integral lines must end at critical
points, where the gradient direction is undefined. Thus,
one can define an origin and destination critical point
for each integral line.

The type of each critical point is defined by its index:
The number of negative eigenvalues of the Hessian at
that point. For scalar functions on R2, there are only
three types: a maximum (with index 2), a minimum
(with index 0), and a saddle point (with index 1).

There are two types of integral lines, depending on
the difference in index of the critical points it connects.
If the difference is 1, we call the integral line a 1-cell. It
naturally must connect a saddle with either a maximum
or a minimum. For example, a saddle-maximum 1-cell
connects a saddle and a maximum. The set of 1-cells
will naturally segment the scalar field into different
regions, called 2-cells. In addition, the scalar values on
the 1-cells govern the values on the 2-cells. See Figure 3
for illustration.

Further, for each critical point, its ascending manifold
is defined as the union of integral lines having that
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critical point as a common origin. Similarly, its
descending manifold is the union of integral lines with
that critical point as a common destination.

For two critical points p and q, with the index
of p one greater than the index of q, consider the
intersection of the descending manifold of p with the
ascending manifold of q. This intersection will be either
a 1D manifold (a curve called a 1-cell or watershed)
or the empty set. For two critical points r and s, with
the index of r two greater than the index of s, the
intersection of the descending manifold of r with the
ascending manifold of s will either be a 2D manifold (a
region equivalent to a 2-cell) or the empty set. Thus,
the intersection of all ascending manifolds with all
descending manifolds partitions the manifold M into
2D regions surrounded by 1D curves with intersections
at the critical points.

The Morse Smale complex is the combinatorial
structure (and the corresponding attaching maps)
defined by the critical points, 1-cells and 2-cells. It is a
structure that relates a set of contours (the 1-cells) to
a qualitative function representation. With knowledge
only of the slant function at the critical points and
1-cells, one could reconstruct the 2-cells (and thus the
entire function) relatively accurately. For some insight,
see Allemand-Giorgis et al. (2014) and Weinkauf
et al. (2010). In this work, we show how the slant
saddle-maxima 1-cell can be used as a model of “bump
boundaries” as is relevant to 3D shape perception.

For additional information, see Milnor (1963),
Gyulassy (2008), Biasotti et al. (2008), and Matsumoto
(2002).

Appendix D: The Gauss map in 1D

We use the Gauss map as an indication of how
wildly a surface is varying. We now provide a brief

Figure 19. Illustration of the Gauss map, which takes the
normals attached to a curve (or surface) (left) and maps them
to the unit circle (sphere) (right). (a) A selection of normals
attached to a straight line; (b) these map to a single point on
the Gauss circle. (c) A selection of normals attached to a curve;
(d) these map to a region (in blue) on the Gauss circle.

introduction to it (Figure 19). For a more serious
introduction, see O’Neill (2006).

Gauss, working on the foundations of curvature
in differential geometry, designed a map that takes
the normals to a curve or a surface and maps them,
collectively, to a circle or a sphere. Intuitively, the
map is accomplished by moving each of the (unit)
normals to a single point. Notice how, for the (straight)
line, the normals then all overlap, while for the curve,
they “spread out” somewhat unevenly. This spreading
out can be used as the foundation for a definition of
curvature: For a given length of curve, the normals
spread out over a portion of the Gauss circle; in the
limit as this length of curve approaches zero, the area
on the Gauss circle also approaches a limit. The ratio
of these two areas is the Gaussian curvature. Since this
limit is taken around a point on the original curve, the
curvature is a local descriptor. We exploit the measure
of the normals over a region (of a surface) to get a
global measure of variation.


