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Abstract. Immune escape plays a vital role in the develop-
ment of liver cancer. The interaction between programmed 
death-ligand 1 (PD-L1) and programmed cell death-1 is a 
key mediator of cancer immune escape, which leads to the 
suppression of anticancer immunity and promotion of tumor 
progression. Hypoxia is a common phenomenon in the tumor 
microenvironment. Under hypoxic conditions, suppressive 
immune cells, such as regulatory T cells, myeloid-derived 
suppressor cells and M2 macrophages, are frequently recruited 
to tumor tissues to form the immunosuppressive microenvi-
ronment in liver cancer. These cells secrete cancer-promoting 
inflammatory cytokines, which activate the STAT3 and NF‑κB 
signaling pathways. Recent studies have shown that STAT3 
is associated with NF‑κB and that these transcription factors 
are often co-activated to regulate tumor proliferation, survival, 
angiogenesis and invasion. The activation of STAT3 and NF‑κB 
signaling pathways can directly and indirectly induce PD-L1 
expression. Therefore, further understanding of the association 
between hypoxia and PD-L1 may help in the future treatment 
of liver cancer. The present review summarizes the recent 
progresses on PD-L1-mediated regulation and facilitation of 
liver cancer cell immune escape in response to hypoxia.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most malignant 
tumors that pose a severe threat to human health. The latest 
cancer statistics showed that the number of new liver cancer 
cases and liver cancer-associated deaths worldwide in 2018 
was 841,000 and 782,000, respectively (1). Liver cancer ranked 
sixth in terms of new cancer cases and fourth in terms of 
cancer-associated deaths worldwide in 2018 (1). The available 
evidence indicates that immune escape of liver cancer cells 
plays a vital role in the development of this malignancy (2,3) 
and impairs the effectiveness of antitumor treatment (4). 
Therefore, effective blockage of the occurrence of immune 
escape has become the focus of attention in the prevention and 
treatment of HCC.

It is now known that the activation or inhibition of 
immune cells in the body is regulated by positive and nega-
tive signals (5,6). Among them, the interaction between 
programmed cell death-1 (PD-1, also termed CD279) and 
programmed death-ligand 1 (PD-L1, also termed CD274 and 
B7-H1) is the primary negative immune regulatory signal, 
which inhibits the antitumor immune activity of effector cells 
and mediates tumor immune escape (7‑10). Furthermore, 
immune checkpoint blockers have recently emerged as a 
mainstream strategy for the treatment of multiple solid tumors, 
including liver cancer (11-14).

Hypoxia, a common phenomenon in the tumor micro-
environment, induces the expression of PD-L1 to promote 
immune escape (15‑17). A number of immune cells with 
immunosuppressive activities, including tumor-associated 
regulatory T cells (Tregs), myeloid-derived suppressor cells 
(MDSCs) and tumor‑associated macrophages (TAMs), are 
recruited to the tumor tissue to form an immunosuppres-
sive microenvironment (18-20). Moreover, under hypoxic 
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conditions, the expression of PD-L1 is rapidly upregulated 
in these immunosuppressive cells in a hypoxia-inducible 
factor 1α (HIF‑1α)-dependent manner (21,22). In this regard, 
the comprehensive analysis of the role and mechanism of 
PD-L1 in hypoxia-induced immune escape is essential for 
the improved treatment of liver cancer. The present review 
summarizes the recent findings regarding the regulation of 
PD-L1-mediated hypoxia-induced immune escape in HCC 
cells and discusses the underlying mechanisms.

2. PD‑L1/PD‑1 interaction in the immune escape of liver 
cancer

The compromised immune status of the body is associated 
with the occurrence of liver cancer. When the immune func-
tion is weakened or suppressed, the incidence of liver cancer 
will increase significantly. Normally, once liver cancer cells 
are formed in the body, the immune system can inhibit or 
kill these cells in a variety of ways (23‑25). However, despite 
the immune surveillance and scavenger receptors, it remains 
challenging to curb the occurrence and development of liver 
cancer (26). The main reason is that liver cancer cells may 
escape from the immune system attack through various mech-
anisms. The PD-L1/PD-1 pathway, which promotes cancer cell 
survival and proliferation, is a key mediator of the immune 
escape of HCC cells (27-29).

Previous studies have shown that T cell-mediated cellular 
immunity plays a pivotal role in the recognition and killing of 
tumor cells (30,31). T cells recognize major histocompatibility 
complexes that bear antigens derived from the surface of cancer 
cells, which allows subsequent tumor recognition and targeted 
killing (32). Recently, it has been demonstrated that various 
mechanisms play a role in increasing the expression of PD-L1 
in tumor cells and in the tumor microenvironment. PD-L1 is 
a transmembrane glycoprotein composed of 290 amino acids, 
which belongs to the B7 family of immune-regulatory ligands. 
The binding of PD-L1 to its PD-1 receptor suppresses T-cell 
migration, proliferation and secretion of cytotoxic mediators, 
and restricts tumor cell killing, leading to the occurrence of 
tumor cell immune escape (33). In the healthy immune system, 
the PD-L1/PD-1 pathway plays a critical role in maintaining the 
balance between protective immunity and immune tolerance. 
However, aberrant activation of the PD-L1/PD-1 signaling 
pathway in the tumor microenvironment is associated with the 
development of liver cancer. A multivariate analysis showed 
that PD-L1 expression is an independent predictor of postop-
erative recurrence of HCC (7,34).

Accumulating evidence has revealed that the elevated level 
of PD-L1 in the tumor microenvironment constrains antitumor 
immunity via the inhibition of antitumor effector cell function 
and enhancement of the inhibitory activity of immunosuppres-
sive cells (12,16,35,36). Cytotoxic T lymphocytes (CTLs) and 
natural killer (NK) cells are the main local antitumor immune 
effector cells. Activated CTLs are marked by granzyme B, 
which is the primary molecular mediator of apoptosis (37). 
It has been shown that the activation of the PD-1/PD-L1 
signaling pathway restrains CTL function by inducing apop-
tosis, anergy and exhaustion, and promoting the secretion of 
immunosuppressive factors, leading to the immune escape of 
tumor cells (38). Hepatoma tumor‑infiltrating CTLs express 

PD-1 molecules, which bind to PD-L1 that are expressed 
on the surface of tumor cells, resulting in the depletion and 
apoptosis of CTLs (39).

There are a large number of active immunosuppressive 
cells in the tumor microenvironment, including Tregs, MDSCs 
and TAMs (40). These immune cells form a complex multi‑cell 
population, which is an important part of the tumor microen-
vironment. Indeed, various molecular interactions between 
immune and cancer cells are considered a crucial step in the 
direct or indirect induction of the occurrence and development 
of tumors. These immunosuppressive cells also express a large 
number of PD-L1 molecules, which induce apoptosis in CTLs 
by binding to PD-1 (41). Tregs, characterized by the expression 
of CD4, CD25 and Forkhead box protein P3 (FOXP3), are the 
most characteristic immunosuppressive cells. The inhibition 
of the immune response by Tregs is also mediated by cell 
contact or the secretion of inhibitory cytokines, such as inter-
leukin (IL)-10 and transforming growth factor-β (TGF‑β) (42). 
A previous study found that PD‑L1 promoted Treg differ-
entiation by converting CD4+CD25+FOXP3- T cells to 
CD4+CD25+FOXP3+ Tregs. Furthermore, higher expression 
levels of PD-L1 on hepatic dendritic cells were associated 
with an increased Treg cell induction (43). Specific blocking of 
PD‑L1 by small interfering (si)RNA or monoclonal antibodies 
decreased the production of CD4+CD25+FOXP3+ Tregs and 
induced Treg apoptosis (44). In a pig xenograft model, PD-L1 
was found to enhance Treg function and stimulate IL-10 
production, thereby further promoting the immune inhibitory 
function (45). Clinical data also showed that PD-L1 effec-
tively stimulated the secretion of IL-10 in patients with liver 
cancer, thereby further enhancing the immunosuppressive 
effect of Tregs (46). Collectively, these studies have shown 
that the PD-L1/PD-1 pathway inhibits the antitumor function 
of CTLs, enhances the immunosuppressive activity of Tregs, 
and promotes the secretion of immunosuppressive factors by 
transmitting inhibitory signals, leading to the occurrence of 
tumor immune escape.

3. Hypoxia‑induced recruitment of immunosuppressive 
cells and regulation of PD‑L1 expression

Hypoxia is a common phenomenon in the tumor microenvi-
ronment (47-49). Previous studies have revealed that tumor 
hypoxia alters the composition and activity of tumor-asso-
ciated immune cells, and that numerous immune cells with 
immunosuppressive activities are recruited to tumor tissues 
to form the immunosuppressive microenvironment (18,50,51). 
Under hypoxic conditions, tumor cells and macrophages 
secrete a variety of cytokines and chemokines, including C-C 
motif chemokine (CCL)22, CCL28 and IL-10, which results in 
the recruitment of CD4+CD25+FOXP3+ Tregs from peripheral 
blood to inhibit T cell‑mediated antitumor responses (18,52,53). 
Hypoxia also promotes the recruitment of MDSCs (19). MDSCs 
are a group of undifferentiated, immunosuppressive, bone 
marrow-derived heterogeneous cell populations, which have 
a strong immunosuppressive function (54). MDSCs expressing 
arginase-1, which mediate the depletion of L-arginine, impede 
T cell proliferation, and are associated with the downregulation 
of T cell receptor (TCR) subunit CD3ζ, resulting in decreased 
TCR response (55-57). The occurrence of a tumor in the liver 
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results in increased levels of MDSCs at the tumor site, and the 
activation of the MyD88‑NF‑κB pathway stimulates the secre-
tion of IL-10 to inhibit the expression of IL-12 in dendritic 
cells and the activation of T cells (58). MDSCs also induce 
NK cell inactivation through TGF‑β and the NK receptor 
p30 on the cell surface (59). Furthermore, a previous study 
indicated that MDSCs inhibit immune response and promote 
the development of liver cancer by inducing the generation of 
CD4+CD25+FOXP3+ Tregs (60). In addition, the tumor hypoxia 
microenvironment directly induces macrophage M2 polariza-
tion, angiogenesis, and tumor growth and metastasis (20). M2 
type macrophages inhibit the antitumor immune response by 
producing TGF‑β and IL-10, and their numbers in the tumor 
microenvironment are negatively correlated with the prognosis 
of liver cancer patients (61,62). M2 microphages also secrete 
a range of specific chemokines, including CCL17, CCL22 and 
CCL24, which recruit regulatory T cells to tumor sites (62). 
As a result, Tregs, MDSCs and M2 macrophages have potent 
immunosuppressive activities and together promote the occur-
rence of tumor immune escape (Fig. 1).

Under hypoxic conditions, HIF‑1α is a crucial tran-
scription factor that mediates the effect of hypoxia on the 
adaptive regulation of tumor cells and the tumor microen-
vironment (63‑65). Under normoxic conditions, HIF‑1α 
is hydroxylated by prolyl hydroxylase (PHD) and ubiqui-
tinated/degraded by the von Hippel‑Lindau E3 ubiquitin 
ligase complex. Under hypoxic conditions, PHD activity 
is inhibited, and HIF‑1α ubiquitination and degradation 
are decreased, thereby stabilizing HIF‑1α (66). Previous 
studies have shown that HIF‑1α is associated with PD-L1 
expression (15,22). Under hypoxic conditions, tumor cells, 
myeloid suppressor cells, macrophages and dendritic cells all 

undergo rapid upregulation of PD‑L1 in a HIF‑1α-dependent 
manner. Chromatin immunoprecipitation and luciferase 
reporter assays showed that HIF‑1α induced the expres-
sion of PD-L1 by directly binding to the hypoxia response 
element region of the PD‑L1 promoter. Furthermore, the 
inhibition of PD‑L1 expression significantly decreased the 
secretion of IL-6 and IL-10 by MDSC, leading to the activa-
tion of T cells (22). Another in vitro study also revealed that 
hypoxia stimulated the expression of PD-L1 in a variety of 
human and murine tumor cells through HIF‑1α (15). These 
studies demonstrate that hypoxia induces PD-L1 expression 
by activating the HIF‑1α cascade.

4. Involvement of STAT3 and NF‑κB in the regulation of 
PD‑L1 expression in liver cancer

Accumulating evidence has indicated that the essential mecha-
nism underlying tumor immune escape is associated with the 
presence of a large number of cytokines and growth factors 
with immunosuppressive activities in the tumor microenviron-
ment, such as IL‑6, vascular endothelial growth factor, TGF‑β, 
IL‑10, IL‑13, macrophage colony‑stimulating factor and gran-
ulocyte-macrophage colony-stimulating factor (67-69). These 
cytokines stimulate immune inhibitory cells, including Tregs, 
TAMs and MDSCs, and mediate the expression of a series of 
genes by activating various signaling pathways. Among them, 
the STAT3 and NF‑κB pathways are essential hubs linking 
these cytokines to cellular responses (70‑73).

STAT3 is a member of the STAT family of transcription 
factors. When cytokines in the tumor microenvironment bind 
to their receptors, the Janus kinase and/or proto-oncogene 
tyrosine-protein kinase Src will be activated and able to 

Figure 1. Hypoxia induces the recruitment of immunosuppressive cells to the tumor tissue to promote the immune escape of hepatoma cells. Under hypoxic 
conditions, Tregs, MDSCs and M2 macrophages are recruited to tumor tissues to form an immunosuppressive microenvironment. These cells exhibit potent 
immunosuppressive activity and foster the occurrence of tumor immune escape. Treg, regulatory T cell; MDSC, myeloid-derived suppressor cell.
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phosphorylate STAT3. Following dimerization and nuclear 
translocation, STAT3 will initiate the transcription of down-
stream genes. A previous study found that STAT3 activation 
in tumor cells induces the secretion of IL-6 and IL-10 cyto-
kines, which results in Treg proliferation. Moreover, STAT3 
is also activated in Tregs and further stimulates the expres-
sion of FOXP3, TGF‑β and IL-10, which inhibits CTLs and 
promotes the formation of an immunosuppressive environ-
ment (70,74,75).

In addition, STAT3 and NF‑κB are often coactivated 
in tumor cells and play a vital role in the regulation of the 
expression of cancer-promoting inflammatory genes (76). 
The coordination between STAT3 and NF‑κB is mainly 
manifested in the following aspects: i) Multiple inflammatory 
factors, especially IL‑6, induced by NF‑κB are essential acti-
vators of STAT3; ii) STAT3 directly interacts with the NF‑κB 
family member transcription factor p65 (RelA), leading to 
its acetylation and inhibition of nuclear export, and constitu-
tive activation of NF‑κB; iii) STAT3 and NF‑κB co-regulate 
the expression of a number of oncogenes and inflammatory 

genes; and iv) the inflammatory factors induced by NF‑κB 
and STAT3 form a positive feedback loop to further activate 
NF‑κB and STAT3 (77,78).

Notably, it has been shown that the expression of HIF‑1α 
is regulated by both NF‑κB and STAT3. Under hypoxic condi-
tions, STAT3 is activated by phosphorylation, which not only 
blocks HIF‑1α degradation but also increases the synthesis of 
HIF‑1α (79). In human breast cancer MCF‑7 cells, the deple-
tion of STAT3 by siRNA inhibited CoCl2‑induced HIF‑1α 
nuclear accumulation (80). The NF‑κB signaling pathway is 
also activated under hypoxic conditions (81). Gel shift assay 
and chromatin immunoprecipitation experiments confirmed 
that the NF‑κB subunits p50 and RelA bind to the promoter 
of HIF‑1α and activate its transcription (82). Since HIF‑1α 
transcriptionally induces PD-L1, these studies indicate that the 
activation of the STAT3 and NF‑κB pathways may indirectly 
stimulate PD-L1 expression under hypoxic conditions.

Furthermore, several studies have shown that the STAT3 
and NF‑κB signaling pathways are also involved in the direct 
regulation of PD‑L1 at the transcriptional level (83‑86). It has 

Figure 2. Schematic representation of hypoxia‑induced activation of STAT3, NF‑κB and HIF‑1α pathways resulting in increased PD-L1 expression. Under 
hypoxic conditions, the expression of PD‑L1 is upregulated in a HIF‑1α‑dependent manner. Furthermore, immunosuppressive cells secrete inflammatory 
cytokines to activate the STAT3 and NF‑κB signaling pathways, which are often coactivated to induce the expression of PD-L1 directly, by binding to and 
stimulating its promoter, or indirectly, by increasing the expression level of HIF‑1α. HIF‑1α, hypoxia inducible factor-1α; PD-L1, programmed death-ligand 1; 
PD-1, programmed cell death-1.
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been demonstrated that the co-culture of liver cancer cells 
(BEL-7402 and SMMC-7721) with macrophages resulted in 
increased PD‑L1 mRNA and protein levels and that blocking 
either the NF‑κB or the STAT3 signaling pathway inhibited 
this co‑culture effect on PD‑L1 expression (83). Another study 
showed that EB virus latent membrane protein 1 (LMP1) 
induced the expression of PD‑L1 by the activation of NF‑κB 
or STAT3; the inhibition of one of these pathways notably 
decreased LMP1-stimulated PD-L1 expression (84). Chromatin 
immunoprecipitation and reporter assays revealed direct 
binding of STAT‑3 and NF‑κB to the PD-L1 promoter, trig-
gering PD-L1 transcription (85,86). These studies indicate that 
the STAT3/NF‑κB pathways directly and indirectly regulate 
PD‑L1 expression in the hypoxic microenvironment (Fig. 2).

5. Relevance for clinical practice

Immunotherapy is emerging as an appealing and attractive 
strategy for the treatment of HCC. Novel immune checkpoint 
inhibitors have revolutionized pharmacological treatment 
options for cancer with remarkable clinical outcomes in a 
number of human malignancies, including advanced HCC. It 
has been shown that the inhibition of PD-L1 improves overall 
survival rates in patients with HCC (87). Moreover, since 
HIF‑1α plays a vital role in regulating immune escape in the 
hypoxic tumor microenvironment, a HIF‑1α inhibitor is being 
investigated for the treatment of HCC (88-91). Several inhibi-
tors of STAT3 and/or NF‑κB are undergoing clinical trials for 
HCC (92,93). In addition, due to the upregulation of PD‑L1 
by STAT3, NF‑κB and HIF‑1α, a combination of a PD-L1 
antibody with small molecule inhibitors of STAT3, NF‑κB 
or HIF‑1α could be a more effective therapeutic strategy in 
advanced liver cancer.

6. Conclusions

Immune escape is a key cause of tumor development. Enhancing 
antitumor immunity of the body, as the core treatment strategy, 
is being extensively studied in cancer care and research. In 
the tumor hypoxic microenvironment, PD-L1 overexpression 
is a crucial factor contributing to liver cancer immune escape 
and is associated with the activation of the STAT3/NF‑κB 
pathway and HIF‑1α. Therefore, the inhibition of STAT3 and 
NF‑κB pathways or HIF‑1α should decrease PD-L1 expression 
and reverse immune escape. Agents blocking STAT3, NF‑κB 
or HIF‑1α have great potential for cancer immunotherapy, 
particularly in patients developing resistance to PD-L1 and 
PD1 inhibitors.
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