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Background: Nasopharyngeal carcinoma (NPC) is particularly prevalent in East and Southeast Asia. 
Competing endogenous RNA (ceRNA) networks are known to play an essential role in the emergence of 
various diseases, including cancer. Building a network of protein-protein interactions (PPIs) and ceRNAs can 
facilitate the detection of potential connections between messenger RNAs (mRNAs) and various non-coding 
RNAs. However, the precise role of ceRNA networks in NPC has not been examined in detail. Therefore, 
the primary aim of the present study was to characterize a ceRNA network for NPC.
Methods: Datasets of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA microarrays 
were downloaded from the Gene Expression Omnibus (GEO) database. Data were standardized and 
differentially expressed genes (DEGs) were screened using the limma package. The ClusterProfiler software 
suite was used to perform enrichment analysis of differentially expressed mRNAs using Gene Ontology (GO), 
Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) techniques.
Results: A total of 160 lncRNAs, 8 miRNAs, and 147 mRNAs were differentially expressed in NPC 
samples. A ceRNA network was constructed using four lncRNAs, five miRNAs, and one mRNA that were 
dysregulated in NPC. Cellular functions of the abnormally expressed mRNAs were mainly associated with 
tumor cell movement, cell growth and proliferation, cell cycle, invasion, and metastasis.
Conclusions: The ceRNA network constructed herein clarified the regulatory mechanisms through which 
lncRNAs act as ceRNAs and participate in NPC development. Notably, lncRNAs, miRNAs, and mRNAs 
identified in this ceRNA network can serve as therapeutic targets and prognostic biomarkers for NPC.
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Introduction

Nasopharyngeal carcinoma (NPC) originates from the 
epithelial cells of the nasopharynx and is classified as an 
epithelial cancer (1). In 2020, approximately 133,354 new 
cases of NPC were reported globally, accounting for 0.7% 
of all cancer cases. In addition, there were 80,008 deaths 
related to NPC, accounting for 0.8% of all cancer-related 
deaths (2). NPC is prevalent in several regions of East and 
Southeast Asia, particularly in Southern China, including 
Guangxi and Guangdong (3). According to data from 2020, 
the incidence of NPC in Guangxi was 10.71 per 100,000, 
with a mortality rate of 5.15 per 100,000 (4).

Owing to its particular anatomical location and 
high response to radiation, NPC is mainly treated by 
radiotherapy and chemotherapy. The treatment of NPC 
has been improved by the development of advanced 
radiotherapy, concurrent chemotherapy, and precise cancer 
staging systems (5). However, the outlook for patients 
diagnosed with metastatic NPC remains unfavorable, with 
recurrence rates as high as 82%, even after treatment with 
combined radiotherapy and chemotherapy (6). Therefore, 
it is imperative to study the mechanisms involved in the 
progression of NPC to improve treatment strategies for this 
disease.

Bioinformatics analysis of microarray gene expression 
data facilitates identification of dysregulated genes and 
provides insights into the biological processes (BPs) 
involved in disease development (7). For example, Li and 
Zhang discovered LINC01385, a new long non-coding 
RNA (lncRNA; non-coding RNA molecules with a length 
exceeding 200 nucleotides) implicated in the development 
of NPC. Functional analysis revealed that LINC01385 is 

a potential target for therapeutic intervention in NPC (8).  
It has been suggested that lncRNA H19 controls the 
expression of EZH2 by interacting with miR-630 and 
enhances cell invasion in NPC (9). In contrast, lncRNA 
FAM225A was found to promote NPC tumorigenesis 
by absorbing miR-590-3p/miR-1275 and increasing 
ITGB3 expression (10). Earlier studies have significant 
shortcomings because they focus on exploring the functions 
of only one lncRNA-microRNA (miRNA)-messenger 
RNA (mRNA) pathway. Therefore, our understanding of 
the exact molecular mechanisms and BPs underlying NPC 
remains limited.

Salmena et al. introduced the competing endogenous 
RNA (ceRNA) hypothesis in 2011 (11), which has been 
supported by various lines of evidence (12-14). They point 
out that any RNA transcript containing miRNA recognition 
elements (MREs) can compete with other transcripts 
that have the same MREs, leading to the sequestration of 
miRNAs and consequent alteration of miRNA target gene 
expression. To date, no specific ceRNA network has been 
described for NPC. Thus, it is of utmost importance to 
explore the impact of ceRNA networks on the unfavorable 
NPC prognosis. Understanding the roles of lncRNAs 
in NPC development may provide solutions to the most 
critical hurdles in managing this disease.

In this study, we aimed to utilize the Gene Expression 
Omnibus (GEO) database to acquire mRNA, miRNA, and 
lncRNA expression profiles in NPC-affected and normal 
tissues and perform a comprehensive analysis to construct a 
ceRNA network specific to NPC (a flow diagram of the study 
is shown in Figure 1). This study provides valuable insights 
regarding therapeutic targets for NPC, the manipulation of 
which could prolong patient survival, and lay the foundation 
for better understanding of the mechanisms underlying 
NPC development. We present this article in accordance 
with the MDAR reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-263/rc).

Methods

Data downloading and preprocessing

We downloaded the data from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/), a reliable source of NPC 
gene expression profiles, using R software package GEO 
query (version 4.0.3, http://r-project.org/) (15). The mRNA 
expression profiles were obtained from GSE12452 (16) and 

Highlight box

Key findings
• We have identified key biomarkers for nasopharyngeal carcinoma 

(NPC) through the integration of multi-omics data.

What is known and what is new?
• Some long non-coding RNA have a close association with NPC.
• This is the first application of the competing endogenous RNA 

network in NPC.

What is the implication, and what should change now?
• Our study provides a direction for subsequent basic validation and 

clinical testing of novel NPC treatments, which could allow us to 
perform more targeted scientific trials.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-263/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-24-263/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Li et al. CeRNA network in NPC4374

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(8):4372-4388 | https://dx.doi.org/10.21037/tcr-24-263

GSE13597 (17); miRNA expression profiles were obtained 
from GSE43039 (18) and GSE70970 (19); and lncRNA 
expression profiles were derived from GSE95166 (20) and 
GSE126683 (10). The sample and platform information 
for each dataset is listed in Table 1. All samples were 
analyzed using the limma package (21) for standardized data 
processing. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Screening of differentially expressed genes (DEGs)

The limma package was used to identify mRNAs, miRNAs, 
and lncRNAs that were differentially expressed in tumor 
and normal samples from various datasets by using the 
following criteria: mRNAs, |log2fold change (FC)| >1; 
miRNAs, |log2FC| >0.5; lncRNAs, |log2FC| >0.5 (P<0.05 
in all cases). Subsequently, the intersection of differentially 
expressed mRNA, miRNAs, and lncRNAs was performed 
to obtain more accurate results. The results of the analysis 
of DEGs were presented using heat, volcano, and Circos 

maps to show the chromosomal position of DEGs and 
correlations of their expression levels.

Functional analysis of differentially expressed mRNAs

Functional annotation analysis using Gene Ontology (GO) 
is a widely employed technique for conducting extensive 
studies on gene functional enrichment, encompassing 
molecular function (MF), BP, and cellular component 
(CC) (22). The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is a widely used database that contains 
comprehensive information on genomes, biological 
pathways, diseases, and drugs (23). The clusterProfiler 
package was used for GO and KEGG enrichment 
analyses of DEGs and effects were considered statistically 
significant if the adjusted P value <0.05. In addition, this 
package was used to further analyze the GO and KEGG 
enrichment of key mRNA molecules in the ceRNA 
network and predict the potential regulatory functions of 
ceRNA networks.

Figure 1 The flow chart of the whole research process. MiRNA, microRNA; mRNA, messenger RNA; lncRNA, long non-coding 
RNA; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; ceRNA, competing 
endogenous RNA; GSEA, gene set enrichment analysis.
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Table 1 The dataset used in this study

Type ID Platform Sample Experiment type

MRNA GSE12452 GPL570 41 Expression profiling by array

GSE13597 GPL96 28 Expression profiling by array

MiRNA GSE70970 GPL20699 263 Non-coding RNA profiling by array

GSE43039 GPL16414 40 Non-coding RNA profiling by array

LncRNA GSE126683 GPL16956 6 Non-coding RNA profiling by array

GSE95166 GPL15314 8 Non-coding RNA profiling by array

MRNA, messenger RNA; miRNA, microRNA; lncRNA, long non-coding RNA.

Construction of the protein-protein interaction (PPI) 
network

The PPI network analysis of the differentially expressed 
RNAs was conducted using the STRING database. 
Cytoscape is an open-source bioinformatics software 
that facilitates visualization of molecular interaction  
networks (24). We visualized the PPI network and hub genes 
using Cytoscape (ver. 3.8.0) and CytoHubba plug-in (25).  
Hub genes were screened according to the maximum 
correlation standard.

ceRNA regulatory network construction and functional 
analysis

To delve deeper into the potential correlations between 
mRNAs and different types of ncRNAs, a ceRNA 
regulatory network was created. First, to predict the 
interactions between miRNAs and mRNAs, we used 
TargetScan (http://www.targetscan.org) (26), miRTarBase 
(https://mirtarbase.cuhk.edu.cn/) (27), and miRDB (http://
www.mirdb.org/) (28). The interaction between lncRNA 
and miRNA was predicted using the miRcode tool (http://
www.mircode.org/), which is an extensive resource of 
putative miRNA target sites in the long non-coding 
transcriptome (29). Cytoscape 3.8.0 software was utilized 
to construct and visualize the ceRNA network and its core 
network to build and display the lncRNA-miRNA-mRNA 
network (25). The ggplot2 package was used to generate a 
Sankey diagram that visualized the regulatory relationships 
between lncRNAs, miRNAs, and mRNA.

Gene set enrichment analysis (GSEA)

To determine the impact of a predefined set of genes 
on the phenotype, the GSEA was used to evaluate their 

distribution trend in the order of phenotypic relevance (30). 
Using the GSEA, we examined the pathways and employed 
clusterProfiler to identify each operational cluster (31). Our 
cut-off thresholds included a false discovery rate <0.1 and 
P<0.05.

Cell culture

The NPC cell line C666 and nasopharyngeal epithelial 
cell line NP69 (Guangxi Medical University, Nanning, 
China) were cultured in RPMI-1640 medium (Asia-Vector, 
Shanghai, China) containing 10% fetal bovine serum (Asia-
Vector) and 1% penicillin/streptomycin (Asia-Vector). The 
cells were cultured in an incubator at 37 ℃ in an atmosphere 
of 95% air and 5% CO2. After adherent growth was achieved, 
trypsin was used to detach the cells. Only cells in the 
logarithmic growth phase were chosen for further analysis.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

RNA was extracted according to the TRIzol reagent protocol 
(Invitrogen, Carlsbad, CA, USA) and reverse-transcribed 
into complementary DNA (cDNA) using the Fast Quant 
RT Kit (TaKaRa, Otsu, Shiga, Japan). This cDNA served 
as template for the qRT-PCR, which was performed using 
the Roche Light Cycler® 480 System and Light Cycler® 480 
SYBR Green I Master Mix (Roche, Pleasanton, CA, USA). 
The experimental data were normalized to the expression 
level of the GAPDH gene and presented as 2−ΔΔCt values. The 
primer information is shown in Table 2.

Cell transfection

Small interfering RNAs (siRNAs) to knockdown lncRNAs 
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Table 2 Primer information

RNA Forward Reverse

ENST00000478301 5'-GCAGAAACATCTGGTCGGTT-3' 5'-CCATTCTCTCCTGCTGCTCTA-3'

ENST00000451496 5'-AAGAGCTGACACAAGAGTGGA-3' 5'-ACCACCTACAGGTTGTGTTCT-3'

ENST00000544214 5'-CGGGTCACACACACCTGATT-3' 5'-GGGTCCTGCGGAAGTTCATT-3'

ENST00000505694 5'-CATTCTGGTAGAGGGCGAACC-3' 5'-GTGACCCTGCTGCCTTCAAC-3'

ENST00000544214 5'-CGGGTCACACACACCTGATT-3' 5'-GGGTCCTGCGGAAGTTCATT-3'

were synthesized by GenePharma (Suzhou, China). Once 
the cells reached 50–80% confluence, they were transfected 
with siRNA using Lipofectamine 2000 (Invitrogen) 
following the manufacturer’s instructions.

Cell counting kit-8 (CCK-8) assay

In 48 h after transfection, the cells were harvested using 
trypsin and seeded into 96-well plates at a density of 1,000 
cells per well. Cell proliferation was assessed using the 
CCK-8 assay (Dojindo, Kumamoto, Japan) by measuring 
the absorbance at 450 nm at 0, 12, 24, 48, and 72 h after 
reseeding, according to the manufacturer’s specifications.

Statistical analysis

The experimental data were statistically analyzed using 
SPSS (version 26.0; IBM, Armonk, NY, USA) and 
GraphPad Prism 5 software (GraphPad, La Jolla, CA, 
USA). Differences between groups were determined using 
the two-tailed Student’s t-test. Pearson’s correlation analysis 
was used to explore the correlation between lncRNAs and 
miRNAs. Effects were considered statistically significant if 
P<0.05.

Results

Data collection and preprocessing

To identify DEGs in NPC samples, we used the limma 
package to analyze mRNA, lncRNA, and miRNA expression 
profiles. We found that 3,510 mRNAs, 16,520 lncRNAs, 
and 323 miRNAs were expressed at significantly different 
levels (|log2FC| ≥1, adjusted P<0.01) in the NPC and 
normal tissues. Our analysis showed that dataset GSE12452 
contained 2,493 differentially expressed mRNAs, including 
1,265 upregulated and 1,228 downregulated mRNAs. 
Dataset GSE13597 contained 1,017 differentially expressed 

mRNAs, including 565 upregulated and 452 downregulated 
mRNAs. Classification heatmaps and volcano plots of 
DEGs were drawn using data grouping (Figure 2A-2D). 
Dataset GSE43039 contained 199 differentially expressed 
miRNAs, including 96 upregulated and 103 downregulated 
molecules. A total of 124 differentially expressed miRNAs 
were obtained from dataset GSE70970, including 70 
upregulated and 54 downregulated miRNAs (Figure 2E-2H).  
In dataset GSE95166, we found 9,193 differentially 
expressed lncRNAs, including 4,547 upregulated and 4,646 
downregulated lncRNAs. In total, 7,327 differentially 
expressed lncRNAs were identified in dataset GSE126683, 
including 3,891 upregulated and 3,436 downregulated 
lncRNAs (Figure 2I-2L).

The overlapping differentially expressed RNA molecules 
are displayed using Venn diagrams (Figure 2M-2O). The 
chromosomal positions of the common differentially 
expressed mRNAs, miRNAs, and lncRNAs were determined 
using the RCircos package (Figure 3A-3C).

Functional enrichment analysis

To assess the functional significance and potential BPs 
involving proteins encoded by mRNAs from the ceRNA 
network, we performed GO annotation (Figure 4A-4C) 
and KEGG (Figure 4D) pathway enrichment analyses. 
Our results revealed that the DEGs were significantly 
enriched in both GO and KEGG terms. Specifically, GO 
analysis revealed a notable enrichment of the following 
BPs among the DEGs: nuclear division, mitotic nuclear 
division, and organelle fission. The chromosomal region, 
chromosomes, centromeric region, and kinetochore were 
the most significantly enriched CCs. In addition, the 
following MFs were enriched: tubulin binding, microtubule 
binding, ATPase activity, and DNA replication origin 
binding. According to the KEGG pathway analysis, the 
dysregulated mRNAs in NPC were mainly enriched in cell 
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Figure 2 Volcano plots and heatmaps show DElncRNA, DEmiRNA, and DEmRNA. Blue denotes downregulated genes, and red denotes 
upregulated genes. (A,B,E,F,I,J) Heatmaps for DEmiRNAs, DEmRNAs and DElncRNAs. (C,D,G,H,K,L) Volcano plots for DEmiRNAs, 
DEmRNAs, and DElncRNAs. (M-O) Venn diagram of differential mRNA, miRNA, and lncRNA. DElncRNA, differentially expressed long 
non-coding RNA; DEmiRNA, differentially expressed microRNA; DEmRNA, differentially expressed messenger RNA.

602 149 3,840147 8 160431 101 3,077

GSE13597 GSE70970 GSE126683GSE12452 GSE43039 GSE95166M N O

Figure 3 Circos plot of DEmRNA (A), DEmiRNA (B), and DElncRNA (C). The outer circle shows chromosomal location information. 
DElncRNA, differentially expressed long non-coding RNA; DEmiRNA, differentially expressed microRNA; DEmRNA, differentially 
expressed messenger RNA.

DEmRNA DEmiRNA DElncRNA
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cycle regulation, DNA replication, and the p53 signaling 
pathway. A GO functional interaction network of the 
differentially expressed mRNAs was constructed (Figure 4E).  
These findings imply that chromosomal abnormalities may 
have a crucial impact on NPC progression.

PPI network construction

To gain a deeper understanding of the interactions 
between mRNAs dysregulated in NPC, a PPI network was 
constructed using Cytoscape, which consisted of 146 nodes 
and 1,345 edges (Figure 5A). The distribution of node 
degrees in the PPI network was analyzed, and the top 30 
mRNAs with the highest degrees are shown in Figure 5B.  
The mRNAs of the top 10 hub genes (CDK1, CDC20, 
NUSAP1, KIF11, KIF20A, DLGAP5, CCNA2, BUB1B, 

TOP2A, and ASPM) were screened from the differentially 
expressed mRNAs (Figure 5C). These genes may aid in 
exploration of the biological mechanisms underlying NPC 
development and reveal potential therapeutic targets.

ceRNA network construction and lncRNA-mRNA co-
expression analysis

To investigate the roles of various types of RNA in 
NPC, we analyzed correlat ions between lncRNA 
and mRNA expression levels as well as correlations 
between expression levels of miRNAs and those of their 
corresponding target mRNAs and lncRNAs (Figure 6A,6B). 
We found that lncRNAs such as ENST00000220514 
and ENST00000301633 were significantly positively 
correlated with mRNAs, whereas ENST000000330915 and 
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Figure 4 GO and KEGG pathway enrichment analysis of DEmRNA. (A) Bubble plot of BP. (B) Bubble plot of CC. (C) Bubble plot of MF. 
(D) Bubble plot of KEGG. (E) The network shows the GO enrichment analysis results and the gene interaction in GO term. Size represents 
the number of genes enriched; category represents the function term. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene 
Ontology; DEmRNA, differentially expressed messenger RNA; BP, biological process; CC, cell component; MF, molecular function.
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ENST00000332503 were significantly negatively correlated 
with mRNAs. Based on the expression profiles of the 
differentially expressed miRNAs, lncRNAs, and mRNAs 
in patients with NPC, we constructed a ceRNA network 
consisting of 7 miRNA nodes, 18 mRNA nodes, and 10 
lncRNA nodes. Furthermore, we evaluated the topological 
significance of each gene within the ceRNA network by 
calculating its degree of connectivity (Figure 7A,7B).

ceRNA core module screening and functional analysis

By applying the degree and maximum correlation standard 
algorithm in CytoHubba, we discovered five hub miRNAs, 
four lncRNAs, and one mRNA as a core module (Figure 8A).  
The ceRNA regulatory network suggested that CCNE2 
may play a key role as an effector. Biological analyses 
were performed using clusterProfiler to examine CCNE2 

protein functions. We found that CCNE2 is significantly 
enriched in both GO and KEGG terms (Figure 8B,8C). 
GO analysis revealed that CCNE2 mRNA was notably 
enriched in BPs such as fungiform papillary morphogenesis, 
tongue morphogenesis, and ectodermal placode formation. 
According to the KEGG analysis, CCNE2 demonstrated 
significant enrichment in various pathways, such as the 
cell cycle, neutrophil extracellular trap formation, and 
transcriptional misregulation in cancer. We then explored 
potential regulatory pathways using GSEA and found that 
the results of GSEA were also mainly related to cell cycle-
related functions (Figure 8D-8M).

ENST00000451496 was highly expressed in C666 cells 
and required for their proliferation

To validate expression profiles of five lncRNAs in NPC 
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Figure 5 PPI network and hub gene analysis. (A) PPI network of DEmRNA. (B) The degree distribution of the PPI network of the top 30 
NPC specific mRNAs. (C) Hub-genes in the PPI network. The redder the color, the higher the ranking. PPI, protein-protein interaction; 
DEmRNA, differentially expressed messenger RNA; NPC, nasopharyngeal carcinoma; mRNA, messenger RNA.
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Figure 6 Analysis of DElncRNA-DEmRNA co-expression. (A) Main positive correlation pairs between DElncRNA and DEmRNA. (B) 
Main negative correlation pairs between DElncRNA and DEmRNA. Red represents high correlation; blue represents low correlation. 
DElncRNA, differentially expressed long non-coding RNA; DEmRNA, differentially expressed messenger RNA.
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Figure 7 Construction of ceRNA network in NPC. (A) LncRNA-miRNA-mRNA ceRNA network. The rectangles indicate miRNAs in 
green, ellipses represent mRNAs in light bule and diamonds represent lncRNAs in red. (B) Sankey diagram for the ceRNA network in NPC. 
Each rectangle represents a gene, and the connection degree of each gene is visualized based on the size of the rectangle. LncRNA, long 
non-coding RNA; miRNA, microRNA; mRNA, messenger RNA; ceRNA, competing endogenous RNA; NPC, nasopharyngeal carcinoma.
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cells, qRT-PCR was performed in C666 and NP69 
cells. The C666 cells had elevated expression levels of 
ENST00000478301 and ENST00000451496, whereas 
lncRNAs ENST00000510244 ,  ENST00000505694 , 
and ENST00000544214 were expressed at relatively 
lower levels in the C666 cells compared to those in the 
NP69 cells. These findings suggest potential roles for 
ENST00000478301 and ENST00000451496 in NPC 
pathogenesis and warrant further investigation of their 
molecular mechanisms of action. To further elucidate 
the functional roles of these two lncRNAs, the C666 
cells were transfected with corresponding siRNAs and 
a negative control siRNA. qPCR analysis revealed that 
ENST00000451496-siRNA1/4 and ENST00000478301-
siRNA-3/4 had superior efficacy and were therefore 
selected for subsequent experiments. The CCK-8 assay 
indicated that ENST00000451496 knockdown led to a more 
pronounced inhibition of C666 cell proliferation compared 
to that afforded by ENST00000478301 knockdown at 12, 
24, 48, and 72 h post-treatment, prompting us to focus on 
ENST00000451496 in the subsequent analysis (Figure 9).

Discussion

NPC is a malignant tumor of the head and neck, and the 
resistance to treatment of NPC distant metastases is the 
major cause of patient mortality. Despite the adoption of 
various treatment strategies, such as radiation therapy and 
chemotherapy, the prognosis of NPC patients who receive 
these treatments remains unsatisfactory (32). Understanding 
the molecular mechanisms and processes that contribute 
to NPC is crucial for identifying novel therapeutic targets 
and improving clinical outcomes of patients with this 
disease. According to the ceRNA hypothesis, lncRNAs 
are considered miRNA sponges because of their ability to 
bind and neutralize miRNAs, thereby having a regulatory 
impact (33,34). Therefore, a comprehensive understanding 
of lncRNA-miRNA-mRNA interactions will enhance our 
understanding of the onset and progression of NPC.

In this study, we identified 3,510 mRNAs, 16,520 
lncRNAs, and 323 miRNAs that were differentially 
expressed in patients with NPC. We then used these DEGs 
to establish a ceRNA network linked to lncRNAs, enabling 
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Figure 8 The sub-network of ceRNA and functional analysis. (A) CytoHubba was used to screen ceRNA core genes. The red rectangle, 
orange diamond, and yellow oval represent miRNA, lncRNA, and mRNA respectively. (B) GO functional enrichment analysis results. (C) 
KEGG pathway enrichment analysis results. (D-H) GSEA results of the top 5 upregulated signaling pathway. (I-M) GSEA results of the 
top 5 downregulated signaling pathway. The X-coordinate is the gene ratio, and the Y-coordinate is the pathway result. Red and blue colors 
represent up and downregulation respectively. NES value represents the enrichment value after normalization, and a larger NES value 
means more genes enriched in this pathway. The P value reflects the reliability of the enrichment results. GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; ceRNA, competing endogenous RNA; miRNA, microRNA; lncRNA, long non-coding RNA; 
mRNA, messenger RNA; GSEA, gene set enrichment analysis; NES, normalized enrichment score.
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us to investigate the regulatory mechanisms of ceRNAs. 
This ceRNA network included 20 lncRNAs, 30 miRNAs, 
and 30 mRNAs that were differentially expressed specifically 
in NPC. Among them, four lncRNAs (ENST00000438195, 
E N S T 0 0 0 0 0 4 1 5 4 7 9 ,  E N S T 0 0 0 0 0 4 5 1 4 9 6 ,  a n d 
ENST00000447329), one mRNA (CCNE2) and five 
miRNAs (hsa-miR-203, hsa-miR-30b, hsa-miR-30d, hsa-
miR-30c, and hsa-miR-29c) were identified as hub genes. 
Among the prognostic differentially expressed lncRNAs 

in the ceRNA network, the lncRNA ENST00000447329 
(also known as LINC01358) has the highest degree of 
connectivity (5). Thus, we concluded that it could have 
a significant impact on NPC pathogenesis. In the hub 
miRNAs, hsa-miR-29c plays a crucial role in NPC. In vitro 
experiments showed that the overexpression of hsa-miR-
29c inhibited the migration and invasion of NPC cells (35). 
Decreased miR-29c expression is associated with increased 
resistance to therapy in patients with NPC. This is because 

https://www.researchgate.net/figure/Normalized-enrichment-scores-NES-indicate-the-distribution-of-Gene-Ontology-categories_fig1_261516688
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Figure 9 Analysis of lncRNAs in C666 cell lines and NP69 cell lines. (A) Results of qRT-PCR in different cell lines for five lncRNAs. 
ENST00000478301 and ENST00000451496 were significantly upregulated in NPC cell line C666. (B) ENST00000451496-siRNA1/4 
and ENST00000478301-siRNA-3/4 had superior knockdown efficacy. (C) The proliferation ability of C666 cells transfected with NC or 
ENST00000478301 or ENST00000451496 was examined by CCK-8 assay. Knockdown ENST00000451496 led to a more pronounced 
inhibition of C666 cell proliferation. *, P<0.05; **, P<0.01; ***, P<0.001. SiRNA, small interfering RNA; NC, negative control; lncRNA, 
long non-coding RNA; qRT-PCR, quantitative real-time polymerase chain reaction; NPC, nasopharyngeal carcinoma; CCK-8, cell 
counting kit-8.
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miR-29c inhibits expression of the anti-apoptotic factors 
Mcl-1 and Bcl-2, leading to an increased sensitivity of NPC 
cells to ionizing radiation and cisplatin treatment (36).  
Additionally, according to Yu et al., the upregulation of 
miR-203 inhibits the G1/S transition in cells infected 
with Epstein-Barr virus and hinders tumor growth in vivo,  
suggesting that miR-203 could serve as a potential 
biomarker for the diagnosis and treatment of Epstein-
Barr virus-associated NPC (37). Based on our findings, we 
hypothesized that the hsa-miR-203 and hsa-miR-29c axes 
play significant roles in the development of NPC and could 
serve as promising targets for therapeutic interventions in 
this cancer.

Among the prognostic DEGs, CCNE2 has the highest 
degree of connectivity (4) among other differentially 
expressed mRNAs. CCNE2 binds to and activates CDK2, 
forming a kinase complex that participates in the G1/S  
phase transition, thereby regulating cell proliferation 
and tumor development (38-40). According to a study 
by Xie et al. performed on 308 samples of ovarian cancer 
tissues, high CCNE2 expression is linked to reduced 
overall survival (41). Similarly, a study of prostate cancer 
has indicated that CCNE2 is substantially upregulated in 
patients with this condition and is regarded as a protein 
that promotes tumor growth (42). Our GO analysis showed 
that differentially expressed mRNAs were mainly associated 
with the morphogenesis of the fungiform papilla, tongue, 
and ectodermal placode. The KEGG pathway analysis 
demonstrated that the differentially expressed mRNAs 
were significantly enriched in several pathways, including 
the cell cycle, formation of neutrophil extracellular traps, 
transcriptional misregulation in cancer, Epstein-Barr virus 
infection, and viral carcinogenesis, which are all closely 
associated with cancer development. This finding not 
only indicates the reliability of the constructed ceRNA 
regulatory network but also supports the necessity of 
studying lncRNAs as ceRNA regulators, which could serve 
as therapeutic targets in NPC.

Although we developed an NPC-specific ceRNA 
regulatory network and identified potential prognostic 
biomarkers, our study had several limitations. First, we 
relied solely on gene expression data obtained from the 
GEO database. Further prospective studies involving larger 
patient populations from different centers are required to 
validate our results. Second, the bioinformatics analysis 
results require extensive experimental verification before 
they can be implemented in clinical practice. Future 
research should focus on the functional and mechanistic 

validation of genes dysregulated in NPC to ensure practical 
application of our findings.

Conclusions

In this study, we constructed a novel ceRNA network 
that provided several mechanistic clues regarding the 
interactions between genes dysregulated in NPC. Our 
results not only provide theoretical support for revealing 
the regulatory relationship between lncRNAs, miRNAs, 
and mRNAs in NPC but also offer a more substantiated 
approach for exploring clinical diagnostic markers and 
potential therapeutic targets in NPC. Furthermore, our 
study provides a direction for subsequent basic validation 
and clinical testing of novel NPC treatments, which could 
allow us to perform more targeted scientific trials, thereby 
sparing valuable research resources.
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