
1. Introduction
Significant errors can occur in fault geometry and slip dislocation models as a result of fault surfaces not 
being well-represented by simple planar or rectangular fault models. For this reason, it is necessary to utilize 
all of the tools available to improve estimates of fault geometry and location. One such tool is interfero-
metric synthetic aperture radar (InSAR), which provides maps of surface deformation that contain valua-
ble information about the complexity of the fault system giving rise to the image (Bürgmann et al., 2000). 
InSAR is a radar technique that uses a synthetic aperture radar (SAR) mounted on a satellite to image the 
same area at two different times, and uses those images to determine the differences in phase of the waves 
that return to the SAR. Since the wavelength of the electromagnetic waves emitted by the SAR is known, 
the phase difference between the images can be used to calculate their difference in line-of-sight distance 
to the satellite. The result is a map of the line-of-sight ground deformation of the imaged area that occurred 
between the times that the original SAR images were taken (Jet Propulsion Laboratory, California Institute 
of Technology, 2014). Despite being susceptible to different sources of error—such as orbital error (Fattahi 
& Amelung, 2014) and atmospheric uncertainty (Ding et al., 2008; Fattahi & Amelung, 2015)—InSAR is 
able to measure ground deformation to submillimeter accuracy if such effects are appropriately accounted 
for (Ferretti et al., 2007).

Previous work has been performed which aimed to invert the ground deformation contained in InSAR 
interferograms to find the geometry of faults that could cause the observed ground deformation. Such meth-
ods rely on having a model that depends on various parameters that can recreate the desired data set. For 
seismology, a commonly used model is Okada's analytical solutions for the surface deformation due to faults 
in an elastic half-space, which can model ground deformation due to either point or finite rectangular seis-
mic sources (Okada, 1985).

The inversion detailed in Bagnardi and Hooper  (2018), for example, utilizes an Okada rectangular fault 
model described by nine parameters: length, width, depth, strike angle, dip angle, X- and Y-coordinates, 
uniform slip in the strike direction and uniform slip in the dip direction (Bagnardi & Hooper, 2018). Their 
approach uses a Bayesian inversion to determine a posterior probability density function (PDF), which 
describes how well a set of parameters can explain a given data set based on their uncertainties and taking 
into account prior information in the form of a joint prior PDF. A Monte-Carlo Markov Chain utilizing the 
Metropolis-Hastings algorithm is then used to efficiently search the parameter space by taking steps in the 
prior PDF to get new sets of parameter values and comparing the likelihood of the new model to the previ-
ous step (Hastings, 1970). After an appropriate number of iterations, the sampling done by the algorithm 
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approximates the desired posterior PDFs of each of the parameters, which can be used to estimate their 
most likely values. Jo et al. (2017) performed a different type of inversion for the 6.0WE M   2014 South Napa 
earthquake for a similar set of parameters for a rectangular fault model (Jo et al., 2017). They used two sep-
arate inversions in their analysis, the first being a Monte-Carlo simulation of 10,000 iterations to find the 
fault parameters. The second was a least squares inversion performed to find the slip distribution over the 
rectangular fault plane.

Aside from Monte-Carlo methods, there are other analysis techniques that have been used to invert InSAR 
interferograms. Feng et al. (2013) utilized a method of inversion called multipeak particle swarm optimi-
zation (M-PSO) to study the 2011 6.8WE M   Burma earthquake (Feng et al., 2013). A PSO works by first 
defining a population (or swarm) of candidate solutions to a problem and then moving them throughout 
the parameter space to find the optimal solution. The particles move according to a “velocity” that is based 
on each particle's own best-known position in the parameter space as well as the best-known position of 
the other particles (Kennedy & Eberhart, 1995). Li et al. (2020) and Wen et al. (2016) also used a M-PSO 
inversion in their analyses of the 2015 6.5WE M   Pishan earthquake and the 2013 6.6WE M   Lushan earth-
quake, respectively, while additionally adding a second inversion for the slip distribution on the fault plane 
(Li et al., 2020; Wen et al., 2016).

There have also been advances in specific aspects of the inversion, such as the slip distribution. Liu and 
Xu (2019) developed another method for the joint inversion of coseismic and postseismic fault slip from 
InSAR data called LogSIM, which uses a logarithmic model solved by a nonlinear least squares curve fitting 
function (Liu & Xu, 2019). Zhang et al. (2008) solved the slip distribution inverse problem with a model 
using triangular dislocation elements to more accurately model the three-dimensional (3D) fault surface 
(Zhang et  al.,  2008). They solved the resulting inverse problem using a weighted damped least squares 
approach. G. Jiang et al. (2013) also performed an inversion utilizing a model made up of triangular dislo-
cation elements, finding a solution using bounded variable least squares (G. Jiang et al., 2013). Fukahata 
and Wright (2008) aimed to improve the inversion of the slip distribution by treating the dip angle as a hy-
perparameter and estimating it using the Bayesian information criterion (Fukahata & Wright, 2008). This is 
followed by determining the slip distribution using maximum-likelihood methods. Their work is continued 
in another study by Fukahata and Hashimoto (2016) who apply the same method to the 2016 Kumamoto 
earthquake (Fukahata & Hashimoto, 2016). Frietsch et al. (2019) extended the problem slightly, adding two 
new parameters for time-shift to the centroid time and the compensated-linear-vector-dipole (CLVD) com-
ponent while also allowing for the parameters of multiple fault segments to be found at one time (Frietsch 
et al., 2019). This makes it possible for them to model a single event as multiple fault segments or model 
multiple separate events at the same time.

Finally, it should be noted that InSAR is not limited in usefulness to earthquake mechanism inversion, as 
shown by Peng et al. (2018) who used InSAR-derived deformation data to invert the mechanism of sub-
sidence of Line 3 of the Xi'an metro near Yuhuazhai (Peng et al., 2018). They found from their inversion 
of a flat lying sill model with distributed contractions—with a depth based on the average depth of local 
pumping wells—that the rapid subsidence could be explained by excessive groundwater extraction in the 
area.

Also note that the inversion of the focal mechanism of earthquakes can be done from a variety of sources 
other than InSAR data. A common method of inversion uses P-wave first motion polarities, such as the 
analyses performed by Hicks et al. (2000) and Langet et al. (2020). If the number of seismic stations is too 
low to use first-motion polarities a full waveform analysis can be performed to provide constraints on the 
focal mechanism. Examples of full waveform analysis are reported in Hicks et al. (2000) as well as Villegas 
et al. (2016). Efforts made to improve these analyses include work by Sokos and Zahradnik (2008) on the 
ISOLA software package, which can perform multi-source inversions in addition to the typical single source 
inversions.

Though many previous inversions of InSAR data utilize a number of rectangular fault planes, it has been 
shown that fault surfaces are much more complex. Steps have been taken to fight this problem, Sahimi 
et  al.  (1993) performed an analysis of the fracture patterns in heterogeneous rocks and found “at large 
length scales, they are percolation fractals with a fractal dimension DE 1.9 and 2.5, in two-dimensional (2D) 
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and 3D, respectively.” This implies that fault surfaces cannot be completely represented by simple planar 
surfaces. Candela et  al.  (2012) studied fault surface roughness over nine decades of length scales from 
50 E m  to 50 E km and found that they could be characterized by an anisotropic self-affine description. Bruhat 
et al. (2019) investigated the effect of surface roughness on surface displacement, finding that “slip distri-
butions become increasingly more self-affine, that is, containing more short wavelength fluctuations as 
compared to the self-similar fault profiles, as roughness increases,” suggesting that fault roughness has a 
considerable effect on the behavior of faults and therefore our models must be improved to take such effects 
into account.

The complexity of earthquake modeling is not limited to the fault surfaces, as shown by the 2016 Kaik-
oura earthquake in New Zealand. This magnitude 7.8 earthquake was one of the largest recorded in New 
Zealand, and was found to have caused the rupture of at least 12 different faults, some separated by up to 
15 km (Hamling et al., 2017). Hamling et al. (2017) also state, “The earthquake should motivate rethinking 
of certain seismic hazard models, which do not presently allow for this unusual complex rupture pattern.” 
Another complex earthquake sequence was that of the magnitude 7.3 Landers earthquake in 1992, around 
which occurred the magnitude 6.5 Big Bear earthquake and the magnitude 5.7 Little Skull Mountain earth-
quake, which were later determined to be separate events rather than mainshocks and aftershocks (Hauks-
son et al., 1993).

Due to the complex nature of faults, it is important to improve our models so that they can appropriately 
represent a wider range of behavior. In this study, a new approach that utilizes a model composed of a 
collection of seismic point sources is introduced. We choose point sources because their superposition can 
represent any possible physical surface as long as enough sources are utilized, providing much more free-
dom than simple rectangular models. A genetic algorithm is used to simultaneously find the parameters 
of the entire collection of point sources. As their name implies, genetic algorithms borrow their method of 
solving problems from genetics. A population of solutions to the problem is randomly generated, and these 
solutions are allowed to crossover and mutate until an ideal solution is found. A crossover operator is the 
genetic algorithm equivalent of parents giving birth to offspring that inherit their genes. In a traditional 
genetic algorithm, a solution is represented as an array of bits, and the crossover operator might be defined 
to swap certain bits between two “parent” solutions. The mutation operator randomly changes the value 
of one or more bits in a solution array, similar to what occurs during a long period of a species's evolution. 
A genetic algorithm also requires some form of “survival of the fittest,” which allows better solutions to be 
chosen to move forward during the execution of the algorithm. This is included in the algorithm as a cost 
function—more “fit” solutions to the problem are those who minimize the cost function or maximize some 
other desired measure of fitness (Kumar et al., 2010). In this study, we utilize what is known as a real-coded 
genetic algorithm, in which the solutions are instead represented by a list of real-valued parameters. This 
change in the form of the solutions necessitates a change in the genetic operators, which will be explained 
in the next section.

After fitting using the above-mentioned algorithm, a multifractal analysis is performed on the result-
ing distribution of point sources. Multifractals are unique from monofractals in that they cannot be 
represented by a single fractal dimension, but rather require a spectrum of dimensions to characterize 
their properties (Rosenberg, 2020). Many systems in a wide variety of fields have been shown to have 
multifractal properties, from the distribution of soil particle sizes (Adolfo et al., 2001) to the behavior 
of financial markets (Z.-Q. Jiang et al., 2019) as well as the structure of the universe (Jones et al., 1988). 
In studies of earthquakes, multifractal analysis has been applied to the distribution of earthquake lo-
cations in different regions. Some examples include a study of the 2001 Bhuj earthquake sequence by 
Aggarwal et al. (2017) and of the Taiwan seismic region by Hui et al. (2020). Similar analysis has also 
been applied to the results of coupled slider-block models as reported by Tanaka (2014). In this study, 
specifically, we perform a multifractal analysis on the seismic moment distribution of a group of seismic 
point sources.
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2. Genetic Algorithm
We begin by describing our genetic algorithm in more detail. As stated in the previous section, the 
solutions in a real-coded genetic algorithm are represented as lists of real-valued parameters. For the 
genetic algorithm used in this study, the solutions are a list of parameters that describe the locations 
and orientations of a number of seismic point sources. In particular, every point source has a param-
eter for each of the following: x-coordinate, y-coordinate, z-coordinate, strike angle, dip angle, and 
seismic moment. The x-, y-, and z-coordinate parameters define the location of the point source in 3D 
space—where z = 0 defines the ground's surface in the case of zero deformation. The strike angle and 
dip angle determine the orientation of the slipping fault represented by the point source. Strike angle 
determines the direction of the line created by the intersection of the fault plane and the ground's 
surface. The dip angle is the angle between the fault plane and the ground's surface. A diagram of the 
geometric parameters can be seen in Figure 1. In Okada's convention, the dip angle is restricted to lie 
within the range 0

2
E    (Okada, 1985). The seismic moment of a point source represents a combi-

nation of the fault area and the amount that it slips. A solution will have 6E n parameters total, where 
n is the number of point sources the solution is composed of. These point sources give rise to surface 
deformation as defined by Okada's expressions for deformation due to shear and tensile faults in a half-
space (Okada, 1985). Our analysis utilizes these equations, which are included in Appendix A. The total 
deformation—the superposition of the deformation from all point sources—is compared to a desired 
surface deformation (the data), and the goal of the algorithm is to move and reorient the point sources 
until the model's surface deformation approximates that of the data. The specifics of the algorithm are 
discussed in the following paragraphs.

Given some ground deformation data in the form of ground coordinates and their corresponding defor-
mations, the algorithm first determines the minimum and maximum x- and y-values to use as limits when 
generating possible source distributions to fit the data. This restricts the allowed locations of the point 
sources to an area below the ground deformation. Then the algorithm generates a population of a user-de-
fined number of source distributions (models) containing a user-defined number of sources with random 
locations and orientations within specified limits. It calculates each model's displacement field, which is 
the ground deformation resulting from a superposition of the ground deformation due to individual point 
sources in the model. Each model is compared to the input data, and the chi-square value of each model is 
recorded. In this study, the chi-square value for a given model is defined as:

Figure 1. The definitions of the geometric parameters of the point sources used in this study. The source is represented 
as a rectangle to allow visualization of the strike and dip angles. In this figure, the point source would be located at the 
center of the rectangular surface, as indicated by the dot.
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where iE z  is the data value for the elevation of the ground at the point ( , )i iE x y , ( , )i iE f x y  is the model value for 
the elevation of the ground at the point ( , )i iE x y  and i runs over all data points.

After the chi-square of each model has been determined, pairs of models are selected to use as parents 
in the creation of the next generation of models. The models with lower 2E   are more likely to be selected 
as parents. Note that the same model cannot be both members of a pair, but can be present in more than 
one pair with another model. As each pair is selected, the member models are crossed to yield two more 
next-generation models.

This study uses what is called a simulated binary crossover operator to generate new solutions based on the 
parent solutions (Deb & Agrawal, 1995). It is the real-coded equivalent of the single-point crossover opera-
tor of a binary genetic algorithm. The single-point crossover operator crosses the parent solutions by picking 
a random point in one solution's bit array, and swaps the bits after that point between the two solutions. 
Simulated binary crossover uses a probability density function to imitate single-point crossover for use in a 
real-coded genetic algorithm. Simulated binary crossover works as follows:

1.  Choose two parents 1E x  and 2E x
2.  Generate a random number [0,1)E r 
3.  Calculate the parameter E 
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The distribution index determines the width of the distribution used for generating children. Large val-
ues of cE   tend to generate solutions closer to the parents, while smaller values generate solutions further 
away. The recommended value for cE  , and the one used in this study, is 2cE    (Deb & Agrawal, 1995). 
Pairs are selected and crossed until the next generation becomes equal in size to the original population 
of models.

Once the next generation has been created, there is a user-defined chance for each model in the new gen-
eration to be mutated. The mutation operator, when applied to a model, gives each source in the model a 
user-defined chance to be shifted from its original position, orientation and seismic moment. The amount of 
translation or rotation is determined by a Gaussian random number generator centered at the original value 
of the coordinate. For example, if the original strike angle of a source is  /2, the Gaussian distribution used 
to select the new value has a mean value of  /2. The amount of shift in the location and seismic moment 
is selected in a similar manner. The process of crossing to create new generations and mutation of the new 
generations is repeated until the user-defined number of generations is reached. The overall process of the 
algorithm is pictured in Appendix C and Figure C1.

3. Applying the Algorithm to ALOS-2 Data
The InSAR interferogram that is fit in this study was processed by Lindsey et al. (2015a) and was down-
loaded from the Nepal Earthquake ALOS-2 InSAR website (Lindsey et  al.,  2015b). The particular one 
used is the combination of the ALOS2040533050-150222 and ALOS2050883050-150503 products, yield-
ing an interferogram containing ground displacement between February 22, 2015 and May 3, 2015. This 
interferogram was chosen because it exhibits deformation due to a seismic event—in this case, the mag-
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nitude 7.8 earthquake that occurred on April 25, 2015, 36-km east of Khudi, Nepal. The interferogram is 
a collection of points, each defined by their latitude, longitude and line-of-sight ground displacement. 
The line-of-sight displacement is converted to vertical displacement using the reported look angle of the 
satellite for each data point. To fit this interferogram, the data are binned into a 30-by-30 2D histogram 
to reduce the amount of computation time. The value of each bin is calculated as the average vertical 
displacement of each data point contained in that bin. After binning, the resulting pixels in latitude and 
longitude are mapped to the x-y plane, in units of km, to allow comparison to the results of the algorithm. 
To further reduce computation time, the area of the interferogram being fit is reduced to pixels in the 
range 40 240 kmE x   and 70 200 kmE y   which contains the ground deformation of interest. For our 
analysis, only the vertical displacement of the ground was calculated and compared—the horizontal dis-
placement was not considered.

When fitting this interferogram, the algorithm is set to use a population size of 2,000, with each solution in 
the population containing 513 seismic point sources arranged in a single-layer 27 × 19 grid. The grid size 
is chosen such that point sources are placed in a square grid with 5 km side length below the significant 
ground deformation in the interferogram. Since the earthquake was a result of thrust faulting (United 
States Geological Survey, 2015), Okada's equations for dip-slip faulting were used to calculate the ground 
deformation caused by each point source. For this run of the algorithm only the seismic moment of each 
point source was allowed to vary to reduce the computational complexity—each point source kept its lo-
cation and orientation fixed during fitting. The strike angle, dip angle and depth of the point sources were 
chosen to be averages of the five sets of earthquake parameters reported in Lay et al. (2016) for the 2015 
earthquake, held fixed at the values of 288.2, 6.06, and 18.8 km, respectively. The initial values of the point 
source seismic moments in the starting population are chosen from a uniform distribution in the range 

6 810 10E M Nm  . The chance for a model to be chosen to mutate in a given generation was 20%E . If chosen 
to mutate, each source point in the model had a 10%E  chance to have its seismic moment shifted up or down. 

Figure 2. (Top left) Azimuthal view of the ALOS-2 ground deformation data. (Top right) Top view of the ALOS-2 
ground deformation data. (Bottom left) Azimuthal view of the model generated by the algorithm. (Bottom right) Top 
view of the model generated by the algorithm.
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After running until 500 successive generations passed with no improvement to the error between the best 
model and the data, the algorithm returned the model visible in Figure 2. The model is fully defined by its 
513 values for each point source's seismic moment. The residuals between the model and data can be seen 
in Appendix B.

4. Multifractal Analysis
We now turn to our multifractal analysis. Multifractals are more complicated than classic monofractals 
in that their behavior cannot be characterized by a single fractal dimension but rather requires a con-
tinuous spectrum of exponents to describe it (Rosenberg, 2020). The generally used method to analyze 
the spectrum of a multifractal is based on the box-counting method. In this method, a grid of boxes is 
overlaid on the image (or distribution of points) in question and the amount of “mass” contained in 
each box is determined. A probability—as shown in Equation 2—is then calculated for each box of size 

E  , where [ , ]iE m   is the mass contained in the ith box and the total mass in the image is calculated from 
Equation 3:

[ , ]
[ , ]

i
i

m
P

M
 


 (2)

[ , ]
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.
N

i
i

M m


 


  (3)

The partition function denoted by [ ]( )E I Q   in Equation 4 is the sum of all of the box probabilities at box size 
E   raised to a power E Q:

[ ] [ , ]
1

( )
N

Q
i

i
I Q P


 


  (4)

where E Q is a moment order that can range from E   to E   and is used to distort the image to determine 
the generalized dimension of different regions of the image. The partition function is known to follow the 
relationship in Equation 5:

( )
[ ]( ) QI Q   (5)

and from this relationship one can find the function ( )E Q —typically from the slopes of regression lines for 
[ ]log ( )E I Q   versus logE   at each Q value, as shown in Equation 6:

[ ]

0

log ( )
( ) lim .

log
I Q

Q


 
  

 



  (6)

The relationship between ( )E Q  and the generalized dimension ( )E D Q  is shown in Equation 7, which can be 
used to calculate ( )E D Q :

( )( ) .
1

QD Q
Q



 (7)

The multifractal spectrum ( )E D Q  is a monotonically decreasing function which has several useful features. 
The general shape of the ( )E D Q  spectrum can be used to determine whether the system in question is non-
fractal, monofractal or multifractal. Nonfractal and monofractal systems typically have little variation in 

( )E D Q  as a function of E Q, yielding flatter spectra than multifractal systems which tend to be sigmoidal in 
shape. The values of ( )E D Q  at the values 0,1,2E Q   are interpreted as the box-counting dimension, the infor-
mation dimension and the correlation dimension, respectively. These dimensions also follow the relation-
ship ( 0) ( 1) ( 2)E D Q D Q D Q      (Rosenberg, 2020).

Another commonly used multifractal spectrum is ( )E f   versus E , each of which can be found using equa-
tions reported by Chhabra and Jensen (1989):
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where [ , ]( ) iE Q   is given by:
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 (10)

( )E f Q  and ( )E Q  can be found using a similar method to that used to find ( )E Q . For each E Q values, the slope 
of a regression line for the numerators of Equations 8 and 9 versus logE   gives the value of ( )E f Q  and ( )E Q , 
respectively.

The multifractal spectra ( )E D Q  and ( )E f Q  resulting from our analysis on the 27 × 19 grid of point sources from 
Section 3 can be seen in Figure 3. In this particular case, the “mass” is taken to be the seismic moment of 
the point sources. To begin, a square centered at x = 150 km, y = 135 km with a side length of 135 km was 
defined to contain the point sources. This starting square was then subdivided into boxes—each side length 

E  . A set of five side length values [135km,67.5km,45km,33.75km, 27km]E and  were used along with Q 
values in the range   10 10Q  to generate the spectra in Figure 3.

5. Discussion and Conclusion
When comparing the data to the resulting model in Figure 2, one can see that the basic shape of the data 
has been captured, but discrepancies exist if individual data points are compared. This is most likely a 
problem with the spread used when crossing and mutating the fit models. Since the spread of the parame-
ters never changes, there comes a point where the error plateaus—further increases in fit accuracy require 
a decrease in the spread of the possible parameters. A larger initial spread is useful to widely search the 

Figure 3. (left) The ( )E Q  versus E Q spectrum. (center) The ( )E D Q  versus E Q spectrum. (right) The ( )E f   versus E  spectrum.
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parameter space for the appropriate fit and to prevent falling into a local minimum. However, a large 
spread also prevents the fit from settling to a more exact solution. Simply reducing the spread leads to an 
increase in the computation time, as more time will be required for the solutions to search the parameter 
space in smaller steps. Increasing the population size can help widen the initial search area, but this also 
increases the computation time. A possible fix for this problem is an adaptive algorithm that modifies 
the spread during calculation to more efficiently search the parameter space and reduce the spread when 
close to the optimum solution. One such algorithm is outlined in Deb et al. (2007). For this problem where 
only the seismic moments change, other methods are likely more efficient due to the equations being only 
linearly dependent on seismic moment. The genetic algorithm method would be more appropriate for 
scenarios in which the other parameters change, since the equations have nonlinear dependence on those 
parameters. Future work will allow various other parameters to change, fully exploring the strengths of 
the algorithm.

The ( )E Q  spectrum shows a clear change in slope around Q  =  0, indicating that the system of point 
sources exhibits multifractal properties (Mach et al., 1995). The ( )E D Q  spectrum contains the same in-
formation. Its sigmoidal shape also indicates that the system exhibits multifractal properties. Values of 
interest include the box-counting dimension, the information dimension and the correlation dimension, 
which have values of 2, 1.602 E  0.072 and 1.446 E  0.095, respectively. Finally, the ( )E f   spectrum also re-
veals the multifractal properties of the system. While a nonfractal or monofractal ( )E f   spectrum would 
be very localized around a single value, a multifractal ( )E f   spectrum takes the shape of a curve over a 
wide range of values. This shape is seen in Figure 3c, further cementing the multifractality of the system 
in question.

The overall advantage of our genetic algorithm method described in this study lies in its ability to invert the 
parameters of many seismic sources simultaneously. Inversions of fault geometry are typically calculated 
for rectangular fault planes which may be separated into smaller elements. However, the effectiveness of 
this approach is limited for scenarios that are not accurately portrayed by planar surfaces. In our analysis, 
it is possible for the point sources to move independently, so in theory they can model any possible fault 
shape if an appropriate number of sources are used. The cost of this increased flexibility is an increase 
in the amount of computational complexity. The deformation caused by each source in a model must be 
calculated at every desired data point and their individual contributions must be summed to produce the 
total deformation field. This deformation field must be calculated for every model in the population for 
every generation that the genetic algorithm runs. For example, if you desire for a population of 500 models 
containing 15 sources each to run for 10,000 generations, you end up with 75,000,000 function evaluations 
for each data point you are fitting.

Future work with the algorithm could include a fit that allows more than just the seismic moment to 
vary. One possibility is a fit that uses a number of point sources with fixed seismic moment but allows 
their locations to vary. This could be done to see if the algorithm is able to provide new information on 
the 3D structure of earthquake faults. Another possibility is to perform many fits using a different num-
ber of point sources in each model, to shed light on how varying this parameter affects the overall fit. 
The likely greatest improvement to the algorithm would be the inclusion of data from multiple sources; 
for example, the joint inversion of GPS and InSAR data or a combination of ascending and descending 
InSAR images that provide both horizontal and vertical displacements. This would reduce the overall 
freedom of the solution and provide more reliable results. The results of the multifractal analysis could 
be expanded as well, particularly to a 3D multifractal analysis. A multi-layer distribution of sources could 
be inverted to see how the multifractal properties are affected. To conclude, this study is meant more as 
a proof-of-concept for the method and the algorithm will be expanded in future iterations to include the 
above-mentioned improvements.
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Appendix A: Okada's Equations
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for a point source located at (0,0,−d). The above parameters are defined by
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For our purposes, the equations were slightly altered from this form to be written in terms of seismic mo-
ment, defined in Okada (1985) to be 2 2E M U  for dip-slip sources. So in Equation A1, 2E U  is replaced 
with 2ME


.

Appendix B: Residuals Between Data and Models

Figure B1. (left) Azimuthal view of the residuals between the ALOS-2 ground deformation data and the corresponding 
model. (right) Top view of the residuals between the ALOS-2 ground deformation data and the corresponding model.
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Appendix C: Genetic Algorithm Flowchart
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