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ABSTRACT Dehalobacterium formicoaceticum utilizes dichloromethane as the sole
energy source in defined anoxic bicarbonate-buffered mineral salt medium. The
products are formate, acetate, inorganic chloride, and biomass. The bacterium’s genome
was sequenced using PacBio, assembled, and annotated. The complete genome consists
of one 3.77-Mb circular chromosome harboring 3,935 predicted protein-encoding genes.

Dichloromethane (DCM) is both naturally occurring (1) and synthesized by industry.
Whereas aerobic DCM degradation has been studied in detail (2–4), DCM degra-

dation under anoxic conditions is unclear (5–9). Dehalobacterium formicoaceticum is the
only published isolate utilizing DCM as the sole energy source under anoxic conditions
(7). D. formicoaceticum is a strictly anaerobic Gram-positive rod-shaped spore-forming
bacterium affiliated with the Peptococcaceae family (7, 10). Previous physiological and
biochemical studies suggested that DCM metabolism involves initial dechlorination
and the formation of methylene tetrahydrofolate, which is funneled into the Wood-
Ljungdahl pathway (11). The draft genome of “Candidatus Dichloromethanomonas
elyunquensis,” identified as the DCM degrader in an anaerobic consortium, has been
published (12), and here we report genomic information for axenic D. formicoaceticum.

D. formicoaceticum was obtained from the American Type Culture Collection (ATCC
700118) and cultivated in defined anoxic bicarbonate-buffered mineral salt medium
(13, 14) containing DCM as the sole energy source. Genomic DNA was isolated using
the cetyltrimethylammonium bromide method (15). The long-insert library for sequenc-
ing on the RS II platform (Pacific Biosciences, Menlo Park, CA, USA) was prepared by
shearing DNA with a g-TUBE (Covaris, Woburn, MA, USA), targeting an average frag-
ment size of 20 kb. The SMRTbell template preparation kit (Pacific Biosciences) was
used to ligate hair-pin adapters to the fragmented DNA. The final library was size
selected (BluePippin, Sage Science, Beverly, MA, USA) and sequenced on a single SMRT
cell using PacBio P6-C4 chemistry with one 240-min movie. PacBio raw data were error
corrected and assembled using the HGAP (SMRT Analysis version 2.3.0), Canu version
1.2 (16), and Celera version 8.2 assemblers with default parameters for bacterial
genome assembly. The resulting assemblies were assessed for inconsistencies and
misassembly using NUCmer version 3.0 whole-genome alignments (17) and Circleator
plots (GC-skew) (18). Canu version 1.2 (16) generated a single contig representing the
chromosome, which was polished using Quiver (SMRT Analysis version 2.3.0) to gen-
erate the final consensus genome sequence. The IGS prokaryotic annotation pipeline
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was used for coding gene prediction and functional annotation (19). The output
annotations were loaded into a MySQL Chado relational database and accessed through
the visualization tool Manatee (http://manatee.sourceforge.net). Protein-coding genes
were predicted using Glimmer version 3 (20), and noncoding RNA genes were pre-
dicted using tRNAscan-SE (21) and RNAmmer version 1.2 (22).

The complete genome of D. formicoaceticum comprises one circular chromosome
(3,766,545 bp) with an overall G�C content of 43.17%. A total of 3,935 predicted
protein-encoding genes were identified in the genome. In total, 55 tRNAs and 17 rRNAs
were identified, including six 5S rRNAs, five 16S rRNAs, and six 23S rRNAs. The genome
harbors genes encoding all enzymes involved in the Wood-Ljungdahl pathway with a
featured core acetyl coenzyme A synthase (acs) gene cluster (23). Genes encoding
c-type cytochromes (7 genes), a complete NADH:ubiquinone oxidoreductase (Nuo)
complex (11 genes), and one F1F0-ATPase (11 genes) were identified, suggesting
chemiosmotic energy conservation. A complete set of sporulation genes is consistent
with microscopic observations of spores (7). Genes encoding reductive dehalogenases
were not found.

Accession number(s). The complete genome sequence of D. formicoaceticum has
been deposited in GenBank under accession no. CP022121.
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