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Abstract: Brain tumor classification plays an important role in clinical diagnosis and effective
treatment. In this work, we propose a method for brain tumor classification using an ensemble of
deep features and machine learning classifiers. In our proposed framework, we adopt the concept
of transfer learning and uses several pre-trained deep convolutional neural networks to extract
deep features from brain magnetic resonance (MR) images. The extracted deep features are then
evaluated by several machine learning classifiers. The top three deep features which perform well on
several machine learning classifiers are selected and concatenated as an ensemble of deep features
which is then fed into several machine learning classifiers to predict the final output. To evaluate
the different kinds of pre-trained models as a deep feature extractor, machine learning classifiers,
and the effectiveness of an ensemble of deep feature for brain tumor classification, we use three
different brain magnetic resonance imaging (MRI) datasets that are openly accessible from the web.
Experimental results demonstrate that an ensemble of deep features can help improving performance
significantly, and in most cases, support vector machine (SVM) with radial basis function (RBF)
kernel outperforms other machine learning classifiers, especially for large datasets.

Keywords: deep learning; ensemble learning; brain tumor classification; machine learning; trans-
fer learning

1. Introduction

In the human body, the brain is an enormous and complex organ that controls the
whole nervous system, and it contains around 100-billion nerve cells [1]. This essential
organ is originated in the center of the nervous system. Therefore, any kind of abnormality
that exists in the brain may put human health in danger. Among such abnormalities, brain
tumors are the most severe ones. Brain tumors are uncontrolled and unnatural growth
of cells in the brain that can be classified into two groups such as primary tumors and
secondary tumors. The primary tumors present in the brain tissue, while the secondary
tumors expand from other parts of the human body to the brain tissue through the blood-
stream [2]. Among the primary tumors, glioma and meningioma are two lethal types of
brain tumors, and they may lead a patient to death if not diagnosed at an early stage [3]. In
fact, the most common brain tumor in humans is glioma [4].

According to the World Health Organization (WHO), brain tumors can be clas-
sified into four grades [1]. The grade 1 and grade 2 tumors describe lower-level tu-
mors (e.g., meningioma), while grade 3 and grade 4 tumors consist of more severe ones
(e.g., glioma). In clinical practice, the incidence rates of meningioma, pituitary, and glioma
tumors are approximately 15%, 15%, and 45%, respectively.
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There are different ways to treat brain tumors depends on the tumor location, size,
and type. Presently, the most common treatment for brain tumors is surgery as it has
no side effects on the brain [5]. Different types of medical imaging technologies such as
computed tomography (CT), positron emission tomography (PET), and magnetic resonance
imaging (MRI) are available that are used to observe the internal parts of the human body
conditions. Among all these imaging modalities, MRI is considered most preferable as it is
the only non-invasive and non-ionizing modality that offers valuable information in 2D
and 3D formats about brain tumor type, size, shape, and position [6]. However, manually
reviewing these images is time-consuming, hectic, and even prone to error due to the influx
of patients [7]. To address this problem, the development of an automatic computer-aided
diagnosis (CAD) system is required to alleviate the workload of the classification and
diagnosis of brain MRI and act as a tool for helping radiologists and doctors.

Several efforts have been made to develop a highly accurate and robust solution for
the automatic classification of brain tumors. However, due to high inter and intra shape,
texture, and contrast variations, it remains a challenging problem. The traditional machine
learning (ML) techniques rely on handcrafted features, which restrains the robustness of the
solution. Whereas the deep learning-based techniques automatically extract meaningful
features which offer significantly better performance. However, deep learning-based
techniques require a large amount of annotated data for training, and acquiring such
data is a challenging task. To overcome these issues, in this study, we proposed a hybrid
solution that exploits (1) various pre-trained deep convolutional neural networks (CNNs)
as feature extractors to extract powerful and discriminative deep features from brain
magnetic resonance (MR) images, and (2) various ML classifiers to identify the normal and
abnormal brain MR images. Also, to investigate the benefits of combining features from
different pre-trained CNN models, we designed the novel feature ensemble method for
the MRI-based brain tumor classification task. We proposed the novel feature evaluation
and selection mechanism where the deep features from 13 different pre-trained CNNs
are evaluated using 9 different ML classifiers and selected based on our proposed feature
selection criteria. In our proposed framework, we concatenated the selected top three deep
features from three different CNNs to form a synthetic feature. The concatenation process
integrates the information from different CNNs to create a more discriminative feature
representation than using the feature extracted from a single CNN model since different
CNN architectures can capture diverse information in brain MR images. An ensemble of
deep features is then fed into several ML classifiers to predict the final output, whereas
most of the previous works have employed traditional feature extraction techniques [8]. In
our experiment, we provided an extensive evaluation using 13 different pre-trained deep
convolutional neural networks and 9 different ML classifiers on three different datasets:
(1) BT-small-2c, the small dataset with 2 classes (normal/tumor), (2) BT-large-2c, the large
dataset with 2 classes (normal/tumor), and (3) the large dataset with 4 classes (normal,
glioma tumor, meningioma tumor, and pituitary tumor) for brain tumor classification. Our
experiment results demonstrate that the ensemble of deep features can help improving
performance significantly. In summary, our contributions are listed as follows:

• We designed and implemented a fully automatic hybrid scheme for brain tumor classi-
fication, which uses both (1) the pre-trained CNN models to extract the deep features
from brain MR images and (2) ML classifiers to classify brain tumor type effectively.

• We proposed a novel method which consists of three steps: (1) extract deep features
using pre-trained CNN models for meaningful information extraction and better
generalization, (2) select the top three performing features using fined-tuned several
ML models for our task, and (2) combine them to build the ensemble model to achieve
state-of-the-art performance for brain tumor classification in brain MR images.

• We conducted extensive experiments on 13 different pre-trained CNN models and
9 different ML classifiers to compare the effectiveness of each pre-trained CNN model
and each ML classifier on three different brain MRI datasets: (1) BT-small-2c, the
small dataset with 2 classes (normal/tumor), (2) BT-large-2c, the large dataset with
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2 classes (normal/tumor), and (3) the large dataset with 4 classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor) for brain tumor classification.

The layout of this study is organized as follows: The related work is given in Section 2.
The proposed method is presented in Section 3. The experimental settings and results are
shown in Section 4. The conclusion section is described in Section 5.

2. Related Work

Numerous techniques have been proposed for automatic brain MRI classification
based on traditional ML and deep learning methods as shown in Table 1.

The traditional ML methods are comprised of several steps: pre-processing, feature ex-
traction, feature reduction, and classification. In traditional ML methods, feature extraction
is a core step as the classification accuracy relies on extracted features. There are two main
types of feature extraction. The first type of feature extraction is low-level (global) features,
for instance, texture features and intensity, first-order statistics (e.g., mean, standard devia-
tion, and skewness), and second-order statistics such as gray-level co-occurrence matrix
(GLCM), wavelet transform (WT), Gabor feature, and shape. For instance, Selvaraj et al. [9]
employed first-order and second-order statistics using least square support vector machine
(SVM) and develop a binary classifier to classify the normal and abnormal brain MR im-
ages. John et al. [10] used GLCM and discrete wavelet transformation-based methods
for tumor identification and classification. The low-level features represent the image
efficiently; however, the low-level features and their representation capacity are limited
since most brain tumors have similar appearances such as texture, boundary, shape, and
size. Ullah et al. [8] extracted the approximation and detail coefficient of level-3 decompo-
sition using DWT, reduced the coefficient by employing color moments (CM), and finally
employed a feed-forward artificial neural network to identify the normal and abnormal
brain MR images.

The second type of feature extraction is the high-level (local) features, such as fisher
vector (FV), scale-invariant feature transformation (SIFT), and bag-of-words (BoW). Differ-
ent researchers have employed BoW for medical image retrieval and classification. Such
as the classification of breast tissue density in mammograms [11], X-ray images retrieval
and classification on pathology and organ levels [12], and content-based retrieval of brain
tumor [13]. Cheng et al. [14] employed FV to retrieve the brain tumor. The statistical fea-
tures extracted from SIFT, FV, and BoW are high-level features formulated on a local scale
that does not consider spatial information. Hence, it is noticeable that in the traditional ML
method, there are two main problems in the feature extraction stage. First, it only focuses
on either high-level or low-level features. Second, the traditional ML method depends on
handcrafted features, which need strong prior information such as the location or position
of the tumor in an image, and there are high chances of human errors. Therefore, it is
essential to develop a method to combine both high-level and low-level features without
using handcrafted features.

Most of the existing works in medical MR imaging refers to automatic segmentation of
tumor region. Recently, Numerous researchers have proposed different techniques to detect
and segment the tumor region in MR images [15–17]. Once the tumor in MRI is segmented,
these tumors need to be classified into different grades. In previous research studies, binary
classifiers have been employed to identify the benign and malignant classes [8,18,19]. For
instance, Ullah et al. [8] proposed a hybrid scheme for the classification of brain MR images
into normal and abnormal using histogram equalization, Discrete wavelet transform, and
feed-forward artificial neural network, respectively. Kharrat et al. [18] categorize the brain
tumor into normal and abnormal using a genetic algorithm and support vector machine.
Besides, Papageorgiou et al. [19] categorized the high-grade and low-grade gliomas based
on fuzzy cognitive maps and attained 93.22% and 90.26% accuracy for high-grade and
low-grade brain tumors, respectively.
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Table 1. Work Related to Brain Tumor Classification.

Author Type of Solution Classification
Method Objective Dataset Feature Extraction

Method Accuracy

Rajan and Sundar,
2019

Classical Machine
Learning-based

Solutions

Support vector
machine (SVM)

Tumor detection
and segmentation

41 magnetic
resonance (MR)
images

Adaptive
Gray-Level
Co-Occurrence
Matrix (AGLCM)

98%

Kharrat et al., 2010

Hybrid
method-Genetic
algorithm with
SVM

Classification of
brain tumor into
normal, malignant,
and benign tumor

83 MR images Wavelet-based
features 98.14%

Shree and Kumar,
2018

Probabilistic neural
network (PNN)

Classification of
brain MRI into
normal and
abnormal

650 MR images
Gray level
co-occurrence
matrix

95%

Arunachalam and
Royappan, 2017

Feed-forward back
propagation neural
network

Classification of
brain MRI into
normal and
abnormal

230 MR images
Gabor, GLCM, and
discrete wavelet
transform (DWT)

99.8%

Ullah et al., 2020 Feed-forward
neural network

Classification of
brain MRI
intonormal and
abnormal

71 MR images DWT 95.8%

B. Ural, 2018 PNN Brain tumor
detection 25 MR images k-mean with fuzzy

c-mean (KMFCM) 90%

Preethi and
Ashwarya, 2019

Deep neural
network (DNN)

Classification of
tumor and
non-tumor image

20 MR images GLCM + Wavelet
GLCM 99.3%

Francisco et al., 2021

Advanced Deep
Learning-based

Solutions

Multi-pathway
convolutional
neural network
(CNN)

Brain tumor
classification 3064 MR images CNN 97.3%

Deepak and Ameer,
2019

Deep transfer
learning

Classification of
glioma,
meningioma, and
pituitary tumors

3064 MR images GoogleNet 98%

Ahmet and
Mohammad, 2020 CNN models

Brain tumor
detection and
classification

253 MR images CNN 97.2%

Das et al., 2019 CNN Brain tumor
classification 3064 MR images CNN 94.39%

Saed et al., 2017 CNN

Classification of
brain MRI into
normal and
abnormal

587 MR images CNN 91.16%

Saxena et al., 2019 CNN networks with
transfer learning

Binary classification
of brain tumor into
normal and
abnormal

253 MR images CNN 95%

Paul et al., 2017 Fully connected and
CNN

Brain tumor
classification 3064 MR images CNN 91.43%

Hemanth et al., 2019 CNN

MR brain image
classification into
normal and
abnormal

220 MR images CNN 94.5%

Shree and Kumar [20] divided the brain MRI into two classes: normal and abnormal.
They used GLCM for feature extraction, while a probabilistic neural network (PNN)
classifier has been employed to classify the brain MR image into normal and abnormal
and obtained 95% accuracy. Arunachalam and Savarimuthu [21] proposed a model to
categorize the normal and abnormal brain tumor in brain MR images. Their proposed
model comprised enhancement, transformation, feature extraction, and classification. First,
they have enhanced the brain MR image using shift-invariant shearlet transform (SIST).
Then, they extracted the features using Gabor, grey level co-occurrence matrix (GLCM),
and discrete wavelet transform (DWT). Finally, these extracted features were then fed into
feed-forward backpropagation neural network and obtained a high accuracy rate. Rajan
and Sundar [22] proposed a hybrid energy-efficient method for automatic tumor detection
and segmentation. Their proposed method is comprised of seven long phases and reported
98% accuracy. The main drawback of their proposed model is high computation time due
to the use of numerous techniques.

Since the last decade, deep learning methods have been widely used for brain MRI
classification [23,24]. The deep learning method does not need handcrafted (manually)
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extracted features as it embedded the feature extraction and classification stage in self-
learning. The deep learning method requires a dataset where sometimes a pre-processing
operation needs to be done, and then salient features are determined in a self-learning
manner [25]. In MR imaging classification, a key challenge is to reduce the semantic gap
between the high-level visual information perceived by the human evaluator and the low-
level visual information captured by the MR imaging machine. To reduce the semantic gap,
the convolutional neural networks (CNNs), one of the famous deep learning techniques
for image data, can be used as a feature extractor to capture the relevant features for the
classification task. Feature maps in the initial layers and higher layers of CNNs models
extract low-level features and high-level content (domain) specific features, respectively.
Feature maps in the earlier layer construct simple structural information, for instance,
shape, textures, and edges, whereas higher layers combine these low-level features to
construct (encode) efficient representation, which integrates global and local information.

Recently, different researchers have used CNNs for brain MRI classification and vali-
dated their proposed methodology on brain tumor classification datasets [26–28]. Deepak
and Ameer [29] used a pre-trained GoogLeNet to extract features from brain MR images
with deep CNN to classify three types of brain tumor and obtained 98% accuracy. Ah-
met and Muhammad [30] used different CNN models such as GoogLeNet, Inception V3,
DenseNet-201, AlexNet, and ResNet-50 to classify the brain MR images and obtained
reasonable accuracies. They modified pre-trained ResNet-50 CNN by removing its last 5
layers and added new 8 layers, and obtained 97.2% accuracy with this model, which is
the highest accuracy among all pre-trained models. Khwaldeh et al. [31] proposed a CNN
model to classify the normality and abnormality of brain MR images as well as high-grade
and low-grade glioma tumors. They have modified the AlexNet CNN model and used it
as their network architecture, and they obtained 91% accuracy. Despite the valuable works
being done in this area, developing a robust and practical method still requires more effort
to classify brain MR images. Saxena et al. [32] used Inception V3, ResNet-50, and VGG-16
models with transfer learning methods to classify brain tumor data. The ResNet-50 model
obtained the highest accuracy rate with 95%. In studies [33,34] CNN architectures have
been introduced to classify brain tumors. In these architectures, the convolution neural
network extracts the features from brain MRI using convolution and pooling operations.
The main purpose of these proposed models is to find the best deep learning model that
accurately classifies the brain MR images. Francisco et al. [35] presented a multi-pathway
CNN architecture for automatic brain tumor segmentation such as glioma, meningioma,
and pituitary tumor. They have evaluated their proposed model using a publicly available
T1-weighted contrast-enhanced MRI dataset and obtained 97.3% accuracy. However, their
training procedure is quite expensive. Raja et al., [36] proposed a hybrid deep autoencoder
(DAE) for brain tumor classification using the Bayesian fuzzy clustering (BFC) approach.
Initially, they have used a non-local mean filter to remove the noise from the image. Then
the BFC approach is employed for brain tumor segmentation. Furthermore, some robust
features were extracted using scattering transform (ST), information-theoretic measures,
and wavelet packet Tsallis entropy (WPTE). Eventually, a hybrid scheme of DAE is em-
ployed for brain tumor classification and achieved high accuracy. The main drawback of
this approach is, it requires high computation time due to the complex proposed model.

In summary, as observed from the above research studies, the acquired accuracies
using deep learning techniques for brain MRI classification are significantly high as com-
pared to traditional ML techniques. However, the deep learning models require a massive
amount of data for training in order to perform better than traditional ML techniques.

It is clearly seen from recently published studies that deep learning techniques have
become one of the mainstream of expert and intelligent systems and medical image analysis.
Furthermore, the techniques mentioned earlier have certain limitations which should be
considered while working with brain tumor classification and segmentation. The major
drawback of the previously proposed systems is that they only consider binary classifica-
tion (normal and abnormal) MR image dataset and ignore the multi-class dataset [37]. In
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the pre-screening stage of a patient, binary class classification is required for physicians and
radiologists, where the physicians take further action based on binary class classification.
Preethi and Aishwarya [38] proposed a model to classify the brain tumor based on multiple
stages. They combined the wavelet-based gray-level co-occurrence matrix and GLCM to
produce the feature matrix. The extracted features were further reduced using the opposi-
tional flower pollination algorithm (OFPA). Finally, the deep neural network is employed
to classify the MR brain image based on the selected features and obtained 92% accuracy.
Ural [39] initially enhanced the brain MRI using different image processing techniques.
Also, different segmentation process has been mixed for boosting the performance of the
solution. Further, the PNN method is employed to detect and localize the tumor area in the
brain. The computational time of their proposed method is quite low and also the acquired
accuracy rate is quite reasonable.

3. Proposed Methods

In this section, the overall architecture of our proposed method is first described. After
that, we describe the details of four key components in the following subsections.

The architecture of our proposed method for brain tumor classification is illustrated
in Figure 1. First, input MR images are pre-processed (e.g., brain cropping, resize, and
augmentation) before feeding into the model (Section 3.1). Second, the pre-processed
images are used as the input of pre-trained CNN models as feature extractors (Section 3.2).
The extracted features from pre-trained CNN models are evaluated by several ML classifiers.
(Section 3.3). The top three deep features are selected based on evaluation results from
the classifiers (Section 3.4). The top three deep features are concatenated in our ensemble
module, and the concatenated deep features are further used as an input to ML classifiers
to predict final output (Section 3.5).

Figure 1. Architecture of our proposed model using feature ensemble based on deep feature evalua-
tion and selection.

3.1. Image Pre-Processing

Almost every image in our brain MRI datasets contains undesired spaces and areas,
leading to poor classification performance. Hence, it is necessary to crop the images to
remove unwanted areas and use only useful information from the image. We use the
cropping method in [40] which uses extreme point calculation. The step to crop the MR
images using extreme point calculation is shown in Figure 2. First, we load the original MR
images for pre-processing. After that, we apply thresholding to the MR images to convert
them into binary images. Also, we perform the dilation and erosions operations to remove
the noise of images. After that, we selected the largest contour of the threshold images
and calculated the four extreme points (extreme top, extreme bottom, extreme right, and
extreme left) of the images. Lastly, we crop the image using the information of contour
and extreme points. The cropped tumor images are resized by bicubic interpolation. The
specific reason to choose the bicubic interpolation is that it can create a smoother curve
than other interpolation methods such as bilinear interpolation and is a better choice for
MR images since there is a large amount of noise along the edges.
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Figure 2. Step to crop the magnetic resonance (MR) images.

Also, we used image augmentation since the size of our MRI dataset is not very large.
Image augmentation is the technique that creates an artificial dataset by modifying the
original dataset. It is known as the process of creating multiple copies of the original image
with different scales, orientation, location, brightness, and so on. It is reported that the
classification accuracy of the model can be improved by augmenting the existing data
rather than collecting new data.

In our image augmentation step, we used 2 augmentation strategies (rotation and
horizontal flipping) to generate new training sets. The rotation operation used for data
augmentation is done by randomly rotating the input by 90 degrees zero or more times.
Also, we applied horizontal flipping to each of the rotated images.

Since the MR images in our dataset are of different width, height, and sizes, it is
recommended to resize them to equal width and height to get optimum results. In this
work, we resize the MR images to the size of either 224 × 224 (or 299 × 299) pixels since
input image dimensions of pre-trained CNN models are 224 × 224 pixels except for the
Inception V3, which requires the input images with size 299 × 299.

3.2. Deep Feature Extraction Using Pre-Trained CNN Models
3.2.1. Convolutional Neural Network

CNN is a class of deep neural networks that uses the convolutional layers for filtering
inputs for useful information. The convolutional layers of CNN apply the convolutional
filters to the input for computing the output of neurons that are connected to local regions
in the input. It helps in extracting the spatial and temporal features in an image. A weight-
sharing method is used in the convolutional layers of CNN to reduce the total number of
parameters [41,42].

CNN is generally comprised of three building blocks: (1) a convolutional layer to
learn the spatial and temporal features, (2) a subsampling (max-pooling) layer to reduce or
downsample the dimensionality of an input image, and (3) a fully connected (FC) layer
for classifying the input image into various classes. The architecture of CNN is shown
in Figure 3.

Figure 3. Architecture of Convolutional Neural Networks.

3.2.2. Transfer Learning

Generally, CNN has better performance in a larger dataset than a smaller one. Transfer
learning can be used when it is not feasible to create a large training dataset. The concept
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of transfer learning can be depicted in Figure 4, where the model pre-trained on large
benchmark datasets (e.g., ImageNet [43]) can be used as a feature extractor for the different
task with a relatively smaller dataset such as an MRI dataset. In recent years, transfer
learning technique has been successfully applied in various domains, such as medical
image classification and segmentation, and X-ray baggage security screening [44–47]. This
reduces the long training time that is normally required for training deep learning models
from scratch and also removes the requirement of having a large dataset for the training
model [48,49].

Figure 4. Concept of transfer learning.

3.2.3. Deep Feature Extraction

In this study, we use a CNN-based model as a deep learning-based feature extractor
since it can capture the important features without any human supervision. Also, we use a
transfer learning-based approach to build our feature extractor since our MRI dataset is
not very large and training and optimizing deep CNN such as DenseNet-121 from scratch
is often not feasible. Hence, we use the fixed weights of each CNN model pre-trained on a
large ImageNet dataset to extract the deep features of brain MR images.

The pre-trained CNN models used in our study are ResNet [50], DenseNet [51], VGG [52],
AlexNet [53], Inception V3 [54], ResNeXt [55], ShuffleNet V2 [56], MobileNet V2 [57], and
MnasNet [58]. The extracted deep features are then fed into the ML classifiers, including
neural networks with a FC layer as a traditional deep learning approach using CNN as shown
in Figure 3 to predict the output.

3.3. Machine Learning Classifiers for Brain Tumor Classification

The extracted deep features from pre-trained CNN models are used as an input of
several ML classifiers, including neural networks with an FC layer, Gaussian Naïve Bayes
(Gaussian NB), Adaptive Boosting (AdaBoost), K-Nearest Neighbors (k-NN), Random
forest (RF), SVM with three different kernels: linear, sigmoid, and radial basis function
(RBF), Extreme Learning Machine (ELM). We implemented these ML classifiers using the
scikit-learn ML library [59]. These ML classifiers and their hyper-parameter settings used
in our experiments for brain tumor classification are discussed in the following subsections.

3.3.1. Fully Connected Layer

In neural networks with an FC layer, which is the traditional deep learning approach,
the loss function is defined to calculate the loss, which is a prediction error of the neural
network. The loss is used to calculate the gradients to update the weights of the neural
network as a training step. In our training step of the FC classifier, we use the cross-entropy
loss function, which is the most commonly used loss function for CNN and other neural
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networks. It calculates the loss between the soft target estimated by the softmax function
and the ground-truth label to learn our model parameters as follows:

L(y, z) =
M

∑
i=0
−yilog

(
zi

∑j exp(zi)

)
(1)

where M is the total number of class, for instance, M is set to 2 when the classifier is trained
on the two MRI datasets, BT-small-2c and BT-large-2c, which contain two classes (normal
and tumor) of MR images, and M is set to 4 when the classifier is trained on the MRI dataset,
BT-large-4c, which contains four classes (normal, glioma tumor, meningioma tumor, and
pituitary tumor) of MR images (See Section 4.1 for the details of these datasets), y is a
one-hot encoded vector representing the ground-truth label of the training set as 1 and all
other elements as 0, and zi is the logit which is the output of the last layer for the i-th class
of the model.

In this work, we update the weight of the layers via Adaptive Moment Estimation
(Adam), the optimizer that calculates the adaptive learning rates of every parameter. The
learning rate is set to 0.001. We run each of the methods for 100 epochs. We collect the
highest average accuracy for our test dataset for each run.

3.3.2. Gaussian Naïve Bayes

Naïve Bayes classifier is the ML classifier with the assumption of conditional indepen-
dence between the attributes given the class. In this work, we use Gaussian NB classifier
as one of our ML classifiers for brain tumor classification. In Gaussian NB classifier, the
conditional probability P(y|X) is calculated as a product of the individual conditional
probabilities using the naïve independence assumption as follows:

P(y|X) =
P(y)P(X|y)

P(X)
=

P(y)∏n
i=1 P(xi|y)

P(X)
(2)

where X is given data instance (extracted deep feature from brain MR image) which is
represented by its feature vector (x1, ..., xn), y is a class target (type of brain tumor) with
two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four
classes (normal, glioma tumor, meningioma tumor, and pituitary tumor) for BT-large-4c
dataset. Since P(X) is constant, the given data instance can be classified as follows:

ŷ = arg max
y

P(y)
n

∏
i=1

P(xi|y) (3)

where (xi|y) is calculated assuming that the likelihood of features to be Gaussian as follows:

P(xi|y) =
1√

2πσ2
y

exp(
(xi − µy)2

2σ2
y

) (4)

where the parameters µy and σy are estimated using maximum likelihood.
In this work, the smoothing variable representing the portion of the largest variance

of all features that are added to variances for calculation stability is set to 10−9, the default
value of the scikit-learn ML library.

3.3.3. AdaBoost

AdaBoost, proposed by Freund and Schapire [60], is an ensemble learning algorithm
that combines multiple classifiers to improve performance. AdaBoost classifier builds a
well-performing strong classifier by combining multiple weak classifiers using the iterative
ensemble method. The underlying idea of Adaboost is to set the weights of classifiers and
train the data sample in each boosting iteration to accurately predict a class target (a type
of brain tumor) of a given data instance (extracted deep feature from brain MR image) with
two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four
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classes (normal, glioma tumor, meningioma tumor, and pituitary tumor) for BT-large-4c
dataset. Any ML classifier that accepts the weights on the training set can be used as a
base classifier.

In this work, we adopt the decision tree classifier as our base classifier since it is a
commonly used base classifier for AdaBoost. Also, the number of the estimator is set to 150.

3.3.4. K-Nearest Neighbors

k-NN is one of the simplest classification techniques. It performs predictions directly
from the training set that is stored in the memory. For instance, to classify a new data
instance (a deep feature from brain MR image), k-NN chooses the set of k objects from
the training instances that are closest to the new data instance by calculating the distance
and assigns the label with two classes (normal or tumor) or four classes (normal, glioma,
meningioma, and pituitary tumor) and does the selection based on the majority vote of its
k neighbors to the new data instance.

Manhattan distance and Euclidean distance are the most commonly used to measure
the closeness of the new data instance with the training data instances. In this work, we
used the Euclidean distance measure for the k-NN algorithm. Euclidean distance d between
data point x and data point y are calculated as follows:

d(x, y) =
√
(∑N

i=1(xi − yi)2) (5)

The brief summary of k-NN algorithm is illustrated below:

• First select a suitable distance metric.
• Store all the training data set P in pairs in the training phase as follows:

P = (yi, ci), i = 1, ..., n (6)

where in the training dataset, yi is a training pattern, n is the amount of training
patterns and ci is its corresponding class.

• In the testing phase, compute the distances between the new features vector and the
stored (training data) features, and classify the new class example by a majority vote
of its k neighbors.

The correct classification given in the test phase is used to evaluate the accuracy of the
algorithm. If the result is not satisfactory, the k value can be adjusted until a reasonable
level of accuracy is obtained. It is noticeable here that we set the number of neighbors from
1 to 4 and selected the one with the highest accuracy.

3.3.5. Random Forest

RF, proposed by Breiman [61], is an ensemble learning algorithm that builds multiple
decision trees using the bagging method to classify new data instance (a deep feature of
brain MR image) to a class target (a type of brain tumor) with two classes (normal and
tumor) for two MRI datasets, BT-small-2c and BT-large-2c, or four classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor) for BT-large-4c dataset. RF selects random
n attributes or features to find the optimal split point using the Gini index as a cost function
while creating the decision trees. This random selection of the attributes or features can
reduce the correlation among the trees and have lower ensemble error rates. The new
observation is fed into all classification trees of the RF for predicting a class target (a type
of brain tumor) of the new incoming data instance. RF counts the numbers of predictions
for each class and selects the class with the largest number of votes as the class label for the
new data instance.

In this work, the number of features to consider when looking for the best split is set
to the square root of the total number of features. Also, we set the number of trees from 1
to 150 and selected the one with the highest accuracy.
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3.3.6. Support Vector Machine

SVM, proposed by Vapnik [62], is one of the most powerful classification algorithms.
SVM uses the kernel function, K(xn, xi), to transform the original data space into an another
space with a higher dimension. The hyperplane function for separating the data can be
defined as follows:

f (xi) =
N

∑
n=1

αnynK(xn, xi) + b (7)

where xn is support vector data (deep features from brain MR image), αn is Lagrange
multiplier, and yn represent a target class of these three datasets employed in this paper,
such that the two datasets are binary (normal and abnormal) class datasets, while the third
dataset has four different classes (normal, glioma, meningioma, and pituitary tumor) with
n = 1, 2, 3, ..., N.

In this work, we used the most commonly used kernel functions at the SVM algorithm:
(1) linear kernel, (2) sigmoid kernel, and (3) RBF kernel. Table 2 shows the details of three ker-
nels. Also, SVM has two key hyper-parameters, C and Gamma. C is the hyper-parameter
for the soft margin cost function that controls the influence of each support vector. Gamma
is the hyper-parameter that decides how much curvature we want in a decision bound-
ary. We set the gamma and C values to [0.00001, 0.0001, 0.001, 0.01] and [0.1, 1, 10, 100,
1000, 10000], respectively, and selected the combination of gamma and C values with the
highest accuracy.

Table 2. Kernel types and their required parameters.

Kernel Equation Parameters

Linear K(xn, xi) = (xn, xi) -
Sigmoid K(xn, xi) = tanh(γ(xn, xi) + C) γ, C

RBF K(xn, xi) = exp(−γ‖xn − xi‖2 + C) γ, C

3.3.7. Extreme Learning Machine (ELM)

Extreme Learning Machine (ELM) is a simple learning algorithm for single-hidden layer
feed-forward neural networks (SLFNs). ELM was initially proposed by Huang et al. [63] to
overcome the limitations of traditional SLFNs learning algorithms, such as poor generalization
effectiveness, irrelevant parameter tuning, and slow learning speed. ELM has shown a con-
siderable ability for regression and classification tasks with good generalization performance.

In ELM, the output of a SLFN with Ñ hidden nodes given N distinct training samples,
can be represented as follows:

oj =
Ñ

∑
i=1

βi fi(xj) =
Ñ

∑
i=1

βi f (xj; ai, bi), j = 1, ..., N (8)

where oj is the output vector of the SLFN, which represents the probability of the input
sample xi (deep features from brain MR image) belonging to a class target (type of brain
tumor) with two classes (normal and tumor) for two MRI datasets, BT-small-2c and BT-
large-2c, or four classes (normal, glioma tumor, meningioma tumor, and pituitary tumor)
for BT-large-4c dataset, ai and bi are learning parameters generated randomly of the j-th
hidden node, respectively, βi is the link connecting the j-th hidden node and the output
nodes, and f (xj; ai, bi) is the activation function of ELM.

The ELM learning algorithm can be explained in 3 steps. First, the parameters (weights
and biases) of all neurons are randomly initialized. Second, the hidden layer output matrix
of the neural network H is calculated. Third, the output weight, β is calculated as follows:

β = H′T (9)
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where H′ is the Moore-Penrose generalized inverse of matrix H (the hidden layer output
matrix), which can be obtained by minimum-norm least-squares solution, and T is the
target matrix corresponding to H.

In this work, the number of the hidden layer is set to [5000, 6000, 7000, 8000, 9000,
10,000], and select the one with the highest accuracy.

3.3.8. Discussion

Several efforts have been made to develop a highly accurate and robust solution
for MRI-based brain tumor classification using various ML classifiers: neural network
classifier [8,21,64], Naïve Bayes classifier [65], AdaBoost classifier [66], k-NN classifier [64],
RF classifier [64,67], SVM classifier [18,22], and ELM classifier [68]. However, there have
been no studies done on evaluating the effectiveness of ML classifiers for the MRI-based
brain tumor classification task. Hence, in our study, we use 9 well-known different ML
classifiers to examine which ML classifier performs well for the MRI-based brain tumor
classification task.

Since the performance of ML classifiers are highly dependent on input feature map,
designing a method to produce a discriminative and informative feature from brain MR
images plays a key role to successfully build the model for MRI-based brain tumor classifi-
cation. In recent years, several studies proposed deep-learning-based feature extraction
methods for MRI-based brain tumor classification using pre-trained deep CNN models:
ResNet-50 [69,70], ResNet-101 [71], DenseNet-121 [70,72], VGG-16 [69,70], VGG-19 [70,73],
AlexNet [74], Inception V1 (GoogLeNet) [29], Inception V3 [69,75], and MobileNet V2 [76].
However, no study has been carried out to evaluate the effectiveness of several pre-trained
deep CNN models as a feature extractor for MRI-based brain tumor classification task.
Hence, we use 13 different pre-trained deep CNN models to examine which pre-trained
CNN models are useful as a feature extractor for MRI-based brain tumor classification task.

3.4. Deep Feature Evaluation and Selection

We evaluate each deep feature extracted from 13 different pre-trained CNNs using 9
different ML classifiers (FC, Gaussian NB, AdaBoost, k-NN, RF, SVM-linear, SVM-sigmoid,
SVM-RBF, and ELM) described in Section 3.3 and choose the top three deep features based
on the average accuracy of 9 different ML classifiers for each of our 3 different MRI datasets.
In case the accuracy of two or more deep features is the same, we choose the one with
the lowest standard deviation. Also, if there are more than 2 deep features extracted from
two homogeneous pre-trained models (e.g., DenseNet-121 and DenseNet-169) among the
top three features, we exclude the one with lower accuracy and choose the next best deep
feature. The reason for doing this is that the deep features extracted from two homogeneous
models share similar feature spaces. Hence, the ensemble of these features has redundant
feature space and a lack of diversity. The top three deep features are fed into our ensemble
module described in the following sub-section.

3.5. Ensemble of Deep Features

Ensemble learning aims at improving the performance and prevents the risk of using
a single feature extracted from one model with a poor performance by combining multiple
features from several different models into one predictive feature. Ensemble learning can
be divided into feature ensemble and classifier ensemble depending on integration level.
Feature ensemble involves integrating feature sets that are further fed to the classifier for
final output, while classifier ensemble involves integrating output sets from classifiers
where voting methods determine the final output. Since the feature set contains richer
information about the MR images than the output set of each classifier, integration at this
level is expected to provide better classification results. Hence, in this work, we use feature
ensemble as our ensemble learning.

In our ensemble module, we concatenate the top three deep features from three
different pre-trained CNNs as one sequence. For instance, in Figure 1, the top three
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deep features are DenseNet-169, Inception V3, and ResNeXt-50, and these features are
concatenated into one sequence as our feature-level ensemble step. The concatenated deep
feature is further fed to ML classifiers for predicting the final output. Also, we concatenate
all the possible combinations of two features from the top three features, which is further
fed to ML classifiers to compare with the model using the ensemble of the top three features
in our experiments.

4. Experiments and Results
4.1. Dataset

We perform a set of experiments on three different brain MRI datasets which are
publicly available for the tasks of brain tumor classification. The first dataset of brain MR
images was downloaded from the Kaggle website [77], and for our simplicity, we named
this dataset BT-small-2c. The BT-small-2c dataset comprises 253 images, out of which
155 images contain tumors while the remaining 98 images are without tumors. The second
dataset was also downloaded from the Kaggle website, namely Brain Tumor Detection
2020 [78], and we call it BT-large-2c. This database comprises 3000 images, out of which
1500 images contain tumors while the remaining 1500 images are without tumors. The
third dataset consists of 3064 T1-weighted images containing three different types of brain
tumors such as gliomas, meningiomas, and pituitary tumors. The dataset was acquired
from the Kaggle website [37], and we named this dataset as BT-large-4c. The BT-small-2c
and BT-large-2c datasets contain brain MR images with two classes (normal and tumor).
The BT-large-4c dataset contains brain MR images with four classes (normal, glioma tumor,
meningioma tumor, and pituitary tumor). Each dataset is subdivided into a training set
(80% of the total dataset) and a test set (20% of the total dataset). Table 3 shows details of
the dataset used in our experiments. The examples of brain MR images in BT-small-2c,
BT-large-2c, and BT-large-4c datasets are shown in Figure 5.

Figure 5. The examples of brain MR images in BT-small-2c, BT-large-2c, and BT-large-4c datasets.
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Table 3. Details of the dataset.

Types Number of Class Training Set Test Set

BT-small-2c 2 202 51
BT-large-2c 2 2400 600
BT-large-4c 4 2611 653

4.2. Experimental Setting

In our experiment, we use 13 different pre-trained deep convolutional neural networks
as a feature extractor: ResNet-50, ResNet-101, DenseNet-121, DenseNet-169, VGG-16, VGG-
19, AlexNet, Inception V3, ResNext-50, ResNext-101, ShuffleNet, MobileNet, MnasNet. We
freeze the weight of bottleneck layers of deep CNN models pre-trained on the ImageNet [79]
dataset. Also, we use 9 different ML classifiers: FC layer, Gaussian NB, AdaBoost, k-NN,
RF, SVM with three different kernels (linear, sigmoid, and RBF), ELM. Before the training
step, we pre-processed the input images as described in Section 3.1. Also, we converted
the images to the size 224 × 224 (or 299 × 299) pixels as the pre-trained networks used in
our experiments require the input images with size 224 × 224 except for the Inception V3,
which requires the input images with size 299 × 299. All experiments were performed on a
PC with an NVIDIA GeForce GTX 1070 Ti GPU.

4.3. Results

The empirical results were obtained for three different datasets (BT-small-2c, BT-large-
2c, and BT-large-4c) for the tasks of the brain tumor classification. The first experiment is
designed to compare the several different pre-trained CNN networks with several different
ML classifiers. The second experiment is designed to show the effectiveness of the ensemble
of top 2 or 3 deep features selected by the results from the first experiment with several
different ML classifiers. The results of the first experiments on BT-small-2c, BT-large-2c, and
BT-large-4c datasets are shown in Tables 4–6, respectively. As shown in Table 4, DenseNet-
169 feature, Inception V3 feature, and ResNeXt-50 feature are selected as the top three deep
features on BT-small-2c dataset. As shown in Table 5, DenseNet-121 feature, ResNeXt-101
feature, and MnasNet feature are selected as the top three deep features on BT-small-4c
dataset. Also in Table 6, DenseNet-169 feature, ShuffleNet V2 feature, and MnasNet feature
are selected as the top three deep features on BT-large-4c dataset.

Table 4. Accuracies of pre-trained CNN models with ML classifiers on BT-small-2c dataset (? : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM Average

ResNet-50 feature 0.9216 0.8431 0.8431 0.8627 0.8824 0.8235 0.8824 0.9020 0.9020 0.8736
ResNet-101 feature 0.9216 0.8824 0.8431 0.8235 0.9020 0.8235 0.8824 0.9020 0.8824 0.8736

DenseNet-121 feature 0.9216 0.7647 0.8235 0.9216 0.8824 0.8431 0.8824 0.8627 0.9020 0.8671
DenseNet-169 feature ? 0.9608 0.8039 0.8627 0.9020 0.9412 0.9608 0.9608 0.9804 0.9412 0.9237

VGG-16 feature 0.8431 0.7451 0.7451 0.7059 0.8431 0.8627 0.8627 0.8039 0.8039 0.8017
VGG-19 feature 0.8235 0.6863 0.7843 0.6863 0.8235 0.8235 0.8235 0.8235 0.9020 0.7974
AlexNet feature 0.9216 0.7255 0.8431 0.7843 0.9020 0.8235 0.8627 0.9020 0.9020 0.8519

Inception V3 feature ? 0.9216 0.8824 0.9020 0.8235 0.9412 0.9020 0.9020 0.9020 0.9020 0.8976
ResNeXt-50 feature ? 0.9412 0.9020 0.9020 0.9020 0.9216 0.9216 0.9216 0.9216 0.9216 0.9172
ResNeXt-101 feature 0.9216 0.8039 0.8235 0.8235 0.9020 0.8627 0.9020 0.9216 0.9216 0.8758

ShuffleNet V2 feature 0.8431 0.7647 0.9216 0.8627 0.9020 0.9412 0.9412 0.9412 0.9412 0.8954
MobileNet V2 feature 0.8824 0.8431 0.7843 0.8431 0.8824 0.8627 0.8824 0.8824 0.8627 0.8584

MnasNet feature 0.9216 0.7843 0.8235 0.8235 0.9216 0.8431 0.8627 0.8627 0.9020 0.8606

Average 0.9035 0.8024 0.8386 0.8281 0.8959 0.8688 0.8899 0.8929 0.8989

The bold text represents the highest average accuracy of all ML classifier or all deep features.
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Also, the results of the second experiments on BT-small-2c, BT-large-2c, and BT-large-
4c datasets are shown in Tables 7–9, respectively. Also, the computational complexity of
ensemble models is compared based on the inference time on a test set of the BT-large-4c
dataset as shown in Table 10. From these results, five observations were made.

Table 5. Accuracies of pre-trained CNN models with ML classifiers on BT-large-2c dataset (? : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM Average

ResNet-50 feature 0.9767 0.8117 0.9600 0.9767 0.9400 0.9750 0.9750 0.9817 0.9667 0.9515
ResNet-101 feature 0.9767 0.8250 0.9433 0.9733 0.9567 0.9750 0.9733 0.9800 0.9717 0.9528

DenseNet-121 feature ? 0.9750 0.8383 0.9600 0.9817 0.9683 0.9683 0.9683 0.9833 0.9817 0.9583
DenseNet-169 feature 0.9750 0.8400 0.9650 0.9783 0.9633 0.9667 0.9650 0.9800 0.9800 0.9570

VGG-16 feature 0.9550 0.7383 0.8833 0.9617 0.9283 0.9517 0.9500 0.9650 0.9550 0.9209
VGG-19 feature 0.9550 0.7067 0.8850 0.9600 0.9300 0.9550 0.9550 0.9633 0.9450 0.9172
AlexNet feature 0.9633 0.7067 0.9200 0.9550 0.9500 0.9400 0.9500 0.9750 0.9633 0.9248

Inception V3 feature 0.9817 0.8317 0.9567 0.9800 0.9567 0.9750 0.9733 0.9883 0.9800 0.9581
ResNeXt-50 feature 0.9717 0.8600 0.9550 0.9817 0.9550 0.9700 0.9683 0.9833 0.9750 0.9578

ResNeXt-101 feature ? 0.9783 0.8583 0.9633 0.9833 0.9617 0.9717 0.9717 0.9817 0.9817 0.9613
ShuffleNet V2 feature 0.9433 0.8533 0.9533 0.9700 0.9517 0.9617 0.9617 0.9783 0.9700 0.9493
MobileNet V2 feature 0.9667 0.8400 0.9367 0.9700 0.9450 0.9617 0.9617 0.9783 0.9633 0.9470

MnasNet feature ? 0.9817 0.8550 0.9467 0.9750 0.9567 0.9700 0.9733 0.9817 0.9833 0.9581

Average 0.9692 0.8127 0.9406 0.9728 0.9510 0.9647 0.9651 0.9785 0.9705

The bold text represents the highest average accuracy of all ML classifier or all deep features.

Table 6. Accuracies of pre-trained CNN models with ML classifiers on BT-large-4c dataset (? : top-3 features based on
average accuracy).

Deep Feature from the
Pre-Trained CNN Model

ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM Average

ResNet-50 feature 0.8760 0.6937 0.6570 0.8576 0.8530 0.8744 0.8760 0.8989 0.8591 0.8273
ResNet-101 feature 0.8867 0.7228 0.6799 0.8438 0.8499 0.8897 0.8897 0.9081 0.8683 0.8377

DenseNet-121 feature 0.8913 0.7106 0.7198 0.8943 0.8744 0.8698 0.8729 0.9158 0.8760 0.8472
DenseNet-169 feature ? 0.8959 0.7228 0.7335 0.8821 0.8652 0.8652 0.8729 0.9204 0.8806 0.8487

VGG-16 feature 0.8760 0.6677 0.7106 0.8331 0.8300 0.8606 0.8606 0.8744 0.8423 0.8173
VGG-19 feature 0.8683 0.5942 0.6309 0.8346 0.8377 0.8606 0.8606 0.8790 0.8453 0.8013
AlexNet feature 0.8637 0.6340 0.6554 0.8714 0.8453 0.8652 0.8683 0.9066 0.8361 0.8162

Inception V3 feature 0.8652 0.6708 0.6830 0.8300 0.8132 0.8591 0.8591 0.8867 0.8438 0.8123
ResNeXt-50 feature 0.8744 0.7152 0.6891 0.8775 0.8346 0.8560 0.8576 0.8959 0.8560 0.8285

ResNeXt-101 feature 0.8851 0.6692 0.7198 0.8714 0.8346 0.8744 0.8744 0.8989 0.8744 0.8336
ShuffleNet V2 feature ? 0.8637 0.7152 0.7381 0.8637 0.8576 0.8989 0.8989 0.9112 0.8606 0.8453
MobileNet V2 feature 0.8928 0.6983 0.7136 0.8897 0.8423 0.8851 0.8851 0.9158 0.8729 0.8440

MnasNet feature ? 0.8851 0.6922 0.7458 0.8928 0.8515 0.8959 0.8959 0.9127 0.8775 0.8499

Average 0.8788 0.6851 0.6982 0.8648 0.8453 0.8735 0.8748 0.9019 0.8610

The bold text represents the highest average accuracy of all ML classifier or all deep features.

– Observation 1. SVM with RBF kernel outperforms other ML classifiers on two large
datasets (BT-large-2c and BT-large-4c).

– Analysis. Tables 5 and 6 show that the SVM with RBF kernel outperforms other ML
classifiers on two large datasets (BT-large-2c and BT-large-4c). This is because SVM
with RBF kernel can find a more effective and complex set of decision boundaries than
other ML classifiers. However, as you can see in Table 4, SVM with RBF kernel does
not outperform other ML classifiers on the small dataset. This is because SVM tends
to underperform when the number of features for each data point is larger than the
number of training data samples.

– Observation 2. Gaussian NB performs worst among other ML classifiers on three datasets.
– Analysis. Tables 4–6 show that Gaussian NB performs worst among other ML clas-

sifiers on three datasets. This is because Gaussian NB assumes the features are
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independent. However, it is almost impossible that the extracted features from the
pre-trained models are completely independent.

– Observation 3. The deep feature from DenseNet architectures performs well than the
deep features from other pre-trained CNN networks, while the deep features from
VGG perform worse than the deep features from other pre-trained CNN networks on
three different datasets.

– Analysis. Tables 4–6 show that the deep feature from DenseNet architectures performs
well than the deep features from other pre-trained CNN networks on three different
datasets. This is because the features extracted from DenseNet have all complexity
levels. Hence, it tends to give more smooth decision boundaries, which can predict
well when training data is insufficient. On the other hand, the deep feature from
VGG performs worse than the deep features from other pre-trained CNN networks
on three different datasets. This is because VGG is a more basic architecture that uses
no residual blocks than other pre-trained CNN networks.

– Observation 4. Using the ensemble of deep features from two or three pre-trained CNN
models is effective for all ML classifiers on a large dataset. However, the ensemble of
deep features is effective for only ML classifiers on a small dataset.

– Analysis. Tables 8 and 9 show that the model with the ensemble of deep features
from two or three pre-trained CNN models achieves higher accuracy than the model
with a deep feature from an individual pre-trained CNN model. This is because the
ensemble model takes advantages of well-performing top-2 or 3 deep features by
concatenating them, and also the concatenation of these deep features has a set of
features that are capable of representing the data present in the images in a different
way which benefits to improve the performance of ML classifiers. However, Table 7
shows that the ensemble of deep features is effective for only a few ML classifiers on a
small dataset. This is because the number of the training sample is not enough in the
small dataset to learn the complex set of the ensemble of deep features.

– Observation 5. k-NN classifier takes the longest time for inference on a test set while
FC, Gaussian NB, and RF take a shorter inference time.

– Analysis. Table 10 shows that the k-NN classifier takes the longest time for inference
on a test set among other ML classifiers while FC, Gaussian NB, and RF classifiers
take a very short time for inference on a test set. This is because the k-NN classifier
has to look at all the data points to make a single prediction, whereas other ML
classifiers are not dependent on the number of training data points on the predict
phase. On the other hand, the Gaussian NB classifier uses the Bayes equation to
compute the posterior probabilities for inference. This involves trivial arithmetic
operations such as multiplication and addition. Also, normalization is done by simple
division operations. In the fully connected layer (FC), the entire matrix calculation
for inference can be done by fast GPU. RF classifier leverages the power of multiple
decision trees, which are simple and fast for making decisions. Therefore, these
three classifiers achieved significantly less computation time for inference than other
ML classifiers.
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Table 7. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-small-2c dataset.

Deep Feature from the Pre-Trained CNN Model
ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM

DenseNet-169 feature 0.9608 0.8039 0.8627 0.9020 0.9412 0.9608 0.9608 0.9804 0.9412
Inception V3 feature 0.9216 0.8824 0.9020 0.8235 0.9412 0.9020 0.9020 0.9020 0.9020

ResNeXt-50 0.9412 0.9020 0.9020 0.9020 0.9216 0.9216 0.9216 0.9216 0.9216

(DenseNet-169 + Inception V3) feature 0.9412 0.8627 0.9020 0.8824 0.9020 0.9412 0.9412 0.9608 0.9412
(DenseNet-169 + ResNeXt-50) feature 0.9412 0.9020 0.9216 0.8627 0.9216 0.9216 0.9412 0.9412 0.9412
(Inception V3 + ResNeXt-50) feature 0.9412 0.9020 0.8824 0.9412 0.9412 0.9216 0.9412 0.9412 0.9412

(DenseNet-169 + Inception V3 + ResNeXt-50) feature 0.9412 0.9020 0.9216 0.9020 0.9216 0.9020 0.9412 0.9412 0.9216

The bold text represents the highest accuracy for each ML classifier.

Table 8. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-large-2c dataset.

Deep Feature from the Pre-Trained CNN Model
ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM

DenseNet-121 feature 0.9750 0.8383 0.9600 0.9817 0.9683 0.9683 0.9683 0.9833 0.9817
ResNeXt-101 feature 0.9783 0.8583 0.9633 0.9833 0.9617 0.9717 0.9717 0.9817 0.9817

MnasNet feature 0.9817 0.8550 0.9467 0.9750 0.9567 0.9700 0.9733 0.9817 0.9833

(DenseNet-121 + ResNeXt-101) feature 0.9800 0.8733 0.9700 0.9817 0.9667 0.9783 0.9783 0.9833 0.9850
(DenseNet-121 + MnasNet) feature 0.9817 0.8767 0.9633 0.9850 0.9683 0.9700 0.9717 0.9783 0.9767
(ResNeXt-101 + MnasNet) feature 0.9883 0.8700 0.9633 0.9850 0.9667 0.9850 0.9850 0.9850 0.9850

(DenseNet-121 + ResNeXt-101 + MnasNet) feature 0.9883 0.8800 0.9750 0.9817 0.9717 0.9783 0.9800 0.9850 0.9867

The bold text represents the highest accuracy for each ML classifier.

Table 9. Accuracies of ensemble of pre-trained CNN models with ML classifiers on BT-large-4c dataset.

Deep Feature from the Pre-Trained CNN Model
ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM

DenseNet-169 feature 0.8959 0.7228 0.7335 0.8821 0.8652 0.8652 0.8729 0.9204 0.8806
Shufflenet feature 0.8637 0.7152 0.7381 0.8637 0.8576 0.8989 0.8989 0.9112 0.8606
MnasNet feature 0.8851 0.6922 0.7458 0.8928 0.8515 0.8959 0.8959 0.9127 0.8775

(DenseNet-169 + Shufflenet) feature 0.8959 0.7504 0.7427 0.8821 0.8668 0.8668 0.8714 0.9204 0.8744
(DenseNet-169 + MnasNet) feature 0.9142 0.7259 0.7274 0.9096 0.8668 0.9020 0.9096 0.9372 0.8790

(Shufflenet + MnasNet) feature 0.8913 0.7305 0.7397 0.8943 0.8790 0.8974 0.8974 0.9127 0.8637

(DenseNet-169 + Shufflenet + MnasNet) feature 0.9158 0.7397 0.7534 0.9096 0.8760 0.9020 0.9096 0.9372 0.8851

The bold text represents the highest accuracy for each ML classifier.

Table 10. Computational complexity of ensemble of pre-trained CNN models with ML classifiers on BT-large-4c dataset.

Deep Feature from the Pre-Trained CNN Model
ML Classifier—Accuracy

FC Gaussian NB AdaBoost k-NN RF SVM
(Linear)

SVM
(Sigmoid)

SVM
(RBF) ELM

(DenseNet-169 + Shufflenet) feature 0.0222 0.0214 0.2709 5.0436 0.0148 1.7390 1.9813 2.2653 0.1831
(DenseNet-169 + MnasNet) feature 0.0225 0.0232 0.3070 5.5191 0.0187 1.9650 2.1004 2.5780 0.2184

(Shufflenet + MnasNet) feature 0.0224 0.0186 0.2403 4.3021 0.0170 1.4580 1.4725 2.2544 0.1784

(DenseNet-169 + Shufflenet + MnasNet) feature 0.0229 0.0312 0.4133 7.4238 0.0247 2.6586 2.8507 3.4730 0.2772

5. Conclusions

In summary, we presented a brain tumor classification method using the ensemble of
deep features from pre-trained deep convolutional neural networks with ML classifiers. In
our proposed framework, we use several pre-trained deep convolutional neural networks
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to extract deep features from brain MR images. The extracted deep features are then
evaluated by several ML classifiers. The top three deep features which perform well on
several ML classifiers are selected and concatenated as an ensemble of deep feature which
is then fed into several ML classifiers to predict the final output. In our experiment, we
provided an extensive evaluation using 13 different pre-trained deep convolutional neural
networks and nine different ML classifiers on three different datasets (BT-small-2c, BT-
large-2c, and BT-large-4c) for brain tumor classification. Our experiment results indicate
that from our architecture, (1) DenseNet-169 deep feature alone is a good choice in case the
size of the MRI dataset is very small and the number of classes is 2 (normal, tumor), (2) the
ensemble of DenseNet-169, Inception V3, and ResNeXt-50 deep features is a good choice in
case the size of MRI dataset is large and the number of classes is 2 (normal, tumor) and
(3) the ensemble of DenseNet-169, ShuffleNet V2, and MnasNet deep features is a good
choice in case the size of MRI dataset is large and there are four classes (normal, glioma
tumor, meningioma tumor, and pituitary tumor). Also, in most cases, SVM with RBF kernel
outperforms other ML classifiers for the MRI-based brain tumor classification task. In
summary, our proposed novel feature ensemble method helps to overcome the limitations
of a single CNN model and produces superior and robust performance, especially for
large datasets. These results indicated that our proposed method using an ensemble of
deep features and ML classifiers is suitable for the classification of brain tumors. Although
the performance of our proposed method is promising, further research needs to be done
to reduce the size of the model to deploy on a real-time medical diagnosis system using
knowledge distillation approaches.

Author Contributions: Conceptualization, J.G.; methodology, J.K. and J.G.; software, J.K. and J.G.;
validation, J.K., Z.U. and J.G.; formal analysis, J.K., Z.U. and J.G.; investigation, J.K., Z.U. and J.G.;
resources, J.G.; data curation, J.K.; writing—original draft preparation, J.K. and Z.U.; writing—review
and editing, J.G.; visualization, J.K.; supervision, J.G.; project administration, J.G.; funding acquisition,
J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-
2020R1I1A3074141) and the Brain Research Program through the NRF funded by the Ministry of
Science, ICT and Future Planning (Grant No. NRF-2019M3C7A1020406).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available in publicly accessible repositories which are de-
scribed in Section 4.1.

Acknowledgments: The authors would like to thank the editors and all the reviewers for their
valuable comments on this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Louis, D.N.; Perry, A.; Reifenberger, G.; Deimling, A.V.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues,

P.; Ellison, D.W. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta
Neuropathol. 2016, 131, 803–820. [CrossRef]

2. Tandel, G.S.; Biswas, M.; Kakde, O.G.; Tiwari, A.; Suri, H.S.; Turk, M.; Laird, J.R.; Asare, C.K.; Ankrah, A.A.; Khanna, N.N.; et al.
A review on a deep learning perspective in brain cancer classification. Cancers 2019, 11, 111. [CrossRef]

3. Anaraki, A.K.; Ayati, M.; Kazemi, F. Magnetic resonance imaging-based brain tumor grades classification and grading via
convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 2019, 39, 63–74. [CrossRef]

4. Liu, J.; Pan, Y.; Li, M.; Chen, Z.; Tang, L.; Lu, C.; Wang, J. Applications of deep learning to MRI images: A survey. Big Data Min.
Anal. 2018, 1, 1–18.

5. Mehrotra, R.; Ansari, M.A.; Agrawal, R.; Anand, R.S. A Transfer Learning approach for AI-based classification of brain tumors.
Mach. Learn. Appl. 2020, 2, 10–19. [CrossRef]

6. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE
Trans. Med. Imaging 2018, 35, 1240–1251. [CrossRef] [PubMed]

http://doi.org/10.1007/s00401-016-1545-1
http://dx.doi.org/10.3390/cancers11010111
http://dx.doi.org/10.1016/j.bbe.2018.10.004
http://dx.doi.org/10.1016/j.mlwa.2020.100003
http://dx.doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/26960222


Sensors 2021, 21, 2222 19 of 21

7. Popuri, K.; Cobzas, D.; Murtha, A.; Jägersand, M. 3D variational brain tumor segmentation using Dirichlet priors on a clustered
feature set. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 493–506. [CrossRef] [PubMed]

8. Ullah, Z.; Farooq, M.U.; Lee, S.H.; An, D. A Hybrid Image Enhancement Based Brain MRI Images Classification Technique. Med.
Hypotheses 2020, 143, 109922. [CrossRef]

9. Selvaraj, H.; Selvi, S.T.; Selvathi, D.; Gewali, L. Brain MRI slices classification using least squares support vector machine. Int. J.
Intell. Comput. Med. Sci. Image Process. 2007, 1, 21–33. [CrossRef]

10. John, P. Brain tumor classification using wavelet and texture based neural network. Int. J. Sci. Eng. Res. 2012, 3, 1–7.
11. Bosch, A.; Munoz, X.; Oliver, A.; Marti, J. Modeling and classifying breast tissue density in mammograms. In Proceedings of the

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22
June 2006; Volume 2, pp. 1552–1558.

12. Avni, U.; Greenspan, H.; Konen, E.; Sharon, M.; Goldberger, J. X-ray categorization and retrieval on the organ and pathology
level, using patch-based visual words. IEEE Trans. Med. Imaging 2010, 30, 733–746. [CrossRef]

13. Yang, W.; Lu, Z.; Yu, M.; Huang, M.; Feng, Q.; Chen, W. Content-based retrieval of focal liver lesions using bag-of-visual-words
representations of single-and multiphase contrast-enhanced CT images. J. Digit. Imaging 2012, 25, 6. [CrossRef]

14. Cheng, J.; Yang, W.; Huang, M.; Huang, W.; Jiang, J.; Zhou, Y.; Yang, R.; Zhao, J.; Feng, Y.; Feng, Q.; et al. Retrieval of brain tumors
by adaptive spatial pooling and fisher vector representation. PLoS ONE 2016, 11, e157112. [CrossRef] [PubMed]

15. Mohammad, H.; Axel, D.; Warde, F. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 35, 18–31.
16. Prastawa, M.; Bullitt, E.; Moon, N.; Van, L.; Gerig, G. Automatic brain tumor segmentation by subject specific modification of

atlas priors1. Acad. Radiol. 2003, 10, 1341–1348. [CrossRef]
17. Ateeq, T.; Majeed, M.; Nadeem, A.; Syed, M.; Maqsood, M.; Rehman, Z.; Lee, J.W.; Muhammad, K.; Shuihua, B.; Sung, W.; et al.

Ensemble-classifiers-assisted detection of cerebral microbleeds in brain MRI. Comput. Electr. Eng. 2018, 69, 768–781. [CrossRef]
18. Kharrat, A.; Gasmi, K.; Messaoud, M.; Ben, N.B.; Abid, M. A hybrid approach for automatic classification of brain MRI using

genetic algorithm and support vector machine. Leonardo J. Sci. 2010, 17, 71–82.
19. Papageorgiou, E.; Spyridonos, P.; Glotsos, D.; Stylios, C.; Ravazoula, P.; Nikiforidis, G.; Groumpos, P. Brain tumor characterization

using the soft computing technique of fuzzy cognitive maps. Appl. Soft Comput. 2008, 8, 820–828. [CrossRef]
20. Shree, N.V.; Kumar, T.N.R. Identification and classification of brain tumor MRI images with feature extraction using DWT and

probabilistic neural network. Brain Inform. 2018, 5, 23–30. [CrossRef] [PubMed]
21. Arunachalam, M.; Royappan, S.S. An efficient and automatic glioblastoma brain tumor detection using shift-invariant shearlet

transform and neural networks. Int. J. Imaging Syst. Technol. 2017, 27, 216–226. [CrossRef]
22. Rajan, P.G.; Sundar, C. Brain tumor detection and segmentation by intensity adjustment. J. Med. Syst. 2019, 43, 1–13. [CrossRef]

[PubMed]
23. Kleesiek, J.; Urban, G.; Hubert, A.; Schwarz, D.; Maier-Hein, K.; Bendszus, M.; Biller, A. Deep MRI brain extraction: A 3D

convolutional neural network for skull stripping. NeuroImage 2016, 129, 460–469. [CrossRef]
24. Paul, J.S.; Plassard, A.J.; Landman, B.A.; Fabbri, D. Deep learning for brain tumor classification. Med. Imaging Biomed. Appl. Mol.

Struct. Funct. Imaging 2017, 10137, 1013710.
25. Abiwinanda, N.; Hanif, M.; Hesaputra, S.T.; Handayani, A.; Mengko, T.R. Brain tumor classification using convolutional neural

network. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, Prague, Czech Republic,
3–8 June 2019; pp. 183–189.

26. Seetha, J.; Raja, S.S. Brain tumor classification using convolutional neural networks. Biomed. Pharmacol. J. 2018, 11, 3. [CrossRef]
27. Hemanth, D.J.; Anitha, J.; Naaji, A.; Geman, O.; Popescu, D.E. A modified deep convolutional neural network for abnormal brain

image classification. IEEE Access 2018, 7, 4275–4283. [CrossRef]
28. Balasooriya, N.M.; Nawarathna, R.D. A sophisticated convolutional neural network model for brain tumor classification.

In Proceedings of the IEEE International Conference on Industrial and Information Systems (ICIIS), Roorkee, India, 15–16
December 2017; pp. 1–5.

29. Deepak, S.; Ameer, P.M. Brain tumor classification using deep CNN features via transfer learning. Comput. Biol. Med. 2019, 111,
103345. [CrossRef]

30. Çinar, A.; Yıldırım, M. Detection of tumors on brain MRI images using the hybrid convolutional neural network architecture.
Med. Hypotheses 2020, 139, 109684. [CrossRef]

31. Khawaldeh, S.; Pervaiz, U.; Rafiq, A.; Alkhawaldeh, R.S. Noninvasive grading of glioma tumor using magnetic resonance imaging
with convolutional neural networks. Appl. Sci. 2018, 8, 27. [CrossRef]

32. Saxena, P.; Maheshwari, A.; Maheshwari, S. Predictive modeling of brain tumor: A Deep learning approach. arXiv 2019,
arXiv:1911.02265.

33. Xuesong, Y.; Yong, F. Feature extraction using convolutional neural networks for multi-atlas based image segmentation. Med.
Imaging Image Process. 2018, 10574, 1057439.

34. Wicht, B. Deep Learning Feature Extraction for Image Processing. Ph.D. Thesis, éditeur non Identifié, The University of Fribourg,
Fribourg, Switzerland, 2017.

35. Francisco, J.P.; Mario, Z.M.; Miriam, R.A. A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a
Multiscale Convolutional Neural Network. Healthcare 2021, 9, 153.

http://dx.doi.org/10.1007/s11548-011-0649-2
http://www.ncbi.nlm.nih.gov/pubmed/21833491
http://dx.doi.org/10.1016/j.mehy.2020.109922
http://dx.doi.org/10.1080/1931308X.2007.10644134
http://dx.doi.org/10.1109/TMI.2010.2095026
http://dx.doi.org/10.1007/s10278-012-9495-1
http://dx.doi.org/10.1371/journal.pone.0157112
http://www.ncbi.nlm.nih.gov/pubmed/27273091
http://dx.doi.org/10.1016/S1076-6332(03)00506-3
http://dx.doi.org/10.1016/j.compeleceng.2018.02.021
http://dx.doi.org/10.1016/j.asoc.2007.06.006
http://dx.doi.org/10.1007/s40708-017-0075-5
http://www.ncbi.nlm.nih.gov/pubmed/29313301
http://dx.doi.org/10.1002/ima.22227
http://dx.doi.org/10.1007/s10916-019-1368-4
http://www.ncbi.nlm.nih.gov/pubmed/31300899
http://dx.doi.org/10.1016/j.neuroimage.2016.01.024
http://dx.doi.org/10.13005/bpj/1511
http://dx.doi.org/10.1109/ACCESS.2018.2885639
http://dx.doi.org/10.1016/j.compbiomed.2019.103345
http://dx.doi.org/10.1016/j.mehy.2020.109684
http://dx.doi.org/10.3390/app8010027


Sensors 2021, 21, 2222 20 of 21

36. Raja, P.M.S.; Antony, V.R. Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based
segmentation approach. Biocybern. Biomed. Eng. 2020, 40, 440–453. [CrossRef]

37. Bhuvaji, S.; Kadam, A.; Bhumkar, P.; Dedge, S.; Kanchan, S. Brain Tumor Classification (MRI) Dataset. Available online:
https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri (accessed on 1 August 2020).

38. Preethi, S.; Aishwarya, P. Combining Wavelet Texture Features and Deep Neural Network for Tumor Detection and Segmentation
Over MRI. J. Intell. Syst. 2019, 28, 571–588. [CrossRef]

39. Ural, B. A computer-based brain tumor detection approach with advanced image processing and probabilistic neural network
methods. J. Med. Biol. Eng. 2018, 38, 867–879. [CrossRef]

40. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Finding Extreme Points in Contours with OpenCV. In PyImageSearch. Available online:
https://www.pyimagesearch.com/2016/04/11/finding-extreme-points-in-contours-with-opencv (accessed on 10 August 2020).

41. Goyal, M.; Goyal, R.; Lall, B. Learning Activation Functions: A New Paradigm of Understanding Neural Networks. arXiv 2019,
arXiv:1906.09529.

42. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.

43. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

44. Akçay, S.; Kundegorski, M.E.; Devereux, M.; Breckon, T.P. Transfer learning using convolutional neural networks for object
classification within x-ray baggage security imagery. In Proceedings of the 2016 IEEE International Conference on Image
Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 1057–1061.

45. Baltruschat, I.M.; Nickisch, H.; Grass, M.; Knopp, T.; Saalbach, A. Comparison of deep learning approaches for multi-label chest
X-ray classification. Sci. Rep. 2019, 9, 6381. [CrossRef] [PubMed]

46. Christodoulidis, S.; Anthimopoulos, M.; Ebner, L.; Christe, A.; Mougiakakou, S. Multisource transfer learning with convolutional
neural networks for lung pattern analysis. IEEE J. Biomed. Health Inform. 2016, 21, 76–84. [CrossRef]

47. Kang, J.; Gwak, J. Ensemble of instance segmentation models for polyp segmentation in colonoscopy images. IEEE Access 2019, 7,
26440–26447. [CrossRef]

48. Tajbakhsh, N.; Shin, J.Y.; Gurudu, S.R.; Hurst, R.T.; Kendall, C.B.; Gotway, M.B.; Liang, J. Convolutional neural networks for
medical image analysis: Full training or fine tuning? IEEE Trans. Med. Imaging 2016, 35, 1299–1312. [CrossRef]

49. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [CrossRef]
50. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
51. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
52. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
53. Krizhevsky, A. One Weird Trick for Parallelizing Convolutional Neural Networks. arXiv 2014, arXiv:1404.5997.
54. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
55. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1492–1500.
56. Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of

the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131.
57. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

58. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20
June 2019; pp. 2820–2828.

59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

60. Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst.
Sci. 1997, 55, 119–139. [CrossRef]

61. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
62. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
63. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: A new learning scheme of feedforward neural networks. In

Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2,
pp. 985–990.

64. Kaplan, K.; Kaya, Y.; Kuncan, M.; Ertunç, H.M. Brain tumor classification using modified local binary patterns (LBP) feature
extraction methods. Med. Hypotheses 2020, 139, 109696. [CrossRef] [PubMed]

65. Kaur, G.; Oberoi, A. Novel Approach for Brain Tumor Detection based on Naïve Bayes Classification. In Data Management,
Analytics and Innovation; Springer: Singapore, 2020; pp. 451–462.

http://dx.doi.org/10.1016/j.bbe.2020.01.006
https://www.kaggle.com/sartajbhuvaji/brain-tumor-classification-mri
http://dx.doi.org/10.1515/jisys-2017-0090
http://dx.doi.org/10.1007/s40846-017-0353-y
https://www.pyimagesearch.com/2016/04/11/finding-extreme-points-in-contours-with-opencv
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/s41598-019-42294-8
http://www.ncbi.nlm.nih.gov/pubmed/31011155
http://dx.doi.org/10.1109/JBHI.2016.2636929
http://dx.doi.org/10.1109/ACCESS.2019.2900672
http://dx.doi.org/10.1109/TMI.2016.2535302
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1016/j.mehy.2020.109696
http://www.ncbi.nlm.nih.gov/pubmed/32234609


Sensors 2021, 21, 2222 21 of 21

66. Minz, A.; Mahobiya, C. MR image classification using adaboost for brain tumor type. In Proceedings of the 2017 IEEE 7th
International Advance Computing Conference (IACC), Hyderabad, India, 5–7 January 2017; pp. 701–705.

67. Anitha, R.; Siva, S.; Raja, D. Development of computer-aided approach for brain tumor detection using random forest classifier.
Int. J. Imaging Syst. Technol. 2018, 28, 48–53. [CrossRef]

68. Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme
learning machine for brain tumor classification. IEEE Access 2019, 7, 36266–36273. [CrossRef]

69. Khan, H.A.; Jue, W.; Mushtaq, M.; Mushtaq, M.U. Brain tumor classification in MRI image using convolutional neural network.
Math. Biosci. Eng. 2020, 17, 6203–6216. [CrossRef] [PubMed]

70. Polat, Ö; Güngen, C. Classification of brain tumors from MR images using deep transfer learning. J. Supercomput. 2021. [CrossRef]
71. Ghosal, P.; Nandanwar, L.; Kanchan, S.; Bhadra, A.; Chakraborty, J.; Nandi, D. Brain tumor classification using ResNet-101

based squeeze and excitation deep neural network. In Proceedings of the 2019 Second International Conference on Advanced
Computational and Communication Paradigms (ICACCP), Sikkim, India, 25–28 February 2019; pp. 1–6.

72. Zhou, Y.; Li, Z.; Zhu, H.; Chen, C.; Gao, M.; Xu, K.; Xu, J. Holistic brain tumor screening and classification based on densenet and
recurrent neural network. In Proceedings of the International MICCAI Brainlesion Workshop, Granada, Spain, 16 September
2018; pp. 208–217.

73. Saba, T.; Mohamed, A.S.; El-Affendi, M.; Amin, J.; Sharif, M. Brain tumor detection using fusion of hand crafted and deep learning
features. Cogn. Syst. Res. 2020, 59, 221–230. [CrossRef]

74. Ezhilarasi, R.; Varalakshmi, P. Tumor detection in the brain using faster R-CNN. In Proceedings of the 2018 2nd International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), Palladam, India, 30–31 August 2018; pp. 388–392.

75. Soumik, M.F.I.; Hossain, M.A. Brain Tumor Classification With Inception Network Based Deep Learning Model Using Transfer
Learning. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1018–1021.

76. Lu, S.Y.; Wang, S.H.; Zhang, Y.D. A classification method for brain MRI via MobileNet and feedforward network with random
weights. Pattern Recognit. Lett. 2020, 140, 252–260. [CrossRef]

77. Chakrabarty, N. Brain MRI Images for Brain Tumor Detection Dataset. Available online: https://www.kaggle.com/navoneel/
brain-mri-images-for-brain-tumor-detection (accessed on 1 August 2020).

78. Hamada, A. Br35H Brain Tumor Detection 2020 Dataset. Available online: https://www.kaggle.com/ahmedhamada0/brain-
tumor-detection (accessed on 1 August 2020).

79. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

http://dx.doi.org/10.1002/ima.22255
http://dx.doi.org/10.1109/ACCESS.2019.2904145
http://dx.doi.org/10.3934/mbe.2020328
http://www.ncbi.nlm.nih.gov/pubmed/33120595
http://dx.doi.org/10.1007/s11227-020-03572-9
http://dx.doi.org/10.1016/j.cogsys.2019.09.007
http://dx.doi.org/10.1016/j.patrec.2020.10.017
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/ahmedhamada0/brain-tumor-detection
https://www.kaggle.com/ahmedhamada0/brain-tumor-detection
http://dx.doi.org/10.1145/3065386

	Introduction
	Related Work
	Proposed Methods
	Image Pre-Processing
	Deep Feature Extraction Using Pre-Trained CNN Models
	Convolutional Neural Network
	Transfer Learning
	Deep Feature Extraction

	Machine Learning Classifiers for Brain Tumor Classification
	Fully Connected Layer
	Gaussian Naïve Bayes
	AdaBoost
	K-Nearest Neighbors
	Random Forest
	Support Vector Machine
	Extreme Learning Machine (ELM)
	Discussion

	Deep Feature Evaluation and Selection
	Ensemble of Deep Features

	Experiments and Results
	Dataset
	Experimental Setting
	Results

	Conclusions
	References

