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ABSTRACT

The crystal structure of a Z-DNA hexamer duplex
d(CGCGCG)2 determined at ultra high resolution of
0.55 Å and refined without restraints, displays a high
degree of regularity and rigidity in its stereochemis-
try, in contrast to the more flexible B-DNA duplexes.
The estimations of standard uncertainties of all
individually refined parameters, obtained by full-
matrix least-squares optimization, are comparable
with values that are typical for small-molecule crys-
tallography. The Z-DNA model generated with ultra
high-resolution diffraction data can be used to revise
the stereochemical restraints applied in lower reso-
lution refinements. Detailed comparisons of the
stereochemical library values with the present accur-
ate Z-DNA parameters, shows in general a good
agreement, but also reveals significant discrepancies
in the description of guanine-sugar valence angles
and in the geometry of the phosphate groups.

INTRODUCTION

Among various crystal forms of DNA, oligomers of the
left-handed Z-DNA have the potential to diffract X-rays
to the highest resolution, a fact that was already exploited
in the 1970s in the laboratory of Alexander Rich (1).
Indeed, a number of atomic-resolution crystal structures
of the d(CGCGCG)2 hexamer duplex cocrystallized with
various polyamines and ions are available in the Protein
Data Bank (PDB) (2) and Nucleic Acid Data Bank (NDB)
(3), or described in the literature without deposition of
atomic models in public databases. The basic information
about these structures is presented in Table 1. The most
studied crystal form of the hexamer duplex, d(CGCGCG)2,

is orthorhombic, space group P212121, with cell dimen-
sions of �18� 31� 44 Å. Although almost all of those
structures were refined against diffraction data reaching
atomic resolution of �1.0 Å, only one model (1ICK) was
refined with anisotropic atomic displacement parameters
(ADPs) (4). Moreover, fewer than half of the PDB coord-
inate depositions are accompanied by the corresponding
structure factors. This concerns also the ultra high-
resolution (0.60 Å) structure 1I0T, published in 2001 (5),
which was refined to a surprisingly high Rfactor of 16.0%.
In the present study, we have measured X-ray diffraction
data extending to 0.55 Å resolution for a d(CGCGCG)2
crystal, and describe its high-quality structural model
(R=7.77%). The structure has been refined in the
full-matrix anisotropic mode with total absence of stereo-
chemical restraints for DNA, essentially analogous to the
practice of small-molecule crystallography. In this way,
not only very accurate, unbiased values of atomic coord-
inates and displacement parameters are obtained, but they
are also accompanied by reliable estimates of their stand-
ard uncertainties. In consequence, we are able to present a
detailed analysis of very fine features of the Z-DNA
stereochemistry, not available in the current literature.

It should be noted that the crystal structure presented
here has a nearly record-breaking resolution in the PDB,
being only second to the structure of crambin (1EJG)
determined at 0.54 Å (6). In the area of nucleic acids, it
is currently the highest resolution model.

MATERIALS AND METHODS

Crystallization and diffraction data

A 1.5mM water solution of the d(CGCGCG)2 hexamer
DNA was annealed at 65�C for 12min. Crystals were
grown using the hanging-drop vapor-diffusion method
at room temperature by mixing 3 ml of the DNA
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solution and 3 ml of precipitating solution containing 10%
(v/v) 2-methyl-2,4-pentanediol (MPD), 12mM
sperminium tetrachloride, 80mM NaCl and 40mM
sodium cacodylate buffer, pH 7.0. The drops were
equilibrated against 1.0ml of 35% (v/v) MPD. Single
crystals appeared within one week.

X-ray diffraction data for a single crystal measuring
0.3� 0.4� 0.4mm were collected using synchrotron radi-
ation [advanced photon source (APS), Northeastern col-
laborative access team (NE-CAT) beam line 24ID-C] with
a wavelength of 0.5904 Å and an Area Detector Systems
Corp. detector ADSC Q315. The crystal was fished out
from the crystallization drop in a rayon loop and vitrified
at 100 K in a stream of nitrogen gas. The diffraction data
were collected in three passes with different effective ex-
posures, corresponding to low (1.24 Å), medium (1.04 Å)
and high (0.55 Å) resolution, in order to adequately
measure both the strongest and weakest reflections. The
low resolution data set was recorded first and consisted of
90 images with 2� oscillation at 500mm crystal-to-detector
distance. The medium resolution dataset consisted of 120
images recorded with 1.5� oscillation at 400mm crystal-to-
detector distance. The high resolution data set recorded in
the third pass contained 180 images of 1� with 125mm
crystal-to-detector distance. The detector was lifted by
100mm from its central position to capture the high reso-
lution reflections at high angles. Indexing and integration
of all images was performed in DENZO and scaling in
SCALEPACK, both from the HKL2000 program
package (7). Table 2 summarizes the statistics of the
final data set.

Refinement

The refinement started with the Z-DNA model 1ICK
stripped of all water and ligand molecules. The initial

isotropic and later anisotropic refinement with SHELXL
(8), which minimized the function

P
w(Fo

2
�Fc

2)2, was per-
formed with resolution gradually extended from 1.5 to
0.55 Å. Every 10 cycles of CGLS (conjugate-gradient
least-squares) minimization, the model was checked
visually using COOT (9). During the manual inspection
sessions, one spermine molecule was modeled and water
molecules selected in difference Fourier maps were added.
No metal ions were detected in the structure. The water
molecules were classified as 22 fully occupied sites, as 13
pairs of close sites with a combined occupancy of 1.0, and
as 93 individual partially occupied sites. The total sum
of the occupancies of all water molecules is 78.6.
Stereochemical restraints (10) were applied only to a par-
tially disordered fragment of the spermine molecule,
whereas all non-hydrogen atoms of the Z-DNA were
refined freely without any restraints. The SHELXL
ISOR, SIMU and DELU restraints of the ADP param-
eters were applied only to the disordered non-H atoms of
spermine and water molecules. Hydrogen atoms were
introduced at their expected positions and refined isotrop-
ically as ‘riding’ on their parent atoms. There was no
attempt to introduce the hydrogen atoms of water mol-
ecules. The ratio of the number of reflections to the
number of refined parameters in the final refinement was
130 650/3740& 35. Throughout the refinement, about
1500 randomly selected reflections were used for Rfree

factor (11) calculations.
At the final stages of the refinement, the algorithm was

changed to full-matrix least-squares (SHELXL L.S.
command), which provided estimations of standard
uncertainties of all individual refined parameters and of
all derived geometrical parameters. The residues in the
two oligonucleotide chains are labeled 50-Cyt1·Gua2·
Cyt3·Gua4·Cyt5·Gua6-30 and 50-Cyt7·Gua8·Cyt9·

Table 1. Structures of d(CGCGCG)2 available in the PDB and NDB (code in italics)

Data Base
Code

Resolution (Å) R (%) i/aa SFb Crystal
form

a (Å) b (Å) c (Å) Amine Metal ions Reference

2DCG 0.90 14.0 i n A 17.87 31.55 44.58 Spermine Mg2+ (1)
1DCG 1.00 17.5 i n A 18.01 31.03 44.80 – Mg2+ (33)
ZDF013c 1.00 19.5 i n A 17.45 31.63 45.56 – – (34)
292D 1.00 16.1 i n A 17.94 31.23 44.55 Polyamine Mg2+, Na+ (35)
293D 1.00 19.1 i n A 17.93 31.23 44.64 Spermidine Mg2+, Na+ (36)
336D 1.00 19.0 i n A 17.98 31.51 44.38 Thermospermine Mg2+ (37)
1ICK 0.95 8.6 a y A 17.87 31.55 44.58 Spermine Mg2+ (4)
1DJ6 1.00 16.9 i y A 17.93 31.36 44.62 Polyamine Mg2+ (38)
2ELG 1.00 23.2 i y A 17.85 30.99 44.02 Spermidine Mg2+, Na+ (39)
2IE1 1.60 19.0 i y A 17.64 30.38 43.63 Polyamine – (40)
3P4J 0.55 7.77 a y A 17.88 31.42 43.90 Spermine – This work

1D48 1.00 18.5 i n B 18.41 30.77 43.15 Spermine – (14)
131D 1.00 18.0 i n B 18.27 30.69 42.46 Spermine Na+ (41)
1I0T 0.60 16.0 i n B 18.32 30.68 42.49 Spermine – (5)
1V9G 1.80Nd 22.2 i y B 18.46 30.76 43.18 Spermine(D)e – (42)
1WOE 1.50Nd 17.6 i y B 18.46 30.76 43.18 Spermine – (42)

aModel refined isotropically (i) or anisotropically (a).
bStructure factors available (y) or not available (n) in the database.
cData taken from Nucleic Acid Database (all other data are from PDB).
dRefined against neutron data.
eN-deuterated.
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Gua10·Cyt11·Gua12-30, and the base pairing is Cyt1-
Gua12, Gua2-Cyt11, . . .Gua6-Cyt7.
Although the anomalous scattering effect at the short

wavelength used for data collection is rather small, the
collective contribution of the 10 phosphorus atoms with
f’’(P)=0.065, estimated by CROSSEC (12), and the
strong handedness of their substructure lead to an anom-
alous effect that can be detected with very accurate data.
In particular, the Flack parameter refined in the SHELXL
program (x=0.17±0.02) gave a weak but significant in-
dication of the correctness of the model chirality. For this
reason, the final refinement was carried out with unmerged
Friedel pairs. This refinement was accepted as final and
the resulting atomic parameters and structure factors have
been deposited in the PDB with the ID code 3P4J.
Figures presenting the model and electron density were

prepared with PyMOL (13).

RESULTS AND DISCUSSION

The final model

The molecule of Z-DNA is generally similar to other
models of d(CGCGCG)2 present in the PDB
(Supplementary Table S1), although a detailed compari-
son reveals that there are two groups of structures in the
PDB, which, despite similar dimensions of the P212121
unit cell, are not isomorphous and display a somewhat
different mode of crystal packing, as pointed out earlier
(14), where the terms ‘pure spermine form’ and ‘mixed
magnesium/spermine form’ were used. However, inspec-
tion of Table 1 shows that the occurrence of the particular
crystal form is not fully correlated with the presence of
spermine or metal ions. The root-mean-square (r.m.s.) de-
viations calculated for all 240 non-hydrogen atoms of the
Z-DNA molecule between the present model and some
representative structures selected from the PDB, are pre-
sented in Table 3 (and in Supplementary Table S1) and the
differences between the two non-isomorphous forms are
illustrated in Figure 1.

In all the structures, the d(CGCGCG)2 duplex is located
at the 21 screw axis parallel to the z-direction, so that it
forms an infinite helix throughout the entire crystal. The
c cell dimension of �44 Å corresponds to 12 stacking
repeats with an average distance of �3.6 Å. The a cell
parameter corresponds to the diameter of the Z-DNA
double helix and, indeed, the crystal contains layers of
parallel helices in the a, c-plane, with the helical axes
translated by the cell repeat distance of about 18 Å. The
adjacent, symmetry-equivalent layers, related by the other
two screw axes, are in effect translated by one-half of the
cell edge in the a and b directions, forming a pattern,
which in a projection along c has a pseudo hexagonal ap-
pearance. This is the consequence of the ratio of the cell
parameters, b/a& 31/18& 1.72&ˇ3.

The difference between the two non-isomorphous
groups of the d(CGCGCG)2 structures lies in the orienta-
tion of the duplex around the 21 axis and in its translation
along the c-axis. In the first group (the current model and
all structures marked A in Table 1) the approximate local
two-fold axis of the duplex (perpendicular to the helical
axis) forms an angle of about 25� with the [100] direction,
whereas in the second group (B) this angle is about 38�. In
group A, the center of the duplex is at z=0.63, whereas in
group B it is at z=0.43. As a consequence of the different
shift along the c-axis, the interaction between the layer of
helices at y=0.5 and the neighboring layers at y=0 and
y=1 is different in the two groups of structures, as
illustrated in Figure 1. For all comparisons (and illustra-
tions), the models from the PDB were transformed by
crystallographic symmetry and, if necessary, by a
suitable shift of the origin, to create the most similar
patterns of molecules.

Several crystal structures of d(CGCGCG)2 contain
spermine [NH2-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2],
but its mode of binding is different in the two crystal
forms. In the current structure, as well as in other type
A crystals (2DCG, 1ICK), its terminal N1 atom forms
hydrogen bonds with two phosphate groups of two neigh-
boring DNA duplexes (atoms OP1_6 and OP2_9), N5 is

Table 2. Statistics of the diffraction data and structure refinement

Data collection
Beamline 24ID-C (NE-CAT)
Temperature (K) 100
Wavelength (Å) 0.5904
Space group P212121
a (Å) 17.88
b (Å) 31.42
c (Å) 43.90
Resolution limit (Å) 30–0.55 (0.57–0.55)
Reflections measured 328 759 (14 043)
Reflections unique 130 650 (6382)
Multiplicity 2.5 (1.7)
Completeness native (%) 96.6 (80.6)
Completeness anomalous (%) 84.5 (53.0)
Rmerge (%) 5.7 (27.6)
Average I/s(I) 16.7 (2.7)
Wilson B-factor (Å2) 2.5

Refinement
Resolution (Å) 30–0.55
No. of parameters 3740
wR2 (%) 20.19
Rfactor, Fo>4s(Fo) (%) 6.77
Reflections, Fo>4s(Fo) 112 143
Rfactor, all reflections (%) 7.77
All reflections 130 650
Rfree Fo>4�(Fo) (%) 7.47
Free reflections, Fo>4�(Fo) 1470
Rfree, all reflections (%) 8.47
All free reflections 1724

Asymmetric unit contents
DNA nucleotides 12a

DNA atoms 240
Average B-factor of DNA atoms (Å2) 2.69
Spermine atomic sitesb 22
Average B-factor of spermine atoms (Å2) 9.80
Fully occupied water sites 22
Alternative pairs of water sites 13
Partially occupied water sites 93
Total occupancy of all water sites 78.6
Average B-factor of all water sites (Å2) 8.48

PDB code 3P4J

Values corresponding to the highest resolution range are given in
parentheses.
aBoth Z-DNA strands lack the 50-terminal phosphate groups at Cyt1
and Cyt7.
bSpermine atoms between C7 and N14 are split into two alternative
sites with occupancies of 0.56/0.44
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H-bonded to OP2_5, N10 (partially disordered in the
current structure) is H-bonded to the N7_8 atom of a
guanine base, and N14 is in the neighborhood of the
O6_4 atom of a cytosine base. In the B-type crystals
(1D48, 2I0T) the N1 atom of spermine forms two
H-bonds with two neighboring Z-DNA duplexes (atoms
OP1_3 and OP1_12), N5 H-ponds to OP2_11, N10 forms
an H-bond with N7_8 and N14 forms an H-bond with
O6_10.

In some other structures (1DJ6, 2ELG, 2IE1, 292D,
293D, 336D), the polyamine moieties are modeled with
highly improbable conformations or have unconvincing
electron density, and consequently those models have
been omitted from further structural comparisons.

There are no detectable metal ions in the current struc-
ture, although the presence of partially occupied sites of
counter-ions other than spermine, e.g. Na+ ions from the
precipitant solution, cannot be excluded.

The Watson–Crick pair Cyt3-Gua10 is illustrated in
Figure 2 with the (Fobs, acalc) map and the corresponding
difference electron density map, calculated before the in-
clusion of hydrogen atoms, at two contour levels. Due to
the very high resolution of the data, not only the positions
of the hydrogen atoms are revealed clearly, but also indi-
cations of densities related to bonding electrons are visible
well above the map noise level. The high ratio of obser-
vations to individual atoms makes it possible to carry
out a deformation density study of the DNA model. A
multipole refinement of such a model is in progress.

Accuracy of the 0.55 Å structure and its geometrical
features

Although in general terms, the refined molecule is close to
the other models of d(CGCGCG)2 deposited in the PDB,
there is a significant difference in the achieved accuracy of
the refined parameters of the present structure. With data
extending to the unprecedented resolution of 0.55 Å and
the final Rfactor below 8%, the standard uncertainties
(s.u. or s) of fully occupied atomic positions approach
values typical for small organic crystal structures, as illu-
strated in Figure 3. It is apparent that they are inversely
proportional to the atomic number of the refined atoms
and correlated with their ADP’s. The recommended

estimator of the global accuracy of atomic positions in
macromolecular crystallography is the Cruickshank’s
diffraction-component precision index (15), DPI=
31/2� (Ni/nobs)

1/2
�C-1/3

�Rfree� dmin (Ni, number of
fully occupied atomic sites; nobs, number of independent
data; C, fractional completeness of the data to the
maximum resolution of dmin). It gives 0.0042 Å as the
average accuracy of the atomic positions in the present
structure. This value is intermediate between the individ-
ual error estimates (calculated by the inversion of the
least-squares matrix) for well defined atoms (0.002–
0.004 Å, except for phosphorus atoms, where it is about
0.001 Å, Figure 3), and for partially occupied, disordered
water molecules.
A comparison of bond lengths and angles in the current

structure and in some other ones reveals that the indi-
vidual residues of Z-DNA tend to have much more
regular geometry than suggested by the previous studies.
Table 3 (and, in more detail, Supplementary Table S2)
shows that the values of bond lengths and angles within
analogous structural moieties (i.e. within 6 cytosine, 6
guanine, 12 sugar and 10 phosphodiester units) have
very narrow spread around the mean values. In other
words, the bonds and angles between the same atoms in
different residues have very similar values, much less scat-
tered than in any of the other available models of Z-DNA.
In the current structure, the r.m.s.d. values for bond
lengths within the cytosine and guanine units (0.0033
and 0.0038 Å, respectively) are in keeping with the accur-
acy of their values estimated from the full-matrix refine-
ment (s.u. in the range 0.0017–0.0035 Å). For the
deoxyribose units, the r.m.s.d. value of the bond lengths
is larger (0.0064 Å) than the least-squares s.u. values
(0.0017–0.0035 Å), reflecting a higher flexibility of the
sugar rings and their different conformation and pucker
in different residues, as shown in Table 4. The r.m.s.d.
values for the P–O bond lengths (0.0064 Å) are also
larger than their s.u. values (0.0015–0.0028 Å), again high-
lighting the fact that different residues of the Z-DNA have
different backbone conformation.
A similar trend is visible in the behavior of bond angles,

although their variation is considerably larger than
the estimated uncertainties of their refined values.

Table 3. R.m.s.d. of bond lengths (Å) and angles (�) from the mean values of their individual types calculated for all bonds and angles within

the whole structural moieties

Moiety Range of uncertainties No. of cases This work 1D48 1DCG 2DCG 1I0T 1ICK

Bonds
Cytidine 0.0017–0.0035 54 0.0033 0.0077 0.0157 0.0194 0.0137 0.0120
Guanosine 0.0018–0.0034 78 0.0038 0.0096 0.0163 0.0193 0.0139 0.0119
Sugar 0.0017–0.0035 128 0.0070 0.0252 0.0380 0.0318 0.0137 0.0159
Phosphate 0.0015–0.0028 40 0.0064 0.0306 0.0469 0.0262 0.0200 0.0108

Angles
Cytidine 0.10–0.19 72 0.41 1.01 1.55 1.54 1.17 0.90
Guanosine 0.10–0.19 114 0.38 0.74 1.20 1.38 1.07 0.79
Sugar 0.09–0.18 144 1.24 2.26 2.62 2.48 1.38 1.63
Phosphate 0.06–0.16 60 2.18 2.79 4.99 2.46 2.28 2.25

The second column gives the range of uncertainties of bond lengths (or angles) estimated from the full-matrix refinement of the current structure
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For example, within the Cyt and Gua bases, the s.u. values
are in the range 0.10–0.19� while the r.m.s.d. values are
0.41 and 0.38�, respectively. The angular variation is
larger in the sugars and even larger in the phosphate
moieties. The 12 deoxyribose rings differ in their conform-
ation, which influences the bond angles to a higher degree
than the bond distances.

In the canonical alternating purine/pyrimidine Z-DNA
structure, all pyrimidine nucleotides have C20-endo
puckered deoxyribose, anti glycosidic bond and gauche+

side-chain conformation. In contrast, the purine nucleo-
tides are C30-endo, syn and trans. In the present structure,
all the cytidine units have the expected C20-endo pucker.
Interestingly, the C30-endo guanosine conformation is

Figure 1. Packing of the Z-DNA molecules in the current structure and in other structures marked A in Table 1 (a and b), and in the structures
marked B (c and d). In (a) and (c) the structures are projected down the crystal a-axis, coincident with the helix axis. In (b) and (d), the structures are
projected along the helix 2-fold axes (marked as magenta arrows in a and c), lying in the b and c plane.
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observed only for the four inner nucleotides, whereas
the 30-terminal sugars have C20-endo pucker. In addition,
their torsion angles differ among the analogous residues
(Table 4). The glycosidic angles �, which describe the
orientation of the nucleobase relative to the sugar ring,
indicate the expected conformations. However, while the
spread of the pyrimidine � values is not very large (from
�155.9� to �143.6�), the spread for the purines is much
larger (55.6–77.7�), with the two 30-terminal guanosines
being again outliers (� of about 80� versus �60� for the
remaining Gua units). The side-chain torsion angle g
(O50-C50-C40-C30) has the expected gauche+ conformation
in the Cyt units (44.0–56.2�) and the trans conformation in
the Gua units (�176.3 to 176.8�). In this case, the spread
within the pyrimidine nucleotides is larger but this is due
to a single outlier (Cyt5, 44.0�).

It has been noted before (16,17) that the length of the
glycosidic bond is very sensitive to both electronic and
conformational factors. In the present nucleosides the
syn glycosidic bonds in the purines are clearly longer
[mean value 1.467(1) Å] than in the pyrimidines [1.449(2)
Å], which are anti. Although the spread of the distances
[1.441(3)–1.455(3) Å] in the Gua nucleosides, which take
both the C30-endo and C20-endo form, is somewhat larger
than in the Cyt nucleosides [1.462(3)–1.470(2) Å], which
are uniformly C20-endo, there seems to be no correlation

between the glycosidic bond length and the torsion angle �
around this bond or the phase angle of pseudorotation of
the deoxyribose ring.

Evaluation of stereochemical restraints

Since the structure has been refined without geometrical
restraints, it is possible, and indeed quite illuminating,
to compare the experimental stereochemical characteris-
tics of the final model with the target library values (18).
In general, the values of the freely refined bond lengths
and angles agree well with the restraint library entries. The
only significant discrepancy of about 3� is observed for the
direction of the glycosidic bond at the guanosine N9 atom.
As shown in Supplementary Table S2, in all Z-DNA struc-
tures the angles C4-N9-C10 are in the range 128.9–130.0�

while the library value is 126.5(13)�. Similarly, the angles
C8-N9-C10 are limited to 123.8–125.3�, whereas the library
value is 127.0(13)�. This exceptional aspect of the N9 atom
geometry can be linked to the unusual syn orientation of
the purine nucleobase around the glycosidic bond. The
stereochemical restraint library should be modified to
include this aspect of Z-DNA stereochemistry, or the
syn conformation of the glycosidic bond in general.
The phosphate groups display a particularly pro-

nounced variation of the bond angles. A closer inspection
reveals that their geometry is highly correlated with the
conformation of the Z-DNA backbone. Figure 4 illus-
trates that as a result of the repulsive interaction
between the OP1 and OP2 oxygen atoms and the C30 or
C50 atoms of the neighboring sugar units, the phosphorus
atoms acquire a degree of chirality and, in consequence,
some theoretically equivalent O-P-O angles differ by up to
7�. The library restraints (presented in Supplementary
Table S1) correspond to a more symmetric arrangement
of the oxygen atoms, with the two planes, defined by

Figure 2. The Watson–Crick pair Cyt3-Gua10 with the corresponding
Fobs map (blue, at 3s contour level) and a difference Fo�Fc map
calculated without contribution of hydrogen atoms (green) and dis-
played at two contour levels, (a) 3.5s and (b) 2s. The lower contour
level reveals electron density of valence electrons at the centers of
covalent bonds.

Figure 3. Uncertainties (s.u.) of the Z-DNA atomic coordinates
obtained from the full-matrix least-squares refinement, plotted against
their Beq ADP values. Beq is calculated as 1/3 of the trace of the
anisotropic ADP tensor, expressed in B units. The overall
diffraction-component precision index [DPI, Cruickshank, (15)] is
shown as a horizontal line.
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O30-P-O50 and OP1-P-OP2, intersecting at 90�, whereas in
the current structure they are up to 5� away from being
strictly perpendicular.

The observed variation of theoretically equivalent bond
angles is evidently related to the conformational context
and suggests that the restraint targets applied in refine-
ment of structures at lower than atomic resolution
should differ depending on the stereochemistry of the
refined fragment. A similar action has recently been
proposed for the refinement of proteins (19,20), where
e.g. certain bond angles are significantly different in
a-helices and in b-sheets. In nucleic acid structures, differ-
entiation of restraints may be dictated by the significant
variation of the backbone conformation, sugar pucker
and other characteristics of individual nucleotides in Z-,
A- and B-DNA.

Water structure and hydration of Z-DNA

All water sites were refined without positional restraints,
but weak ISOR restraints were applied to their anisotropic
ADPs to prevent inflated anisotropy. With respect to the
occupancy parameters, those water molecules for which
they refined to values close to unity (22 sites) had their
occupancies fixed at 1.0; those close pairs of sites for
which the sum of their refined occupancies converged
close to unity (13 pairs) have their total occupancy con-
strained to 1.0; the remaining 93 sites had their
occupancies refined freely to fractional values.

The majority of the water sites are therefore only par-
tially occupied and often situated in close vicinity of each
other at alternative, disordered locations. However,
despite this relatively high level of disorder, those water
molecules that are hydrogen-bonded to the Z-DNA
molecule display a marked degree of regularity. Most of
the polar groups (containing N or O atoms) of the Z-DNA
are engaged in hydrogen bonds with solvent water mol-
ecules. The exceptions are the ring N3 atoms of the guano-
sine residues, which, owing to the unusual syn
conformation of the purines in Z-DNA, are effectively
shielded from solvent by their sugar fragments (C30-H
for the C30-endo sugars of Gua2, Gua4, Gua8 and
Gua10, or C20-H for the C0-endo sugars of Gua6 and
Gua12), located about 3.1–3.3 Å away. Also the O40

atoms of the cytidine units are not engaged in any
hydrogen bonds, as they are all pointing towards the
neighboring six-membered guanine rings and are therefore
shielded by those rings from access by water molecules.
The guanosine sugar O40 atoms are located on the outside
of the duplex but most of them are shielded by the neigh-
boring Z-DNA molecules in the crystal packing so that
only two of them (Gua4 and Gua6) form H-bonds with
water molecules.

All O and N atoms involved in base pairing in the
‘outer’ hydrogen bonds, facing the major groove, are
also engaged in interactions with solvent water molecules
in a way illustrated in Figure 5. Typically, the O2 atoms of
cytosine and O6 atoms of guanine form H-bonds with
water molecules with O. . .O distances of approximately
2.7–2.85 Å, whereas the H-bonds involving the exoamino
groups N4 (cytosine) and N2 (guanine) haveT
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donor. . .acceptor distances of 2.9–3.2 Å. All guanine N7
atoms are also engaged in H-bonds with water molecules.
The N and O atoms of the bases located inside the helix
are linked to the phosphate oxygen atoms OP2 via a chain
of H-bonds involving one or two water molecules.
However, many water molecules that interact with polar
groups of the Z-DNA at the inner or outer side of the
double helix have fractional occupancies and split pos-
itions, indicating that the hydrogen-bonding network of
the solvating water may be realized in multiple ways.

In fact, modeling of the solvent region is not fully sat-
isfactory even at the resolution of 0.55 Å, and there are
still features in the final difference Fourier map (within
�0.9 to 1.0 e Å�3) which could be only unconvincingly
modeled with a large number of water sites of low
occupancies. Such a highly subjective procedure would
not be warranted by any acceptable validation criteria
and hence the final model of solvent molecules should be
treated as a compromise. This situation is also typical for
the refinement of protein crystal structures at atomic reso-
lution (21), where modeling of partially occupied water
and small-ligand sites (as well as of some solvent-exposed
amino acid side chains) presents the most difficult
challenge towards the end of the model-polishing stage.

Among the phosphate oxygen atoms, all OP1 and OP2
atoms are engaged in (usually multiple) H-bonds with
water molecules. Again, most of these water sites are par-
tially occupied. The OP1 atom of Gua2 forms a direct
H-bond with the O30 atom of Gua12 from the neighboring
molecule (plus one H-bond with a water molecule).
Among the ester O atoms connecting the phosphorus
atoms with the sugars units, most of the O30 atoms (except
Gua4) are H-bonded to water molecules, but only four

O50 atoms (from residues 2, 4, 6 and 7) form such
H-bonds, whereas the rest are not solvated directly.
The total sum of occupancies of all water sites in the

asymmetric unit is 78.6. At such a high resolution, and
relatively densely packed macromolecular crystal struc-
ture, it is tempting to address the issue of what fraction
of all water molecules in the asymmetric unit have been
modeled in the atomic coordinate set. For proteins, the
calculation is relatively straightforward and is based on
the concept of Matthews volume (22) and the specific

Figure 4. Conformation of the phosphodiester groups. The bond angles around the phosphorus atoms are given in degrees and selected distances are
shown in Å. The atoms are represented by their anisotropic thermal ellipsoids drawn at the 50% probability level.

Figure 5. The Cyt9-Gua4 pair of nucleosides with all hydrogen bonds
involving these residues. The hydrogen bond distances are given in Å.
Other residues have a similar system of hydrogen bonds. Water mol-
ecules are represented by red spheres.
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density of dry protein material, which is roughly constant,
1.35 g cm�3, although differences of opinion exist even on
this relatively well-established subject (23–25). For the
aggregated Z-DNA structure including the spermine com-
ponent in the present crystal, the Matthews volume is 1.58
Å3.Da�1. Assuming that DNA has specific density of
�1.7 g cm�3, as observed for single crystals of nucleoside
phosphates (26), the predicted volume fraction of the
solvent region is 0.40, which corresponds to 83 fully
occupied water sites in the asymmetric unit. This is fairly
close to the number of water molecules included in the
model, and one might wonder if in this situation the
modeling of bulk solvent scattering (for example, using
the Babinet parametrization implemented in the SWAT
option of SHELXL) is physically justified. We have ad-
dressed this question by introducing the SWAT instruc-
tion in the structure refinement, and conclude that
refinement with bulk-solvent correction does not lead to
a significant improvement of the results (Rfree change from
7.47% to 7.46%).
In the structures crystallized in the presence of Mg2+

(1DCG, 2DCG, 1ICK), this ion is octahedrally coordi-
nated by the N7 atom of guanine Gua6 and five water
molecules. In the present structure, this position is filled
with a water molecule, whose site occupancy refined to
0.25. It is surrounded irregularly by several other water
sites with fractional occupancies.
Electrostatic neutrality of the crystal structure requires

the presence of additional six units of positive charge in
the crystallographic asymmetric unit. Those positively
charged entities are most likely ammonium or metal cat-
ions. Unfortunately, even a very careful analysis of the
solvent region did not lead to the identification of these
cationic species. Chemical entities such as H2O, H3O

+,
NH4

+, Mg2+ or Na+ (all of which could be present in
the crystal structure) are isoelectronic and therefore diffi-
cult to differentiate by X-ray diffraction. On the other
hand, the very high resolution of this X-ray diffraction
experiment should already allow proper identification of
these species because the corresponding atomic scattering
factors are sufficiently different at high diffraction angles.
Additionally, interactomic interactions and coordination
geometry should also help (for instance, a tetrahedral
system of H-bonds to four acceptors would favor NH4

+

over H2O; an octahedral pattern of six neighbors would
favor a metal cation over H2O/NH4

+ and shorter dis-
tances would indicate Mg2+; etc.). We have analyzed the
solvent region of the crystal with these stereochemical
rules in mind but have been unable to unambiguously
identify any metal cationic sites. It is probable that some
of the (numerous) partial water sites within the significant-
ly disordered solvent region may be filled by or shared
with partially occupied metal ions. However, even with
the outstanding resolution and quality of the present dif-
fraction data, detection of such nuances is not feasible. It
is also possible that some of the water sites may be
occupied by ammonium or hydronium cations but we
have been unable to make the distinction either. It must
be, therefore, concluded that even at this level of accuracy
of crystal structure determination the issue of electrostatic
neutrality cannot be satisfactorily resolved.

CONCLUSIONS

The very high resolution of the X-ray diffraction data
permitted a refinement of the model of d(CGCGCG)2
Z-DNA with unprecedented accuracy, yielding average
uncertainties of the atomic positions in the range of
0.002–0.004 Å, i.e. comparable to the situation achievable
for small organic crystal structures. The analysis of the
model stereochemistry revealed a high degree of regularity
of its structure, with the bond lengths and angles of
each analogous residue being practically identical within
the margin of the high positional accuracy. The freely
refined geometry parameters in general agree well with
the commonly used restraint target values but in some
cases they clearly suggest that an adjustment of the
targets would be necessary.

It has been noted in protein crystal structures that
increase of resolution is typically correlated with a
roughly proportional increase of the number of residues,
or their fragments, that can be confidently modeled in dual
(or even multiple) conformations (27–29). This is due to
the fact that only sufficiently high resolution of the dif-
fraction data allows separate modeling of alternative con-
formations that are too close together to be distinguished
by lower resolution data. However, this simplistic rule of
thumb does not seem to apply to the current structure,
where there is no disorder observed in the DNA part.
The only significant degree of disorder is seen in the
polyamine component of the crystal structure and in the
solvent region. In the Z-DNA molecule, high degree of
stability and excellent definition in electron density maps
is observed not only for the base pairs, which are located
in the core of the molecule, but also for the potentially
more flexible peripheral backbone elements, including the
sugar moieties.

In the present structure, the Z-DNA molecule is highly
rigid and ordered, in a way contradicting the ‘flexible
DNA’ model, illustrated, for example, by the
atomic-resolution structures of B-DNA, where an appre-
ciable degree of flexibility and disorder is seen (30–32).
One might speculate that the stereochemistry of the
DNA components is really compatible with right-handed
helicity, where certain ranges of stereochemical param-
eters are accessible. The less common Z-DNA form, on
the other hand, has more restricted ranges of parameter
values, so that when it does form, it must assume these
values with very little deviation. The rigidity of the
Z-DNA molecule can be also linked with its compact
structure, reflected in its small diameter (18 Å versus
20 Å in B-DNA), which leads to a tighter packing of the
phosphates and bases against the sugars.
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24. Andersson,K.M. and Hovmöller,S. (2000) The protein content in
crystals and packing coefficients in different space groups.
Acta Crystallogr., D56, 789–790.

25. Quilin,M.L. and Matthews,B.W. (2000) Accurate calculation of
the density of proteins. Acta Crystallogr., D56, 791–794.

26. Jaskolski,M. (1989) Structure of cytidinium dihydrogenphosphate.
Acta Crystallogr., C45, 85–89.

27. Addlagatta,A., Krzywda,S., Czapinska,H., Otlewski,J. and
Jaskolski,M. (2001) Ultrahigh-resolution structure of a BPTI
mutant. Acta Crystallogr., D57, 649–663.

28. Howard,E.I., Sanishvili,R., Cachau,R.E., Mitschler,A.,
Chevrier,B., Barth,P., Lamour,V., van Zandt,M., Sibley,E.,
Bon,C. et al. (2004) Ultrahigh resolution drug design I: details of
interactions in human aldose reductase-inhibitor complex at
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