
© 2012 Landes Bioscience.

Do not distribute.

Adherens junction function and regulation during zebrafish gastrulation
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The adherens junction (AJ) comprises
multi-protein complexes required

for cell-cell adhesion in embryonic deve-
lopment and adult tissue homeostasis.
Mutations in key proteins and mis-
regulation of AJ adhesive properties can
lead to pathologies such as cancer. In
recent years, the zebrafish has become an
excellent model organism to integrate cell
biology in the context of a multicellular
organization. The combination of classi-
cal genetic approaches with new tools for
live imaging and biophysical approaches
has revealed new aspects of AJ biology,
particularly during zebrafish gastrulation.
These studies have resulted in progress in
understanding the relationship between
cell-cell adhesion, cell migration and
plasma membrane blebbing.

Introduction

Cell-cell adhesion plays a critical role in
many processes in embryonic develop-
ment, adult homeostasis and diseases.
Defining the molecular mechanisms
involved in cell-cell adhesion is, therefore,
critical to understanding many funda-
mental problems in tissue organization,
dynamics and function. While there are
many different cell-cell adhesion proteins,
the cadherin family of cell-cell adhesion
proteins is thought to play a central role
in initiating cell-cell adhesion and con-
trolling cellular dynamics and fate.1 The
cadherin family comprises trans-membrane
proteins that share multiple copies of an
external domain called the EC domain.1

Classical cadherins have five EC domains
that mediate trans-interactions with the
extracellular domain of cadherins on

opposing cells to form the adherens
junction (AJ).2 The cytoplasmic domain
binds proteins that belong to the catenin
family that includes p120-catenin, β-catenin
and a-catenin.3 p120-catenin is necessary
for the stabilization of the cadherin
complex at the plasma membrane, and
together with β-catenin associates with
cadherins during their intracellular trans-
port to the plasma membrane.4 β-catenin
binds a-catenin, and a-catenin mediates
interactions with the actin cytoskeleton.5

Recent studies have revaluated the role of
mammalian a-catenin from a simple
static molecular bridge between AJs and
the actin cytoskeleton, to an active role in
regulating actin cytoskeleton and mem-
brane dynamics;6-9 it is unknown whether
zebrafish a-catenin has properties similar
to the mammalian isoform. Additional
functions for a-catenin may include
mechanical transduction and cell polar-
ization.10,11 The catenin proteins are also
involved in signal transduction pathways
where they work as a sensor between the
adhesive property of the plasma membrane
and gene expression.12-14

In order to gain insights about the role
and regulation of the AJs it is important
to explore in vivo models. In this respect,
Danio rerio (zebrafish) gastrulation has
become an excellent model system.15

Gastrulation is a critical stage of animal
development at the end of which the
embryo acquires the future body plan
including the anterior-posterior and dorsal-
ventral axes, and the separation of the three
germ layers (ectoderm, mesoderm and
endoderm).16,17 Gastrulation involves cell
migration, cell sorting and tissue remodel-
ing all of which require very fine regulation
of cell-cell adhesion.17,18
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Zebrafish gastrulation consists of four
morphogenetic processes: epiboly, inter-
nalization, convergence and extension.19

Epiboly is defined as the spreading of a
one tissue over another that causes the
thinning of the initial tissue.20 Epiboly in
zebrafish involves two processes: spreading
of the most external cell layer (the envelop-
ing layer, EVL) and, independently,
spreading of deep cells over the yolk cell
until the yolk is completely covered by the
two cell layers.20 Spreading of the EVL cell
layer may be driven by the changing
morphology of yolk syncytial layer
(YSL).21,22 The YSL is a cytosolic, yolk-
free region of the yolk cell found
immediately under the blastoderm and
connected to the EVL through tight
junctions.23,24 The YSL may provide a
pulling force on the EVL margin through
an actin ring located just below the EVL
margin.21 The main process that drives
deep cell epiboly is radial intercalation,
which involves the movement of deep cells
from deeper layers to most superficial
layers (Fig. 1).25 This causes thinning of
the presumptive ectoderm and, as a
consequence, the presumptive ectoderm
spreads over the yolk.25

Internalization occurs when the meso-
endoderm moves through the blastoderm
beneath the prospective ectoderm.25,26

Around mid-gastrulation, convergence
and extension movements take place.
Convergence narrows the tissue medio-
laterally while extension elongates the
embryo anterio-posteriorly.19 The different

subtypes of mesodermal precursor undergo
different cell movements that contribute to
the final convergence and extension.15

Adherence Junction Function
during Zebrafish Gastrulation

The role of E-cadherin in gastrulation has
been examined in mutant embryos, and in
morphant embryos depleted of the protein
by morpholino (an antisense oligo used to
block translation or splicing of the targeted
mRNA). Strong mutant alleles and a high
concentration of morpholino cause epiboly
arrest or delay, and strong defects in
gastrulation.27-29 Epiboly arrest is due to
defects in radial intercalation. E-cadherin
mutant and morphant cells undergo radial
intercalation but they are not able to
establish stable cell-cell contacts with the
upper layer cells, and move back in the
lower layer (reverse radial intercalation or
de-intercalation; Fig. 1).27,30 The deep
cells in the most external layer establish
cell-cell contacts with the opposing basal
membrane of the EVL cells.29 In
E-cadherin mutant/morphant embryos,
the EVL/deep cells interactions are
impaired, which might contribute to the
overall defect in radial intercalation of the
deep cells.29,30

A low concentration of morpholino is
useful to dissect the role of E-cadherin in
mesoderm migration. E-cadherin is
required for the collective migration of
the pre-chordal plate progenitor.26 During
their migration, the pre-chordal plate

progenitors need to establish contact with
the prospective ectoderm located over
them and E-cadherin is required to
mediate this interaction. Moreover, mor-
phant cells fail to properly elongate and
decrease their rate of migration.26 The
progenitors of the pre-chordal plate are
surrounded by another subpopulation of
mesodermal cells that have a lower level
of E-cadherin.31 Increasing the level of
E-cadherin in the latter cells affects the
correct cell migration of the pre-chordal
plate progenitors indicating that differen-
tially expression of E-cadherin may finely
modulate the correct migration of meso-
dermal precursors as a whole tissue.31

Finally, E-cadherin plays a role in coordi-
nating the convergence and extension
movement of the YSL nuclei with the
movement of the mesodermal precur-
sors.23,32 N-cadherin is required for lateral
mesoderm migration and a gradient of
bone morphogenic protein (BMP) that is
present in the gastrula might regulate
N-cadherin mediated cell migration.33,34

Depletion of aE-catenin by morpholino
causes a delay in epiboly.35 The delay is
caused by defects in both radial intercala-
tion and EVL epiboly. aE-Catenin mor-
phant cells, like E-cadherin morphant
cells, undergo radial intercalation but
move back into the lower layer (Fig. 1).
In spite of similar defects in cell-cell
adhesion, the structure of the deep cells
layers appears different in the E-cadherin
morphant and aE-catenin morphant
(Fig. 2). These differences could reflect
different cell behaviors and the presence of
E-cadherin in the aE-catenin morphant
cells. Additionally, aE-catenin depleted
cells exhibit protracted plasma membrane
blebbing (see below for further discus-
sion). The delay in EVL epiboly correlates
with the failure of the EVL cells at the
margin to properly elongate (changing in
cell morphology that correlates with
epiboly progression). The fact that aE-
catenin causes an epiboly defect in the
EVL could be due to: (1) aE-catenin plays
some role in regulating the actin cyto-
skeleton similar to what described in tissue
culture cells6 or (2) aE-catenin depletion
affects the functionality of other adhesion
complex such as tight junction.24 This
additional role of a-catenin might occur in
the EVL and YSL.

Figure 1. Radial intercalation. (A) Deep cells from the lower layer (red) move upwards and
intercalate between the deep cells in the upper layer.25 (B) Radial intercalation drives expansion
of the upper layer and triggers the overall epiboly of the deep cell tissue.25 (C) In aE-catenin
morphants and E-cadherin mutant/morphant embryos, the deep cells are able to undergo radial
intercalation but some cells migrate back in the lower layer (revRI). The revRI affects the proper
expansion of the upper layer, resulting in a delay or block in epiboly of the deep cell tissue.27,35
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Adherens Junction Regulation
during Zebrafish Gastrulation

An example of E-cadherin regulation is the
repression of gene expression by Snail
during epithelial-to-mesenchyme transi-
tion (EMT).36-38 Two studies highlight
this type of regulation of cell-cell adhesion
in zebrafish.31,39 The first study focused on
the role of the two zebrafish Snail iso-
forms, each of which regulates the repres-
sion of E-cadherin in different regions of
the mesoderm.31 The second study high-
lighted E-cadherin repression by a pathway
activated by prostaglandin. Interfering
with prostaglandin signaling by depleting
its receptor results in broad overexpression
of E-cadherin, which caused defects in
gastrulation. The increased E-cadherin
expression is due to snail degradation by
the proteasome.39

An increasing number of reports high-
light the importance of post-translational
regulation of proteins during morpho-
genesis to enable the adhesive properties
of cells to be changed rapidly.18 Regulation
of cadherin by intracellular trafficking is an
efficient pathway to quickly change cell-cell
adhesion.40 For example, pre-chordal plate
progenitor cells respond to a migratory
cue from Wnt1126,41 that in turn regulates
the E-cadherin intracellular localization
through Rab5.42 Depletion of zebrafish
prion protein also causes defects in radial
intercalation similar to E-cadherin mutants
due to the relocation of E-cadherin to
intracellular Rab11-positive vesicles.43

Another way to influence cell-cell
function is to functionally block the
interaction between E-cadherin and the
cytoplasmic catenin complex. In zebrafish,
overexpression of Ga12/13 negatively
regulates E-cadherin-dependent cell-cell
adhesion, and in vitro inhibits binding of
β-catenin to E-cadherin.44,45 Moreover,
Wnt signaling in necessary to stabilize
β-catenin and in turn β-catenin stabilized
E-cadherin at the plasma membrane
during the onset of epiboly.46 Finally
influencing the plasma membrane domain
to which the AJ is localized can influence
cell polarity. For example, the adhesion
molecule epCAM is necessary for the
enrichment of E-cadherin at the basal
membrane of the EVL.30

Figure 2. Tissue morphogenesis during radial intercalation. (A–D) Structure of the deep cell layers
at the onset of epiboly (A) and at 60% epiboly in wild-type (B), and E-cadherin (C) and aE-catenin
morphants (D). (A) Deep cells are organized in multiple layers with weak cell-cell contacts and have
a rounded morphology;57 the deep cells of the deeper layer migrate toward the upper layer
(the arrow indicates the direction of migration); the horizontal line defines the focal plane for
the images shown in (A’–D’) (see below). (B) At 60% epiboly in a wild-type background, deep cells
stabilize cell-cell contacts and form one or two compact layer.25,27 (C) At 60% epiboly in E-cadherin
(cdh1) morphant/mutant embryos, the deep cells fail to stabilize cell-cell contacts and some cells
undergo revRI27,35 (direction of arrow). (D) At 60% epiboly in aE-catenin (ctnna1) morphant
embryos, the deep cells undergo revRI (direction of arrow) but also exhibit extensive membrane
blebbing.35 (A’–D’) Confocal images of the most external deep layers below the EVL. The horizontal
bar in (A) indicates the focal plane. Cells express a membrane bound GFP to highlight the plasma
membrane, and images are shown in reverse contrast. (A’) Wild-type external layer at the onset
of epiboly; some deep cells are rounded and have not yet engaged in stable cell-cell contacts.
(B’) Wild-type external layer at 60% epiboly; the deep cell form a compacted layer of cells.
(C’) The external cell layer in an E-cadherin morphant at 60% epiboly; the deep cells are rounded
and fail to form an external compacted layer of cells. (D’) The external cell layer in an aE-catenin
morphant at 60% epiboly; the deep cells are more engaged in cell-cell contacts than the E-cadherin
morphants, but they also fail to form a compacted layer of cells and have extensive plasma
membrane blebbing (cells marked by an asterisk).
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Does the Adherens Junction
Play a Role in Plasma Membrane

Blebbing?

Blebbing is a type of plasma membrane
protrusion driven by detachment of the
plasma membrane from the cell cortex and
cytoplasmic hydrostatic pressure, which
cause the plasma membrane to transiently
protrude outwards.47 Plasma membrane
blebbing, unlike lamellipodial formation,
does not involve actin polymerization in
the initial protruding phase. Once the
membrane bleb is formed, ERM proteins
(ezrin or moesin) are recruited to the
plasma membrane to reconnect the mem-
brane to the actin cytoskeleton in the cell
cortex (membrane-to-cortex attachment,
MCA).48-50 Finally, activation of Rho
signaling, myosin II activity and F-actin
assembly cause the retraction of the
membrane bleb.48,50,51

The zebrafish has been particularly
useful in gaining new insight into the
mechanisms underlying plasma membrane
blebbing.49,51-53 The regulation of blebbing
plays a critical role in tuning the timing
and direction of the migration of cells
during gastrulation;49,53-55 blebbing is also
used by the primordium germs cells
(PGC) to reach the future gonad.51,52

The role of cell-cell adhesion during
plasma membrane blebbing is poorly
understood. Depletion of E-cadherin leads
to defects in the migration of PGC, and
a high concentration of morpholino
impairs blebbing.51 In contrast, increased
E-cadherin levels, and hence cell-cell
adhesion, correlates with increased plasma
membrane blebbing.39

Depletion of aE-catenin causes pro-
tracted membrane blebbing by deep
cells undergoing radial intercalation.35

Depletion of E-cadherin does not cause
blebbing, whereas co-depletion of E-cad-
herin and aE-catenin inhibits membrane
blebbing. To understand the relationship
between aE-catenin and E-cadherin in
plasma membrane blebbing, transplanta-
tion experiments have been performed in

which a group of cells are transferred
between embryos of different genetic
backgrounds to test if a phenotype is cell
autonomous. Morphant cells depleted of
aE-catenin have protracted membrane
blebbing in a wild-type background. In
contrast, when these cells are transfer into
an E-cadherin morphant embryo they do
not exhibit membrane blebbing.35 These
results indicate that membrane blebbing
requires E-cadherin-mediated regulation of
cortical tension and, perhaps, cell-cell
contact. Significantly, E-cadherin deple-
tion also inhibited increased blebbing
caused by ezrin depletion, which is
required for MCA.35,49

Based on this result, aE-catenin may
have a role in regulating the dynamic
connection between the plasma membrane
and the cell cortex. During radial inter-
calation, deep cells migrate in the upper
deep cell layer and establish cell-cell
contact/adhesion with neighboring cells.
The plasma membrane of deep cells is very
dynamic and possible under tension.
Under those conditions, membrane bleb-
bing can still be triggered but with low
frequency. Depletion of aE-catenin,
or ezrin, destabilizes the connection
between the plasma membrane and the
cell cortex and, therefore, relieves the
suppression of membrane dynamics that
is not matched by opposing forces at
the cell cortex. Reducing the level of
E-cadherin decreases plasma membrane
activity/tension, therefore reducing the
requirement for factors that normally
suppress blebbing.

Two recent reports appear to support
this model. The first report showed that
deep cells mutant for eomesodermin, a
transcription factor needed to trigger the
onset of epiboly, displayed more blebbing
than control cells.56 Interestingly the
increased blebbing in the eomesodermin
mutant did not correlate with increased
E-cadherin levels (tested by western blot-
ting) although the morphology of the most
external deep cell layer resembled cells
with increased cell-cell adhesion. The

second report showed that mesodermal
cells after internalization undergo a phase
in which they bleb followed by a transition
to a mesenchymal morphology and beha-
vior.55 Mesodermal cells mutant for spade-
tail (a transcription factor) remain much
longer in the blebbing phase than wild-
type cells. Again, these cells do not show
any increase of cadherins at the mem-
brane, however they are more adhesive
than control cells. These observations
suggest that inactivation of MCA factors
it is not matched by decreased adhesive
property of involuting mesodermal cells.
Interestingly, the adhesive properties are
not dictated by the amount of cadherins
present in the cell but most likely by post-
translation modifications (see above).
Taken together these reports indicate that
blebbing might be regulated by tuning the
interaction between the cell cortex and
cell-cell adhesion complexes.

Perspective

In past 10 years, many studies have high-
lighted the function and regulation of
AJs during zebrafish gastrulation. These
studies started with the characterization of
mutants and morphants to dissect AJ
functions in complex morphogenetic pro-
cess. The advance of new methods allowed
the study of cellular behaviors in parallel
with studies of the biophysical properties
of cells. These advances have led to a
new appreciation of the role of cell-cell
adhesion complexes and their link to the
actin cytoskeleton in plasma membrane
dynamics and cortical tension during
complex developmental processes such as
collective cell migration and cell sorting.
In this respect, the study of zebrafish
gastrulation has much to offer the cell
biologist in the future.
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