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Endogenous neurotrophin-3 promotes neuronal 
sprouting from dorsal root ganglia
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Introduction
Neurotrophic factors are endogenous signaling proteins that 
promote the survival, differentiation and function of neurons. 
Neurotrophic factors are produced by various cell types, in-
cluding target neurons and muscle cells, as well as microglia 
and Schwann cells (Ekestern, 2004). Among the various neu-
rotrophic factors that are involved in spinal cord regeneration 
(Li et al., 2007, 2008), neurotrophin-3 (NT-3) has been par-
ticularly well studied (Blits et al., 2003; Liu et al., 2012; Tuins-
tra et al., 2012; Wang et al., 2013). NT-3 plays important roles 
in regulating the growth of muscle sensory neurons and in 
maintaining proprioceptive sensory organs (Chen et al., 2002; 
Gorokhova et al., 2009). NT-3 contributes to the survival of 
muscle spindle sensory afferent fibers. NT-3 also promotes the 
elaboration of terminal projections to motor neurons during 
the late stages of development, and in addition, potentiates 
group Ia synaptic projections to motor neurons. Delivering 
NT-3 to peripherally axotomized afferent fibers promotes the 
growth of axons. The monosynaptic projections from spindle 
afferent fibers to motor neurons also exhibit acute potentia-
tion when exposed to NT-3 in the isolated spinal cord. NT-3 
also enhances the mechanical sensitivity of the neuroma of 
spindle afferents that have been axotomized.

Previous studies have shown that rhizotomy can signifi-

cantly increase the expression of NT-3 in the spared dorsal 
root ganglion (DRG) (Wang et al., 2002) and in neurons and 
glial cells in lamina II of the afferent segments (L5 and L7) 
in cats (Zhou et al., 2002). In addition, DRG cells from cats 
with spinal cord injury produce significantly more neuro-
nal spheres and longer axonal projections than those from 
normal control cats (Zhang et al., 2004). However, whether 
endogenous NT-3 secreted by the DRG is involved in neu-
roplasticity after rhizotomy remains unclear. In this study, 
we examined the function of NT-3 at an extended period (2 
months) after rhizotomy in cats.

Materials and Methods
Establishment of spinal cord dorsal root rhizotomy model
A total of 25 adult male outbred cats (1 year old, clean 
grade, weighing 3–3.5 kg) were provided by the Laboratory 
Animal Center of Nanjing Medical University (Nanjing, Ji-
angsu Province, China). The cats were individually housed 
in a vivarium with a 12-hour light/dark cycle for at least 3 
days before surgery, with free access to food and water. The 
experimental procedures used in this study were approved 
by the Ethics Committee of Nanjing Medical University 
Affiliated First Hospital (Nanjing, Jiangsu Province, China). 
The cats were randomly assigned to the following three 
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pentobarbital solution (3.5%, 1.3 mL/kg), the lumbar lami-
nae and part of the sacral vertebrae were removed. The dura 
was incised to expose the L1–5 and L7–S2 DRGs. The DRGs 
along with 2–3-mm segments of the associated dorsal roots 
were then removed at the intervertebral foramina on the left 
side, leaving the L6 DRG and its associated dorsal root intact 
(Figure 1).

NT-3 blocking
NT-3 blocking in the cats was performed as previously de-
scribed (Liu et al., 2009). Briefly, after the cats were anesthe-
tized by intraperitoneal injection of sodium pentobarbital 
solution (3.5%, 1.3 mL/kg), the L5–6 processes and vertebral 
arches were resected, exposing the lumbar subarachnoid 
space. A catheter was inserted into the subarachnoid space 
and fixed by suturing the muscles and skin. NT-3-specific 
antibody (1:1,500; 50 μL; rabbit anti-cat; Santa Cruz Biotech-
nology, Dallas, TX, USA) was injected through the catheter 
once every week starting on postoperative day 1 during the 
first month, then every 2 weeks during the second month.

Immunohistochemical staining
All cats were sacrificed 2 months post-surgery and tran-
scardially perfused. Five animals from each of the normal 
control and rhizotomy groups were used for immunohis-
tochemical staining. The L6 DRG and spinal cord segment 
were harvested and fixed in 4% paraformaldehyde. The tis-
sues were dehydrated in 20% sucrose solution overnight and 
cryosectioned into 30-μm sections for the spinal cord and 15-
μm sections for the DRG. For unbiased sampling of data, a 
systematic sampling method was used, and the 10th, 20th, 30th, 
40th and 50th sections were selected for analysis. Immuno-
histochemical staining was performed using rabbit anti-cat 
NT-3 monoclonal antibody (1:1,500; Santa Cruz Biotechnol-
ogy), with a 48-hour incubation at 4°C. Horseradish peroxi-
dase-conjugated goat anti-rabbit secondary antibody (1:200; 
Santa Cruz Biotechnology) was added at 37°C for 1.5 hours. 
Sections were then incubated with 3,3′-diaminobenzidine for 
staining. PBS instead of primary antibody was used for the 
negative control. NT-3-positive neurons in the L6 DRG and 
spinal cord lamina II were counted in a randomly selected 
square of 1.5 × 1.5 μm2 under a microscope (X51, Olympus, 
Shanghai, China). The results of all sections were averaged.

Retrograde tracing
Retrograde tracing was performed on axons of DRG neu-
rons using a previously described protocol (Liu et al., 2009). 
Briefly, 5 days before the animals were sacrificed, the cats 
were given general anesthesia and the bilateral lumbosacral 
trunks were isolated. Cholera toxin B subunit conjugated to 
horseradish peroxidase (CB-HRP) 15 μL (30%; Sigma-Al-
drich, St. Louis, MO, USA) was injected into the bilateral 
lumbosacral trunks for retrograde labeling of DRG neurons. 
Staining was performed using tetramethylbenzidine (TMB). 
Briefly, the L6 DRG and spinal cord segment were fixed in 4% 
paraformaldehyde and stained with TMB (1%; Sigma-Al-
drich). PBS instead of CB-HRP was used for the negative 
control. The area of the spinal dorsal horn was measured. 

CB-HRP-positive nerve fibers were counted under a micro-
scope (X51, Olympus) to calculate their density in the dorsal 
horn. The final measurements were the average of the five 
selected sections from each cat.

Statistical analysis
All data are expressed as the mean ± SD. Inter-group com-
parisons were performed with unpaired t-test or one-way 
analysis of variance using SPSS 10.0 software (SPSS, Chica-
go, IL, USA). A P-value < 0.05 was considered statistically 
significant.

Results
Quantitation of NT-3-positive neurons in the L6 DRG and 
lamina II after rhizotomy
Immunohistochemical staining showed that 2 months after 
rhizotomy, the number of NT-3-positive neurons in the L6 
DRG was significantly increased compared with the normal 
control group (P < 0.05). However, no significant difference 
in the number of NT-3-positive neurons in the L6 spinal 
cord lamina II was found between the rhizotomy and nor-
mal control groups (P > 0.05; Figure 2).

Density of CB-HRP-labeled afferent fibers in the spinal 
dorsal horn after rhizotomy
Two months after rhizotomy, TMB staining revealed labeled 
neurons and nerve fibers in the L6 DRG in both the normal 
control and rhizotomy groups (Figure 3A, B), suggesting 
that the CB-HRP retrograde tracing was successful. In the 
normal control group, the stained L6 DRG neurons projected 
into laminae III, IV and V, but not lamina II (Figure 3C). In 
the rhizotomy and rhizotomy plus NT-3 blocking groups, 
the projections of CB-HRP-labeled nerve fibers appeared 
similar to that in the normal control group (Figure 3D, E). 
However, the density of CB-HRP-labeled nerve fibers was 
significantly increased in the rhizotomy group compared 
with the normal control group (P < 0.05; Figure 3F). This 
suggests that rhizotomy stimulates neurite sprouting from 
the spared L6 DRG neurons into the dorsal horn. The neu-
rites mainly projected into laminae III, IV and V. In the 
rhizotomy plus NT-3 blocking group, there was a significant 
decrease in the density of CB-HRP-labeled nerve fibers 
compared with the rhizotomy group (P < 0.05; Figure 3F). 
Our finding suggests that the NT-3 antibody inhibits neurite 
growth from DRG neurons.

Discussion
In this study, we found that rhizotomy significantly increased 
the number of NT-3-positive neurons in the spared L6 DRG 
in cats 2 months after rhizotomy. This effect was inhibited by 
an NT-3 antibody, suggesting that NT-3 plays an important 
role in neural regeneration after rhizotomy.

NT-3 is an important neurotrophic factor that plays im-
portant roles in nervous system development and synaptic 
plasticity (Maisonpierre et al., 1990; Schnell et al., 1994; Liu 
et al., 2009). NT-3 is expressed in motor neurons of the spi-
nal ventral horn, in axons, in the spinal dorsal horn, and in 
glial cells (Ernfors et al., 1990; Li et al., 2007). In addition, 
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groups: normal control group (n = 10), rhizotomy group (n 
=10; given unilateral spinal cord dorsal root rhizotomy), and 
rhizotomy plus NT-3 blocking group (n = 5; given unilat-
eral spinal cord dorsal root rhizotomy and NT-3 blocking). 
Five animals from each of the normal control and rhizot-
omy groups were used for immunohistochemical staining 
and retrograde labeling. The rhizotomy plus NT-3 blocking 
group was only used for retrograde staining.

Spinal cord dorsal root rhizotomy was performed as pre-
viously described (Liu et al., 2009). Briefly, after the cats 
were anesthetized by intraperitoneal injection of sodium Figure 1 Establishment of spinal cord dorsal root rhizotomy model.

Figure 2 Neurotrophin-3 (NT-3)-positive neurons in the L6 dorsal 
root ganglion (DRG) and lamina II 2 months after rhizotomy in cats.
(A, B) NT-3-positive neurons in the spared L6 DRG in the normal con-
trol and rhizotomy groups (immunohistochemical staining, × 100). (C) 
NT-3-positive neurons in lamina II in the rhizotomy and normal con-
trol groups (immunohistochemical staining, × 200). NT-3 immunore-
activity is shown as yellow-brown staining. (D) Number of NT-3-posi-
tive neurons in the L6 DRG and lamina II. All data are presented as the 
mean ± SD (n = 5). Comparison was performed using unpaired t-test. 
*P < 0.05, vs. normal control group.
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Figure 3 Labeling of afferent fibers in the spinal dorsal horn with cholera toxin B subunit conjugated to horseradish peroxidase (CB-HRP) 
2 months after rhizotomy
(A) TMB staining of the L6 DRG in the normal control group (× 200). (B) TMB staining of the L6 DRG in the rhizotomy group (× 200). (C) TMB 
staining of the spinal cord in the normal control group (× 200). (D) TMB staining of the spinal cord in the rhizotomy group (× 200). (E) TMB 
staining of the spinal cord in the rhizotomy plus NT-3 blocking group (× 200). (F) Density of CB-HRP-labeled afferent fibers in the spinal dorsal 
horn 2 months after rhizotomy. Data are presented as the mean ± SD (n = 5). Comparisons were performed using one-way analysis of variance. *P 
< 0.05, vs. normal control group; #P < 0.05, vs. rhizotomy group. III, IV and V: Spinal cord lamina III, IV and V, respectively; TMB: tetramethylben-
zidine; DRG: dorsal root ganglion.
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NT-3 is expressed in DRG neurons and their axons (Ni et al., 
2001; Wang et al., 2002, 2007, 2009; Zhou et al., 2002). How-
ever, the role of NT-3 in regeneration following rhizotomy 
remained unclear.

In the present study, we found that rhizotomy in cats sig-
nificantly increased the number of NT-3-positive neurons in 
the DRG, suggesting that NT-3 in the spared DRG might be 
involved in regeneration following spinal cord injury. This is 
consistent with a previous finding that neurons in the spared 
DRG extend longer axonal projections than neurons in the 
normal DRG (Zhang et al., 2004). These results suggest 
that the increased number of NT-3-positive neurons in the 
spared DRG is associated with axonal regrowth from sensory 
neurons. Therefore, NT-3 may promote the growth of senso-
ry nerve fibers after rhizotomy.

We also found that there was a significant increase in the 
number of CB-HRP-labeled fibers 2 months after rhizotomy 
in cats. This might be attributed to increased NT-3 expres-
sion in DRG neurons. We speculate that NT-3 secreted by 
DRG neurons may help in the formation of a microenviron-
ment conducive to neurite sprouting from sensory neurons 
in the spinal cord. This may ultimately enhance repair after 
rhizotomy and promote neuronal plasticity. Previous studies 
have shown that during the early stage of repair after rhi-
zotomy, NT-3-expressing neurons in the spared DRG were 
mostly medium and small-sized (Liu et al., 2009). However, 
in this study, the NT-3-expressing neurons in the spared 
DRG 2 months after rhizotomy were mostly large-sized. 
We speculate that NT-3 is expressed by different groups 
of neurons in the DRG after rhizotomy. Changes in NT-3 
expression in the DRG might also alter NT-3 levels in the 
spinal cord, which may further enhance repair following 
rhizotomy. To evaluate the function of NT-3 in the spared 
DRG after rhizotomy in cats, we used an NT-3-specific an-
tibody to block its function. We found that the number of 
NT-3-positive fibers was significantly decreased by this anti-
body in rhizotomized cats. This is consistent with our previ-
ous finding that blocking NT-3 inhibits axonal growth from 
DRG neurons in vitro (Zhang et al., 2004).

In conclusion, we show that the number of NT-3-positive 
large neurons in the spared DRG is increased after rhizoto-
my in cats, which may promote neurite sprouting and repair 
after rhizotomy.
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