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Abstract

A long-standing goal of psychopathology research is to develop objective markers of symptomatic 

states, yet progress has been far slower than expected. While prior reviews have attributed this 

state of affairs to diagnostic heterogeneity, symptom comorbidity, and phenotypic complexity, 

little attention has been paid to the implications of intra-individual symptom dynamics and inter-

relatedness for biomarker study designs. In this critical review, we consider the impact of short-

term symptom fluctuations on widely-used study designs that regress the “average level” of a 

given symptom against biological data collected at a single time-point, and summarize findings 

from ambulatory assessment studies suggesting that such designs may be sub-optimal to detect 

symptom-substrate relationships. While such designs play a crucial role in advancing our 

understanding of biological substrates related to more stable, longer-term changes (e.g., grey 

matter thinning during a depressive episode), they may be less optimal for the detection of 

symptoms that exhibit show high frequency fluctuations, are susceptible to common reporting 

biases, or may be heavily influenced by the presence of other symptoms. We propose that a greater 

emphasis on intra-individual symptom chronometry may be useful for identifying subgroups of 

patients with a common, proximal pathological indicators. Taken together, these three recent 

developments in the areas of symptom conceptualization and measurement raise important 

considerations for future studies attempting to identify reliable biomarkers in psychiatry.

Introduction

A major goal of psychiatry research is to develop objective tests of illness.1-3 In recent 

decades, these efforts have been largely focused on the identification of biomarkers that may 

establish the presence, risk, or stage of a particular disorder.4 Advances have been slower 

than expected, however, as many of the most promising biomarker candidates have been 

found to lack requisite sensitivity and specificity. As has been articulated previously,3, 5 
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causes for this delayed progress include the vast heterogeneity of diagnostic categories, 

significant co-morbidity across disorders, and the sheer complexity of the phenotypes, all of 

which have hindered the identification of disorder-specific pathophysiology necessary to 

develop meaningful objective diagnostic or prognostic tests in psychiatry.

These factors do not, however, explain why the field still lacks proximal bio-signatures of 

symptom expression. As compared to the complex developmental trajectories that may 

hamper the discovery of ultimate biological diatheses, proximal, ‘in-the-moment’ correlates 

of psychiatric symptoms should be more easily identified. Panic attacks, for example, have a 

number of established biological sequelae that may be objectively measured to corroborate a 

subjective report, and these are much easier to detect than, say, genetic risk factors for the 

development of panic disorder. Indeed, in the related field of cognitive neuroscience, the 

ability to decipher the neural code associated with a given experience has become so 

advanced that neuroimaging data can be used to reconstruct perceived images,6 enable direct 

brain-to-brain interaction,7 and command remote-controlled machines.8 Despite this 

progress, we still have no reliable biological indicator for most of the core symptoms of our 

field – the onset of a dysphoric mood, an intrusive negative thought, or a sudden craving.

This absence of markers for symptomatic states can be difficult to reconcile with the ever-

growing number of reliable group-level findings in psychiatric patient populations. For 

example, numerous studies and meta-analyses have confirmed that anxiety is associated with 

increased amygdala responsivity,9, 10 patients with major depression exhibit structural 

reductions in prefrontal and hippocampal areas,11-14 and striatal dopamine levels are altered 

in schizophrenia.15 Even more recent work has begun to uncover a number of broadly 

transdiagnostic markers.16, 17 Unfortunately, however, such effects tend to only emerge on 

average, and fail to provide meaningful information at the level of an individual patient.18 

The promise of biomarkers is to bridge the gap between group-average differences and 

positive or negative predictive power for individuals, which is critical for the deployment of 

‘precision science’ in psychiatry.19 To date, however, this promise remains largely 

unfulfilled.

There have been a number of excellent reviews on the challenges inherent to biomarker 

discovery in psychiatry, 3, 5, 20, 21 and proposed solutions have included a shift towards 

targeting of particular circuits and symptoms rather than whole disorders (e.g., the RDoC 

initiative), substantial increases in power–especially in genetic studies17, 22-24–and ever-

increasing sophistication in the acquisition and analysis of biological data (e.g., graph-

theoretical approaches to processing neuroimaging data).25, 26 Issues of symptom 

assessment and interrelatedness, however, have received comparatively less attention; this 

represents an important oversight, as recent developments in the measurement and 

conceptualization of mood, affect and well-being raise important questions regarding 

methods for biomarker identification.

In this review, we focus on three core issues surrounding the accurate assessment of 

psychiatric symptoms that may undermine the detectability of biomarkers for symptom 

states in some cases: dynamic variation, reporting biases, and symptom inter-relatedness. 

While numerous reviews exist on these topics in the contexts of clinical assessment,27, 28 
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personality and well-being research,29 and affective science,30 the implications for the field 

of biological psychiatry have not, to our knowledge, been critically examined. Here, we 

suggest ways in which enhanced measurement and characterization of symptoms may be 

improved, thereby augmenting statistical power without the added expense of increasing 

sample sizes. While our points emphasize relationships spanning the level of individual 

biology and specific symptoms, we note that many of the issues raised are not limited to 

these two particular levels of analysis. However, we have focused on symptom-substrate 

relationships in part due to the substantial emphasis that has been placed on biomarker 

discovery in psychiatric research in recent years.

Symptom-substrate dynamics and ‘average level’ symptom inventories

When attempting to identify a biomarker, one critical question that must be addressed in 

advance is the hypothesized relationship between symptom and substrate variability. Most 

symptoms and substrates show periodic and/or stochastic fluctuations over time; if it is 

presumed that these oscillations are mainly a product of situational factors, measurement 

error, or other forms of noise, then it would make sense to utilize central tendency statistics 

that may help reduce such noise distortion. In contrast, if one believes such fluctuations in 

both symptom and substrate levels are meaningfully coupled, than the process of averaging 

may remove critical signal, and a time series design may be required. In practice, a 

substantial number of studies employ cross sectional designs in which measures of symptom 

severity are assessed using a retrospective report instrument that prompts patients to report 

their “average-level” of symptoms over various periods of time. These measures will then 

typically be regressed against a biological measure collected at a single time point. For ease 

of reference, we will refer to these as “average-level” study designs. Such studies have 

played a critical role in biological psychiatry to date, and have yielded a number of 

important discoveries. The appropriateness of this design should not go unexamined, 

however, and may depend on the dynamic nature of both the symptom and target substrate, 

as well as their respective sampling rates.

The easiest biomarkers to detect will be those with either minimal variance or highly regular 

patterns of expression. Consider the example of visual processing deficits following damage 

to area V1, which is associated with object misperception. While such lesions may prompt 

an initial period of cortical reorganization, afterwards the substrate (V1 lesion) and symptom 

(object perception) are relatively stable and therefore readily detectable using average-level 

designs.31 Similar situations arise when symptom/substrate fluctuations are slow-moving 

relative to the sampling-rate of the measures used. For example, a number of studies suggest 

that hippocampal grey matter volume varies over time as a marker of current or remitted 

depression,11, 12, 14, 32-34 and is differentially impacted by the number of past depressive 

episodes.35-38 Importantly, these clinical findings are buttressed by a large animal literature 

suggesting that hippocampal atrophy may gradually occur after a period of sustained chronic 

stress.39, 40 A key contribution of these preclinical data is to provide an estimate of the 

period frequency of hippocampal volume changes, suggesting that the temporal dynamics of 

a depressive episode and structural change may be approximately synchronized. Therefore, 

while neither depressive episodes nor hippocampal volume changes are as stable as a lesion, 

their oscillations may be slow enough that a symptom measure that averages over the past 
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week of experience (such as the BDI or HRSD) is suitable to detect a relationship. 

Consequently, structural changes in this region have been successfully identified as a marker 

for both depressive state as well as risk for relapse.41, 42

In many ways, the importance of this type of symptom chronometry has been previously 

recognized by the classic state vs. trait distinction in psychiatry. However, the maximum 

temporal window for a given symptom state is often not well-characterized empirically,43 

and many clinical symptom measures used in ”average level” designs assume, at least in 

practice, that symptom states show relatively little meaningful variation over time periods as 

long as a few weeks or more44-53. The growing availability of daily and multi-day 

assessment data (referred to herein as Ambulatory Assessment; “AA”) suggests that many 

symptom domains–especially those related to mood, anxiety and stress–show significant 

day-to-day27, 30, 54-56 and even within-day57-59 variation in both clinical and non-clinical 

populations. Similarly, various classes of biomarkers, including hormone levels, gene 

expression and functional connectivity, exhibit dynamic patterns over multiple 

timescales,60, 61 for which possible relationships to symptomatic mental states are only 

beginning to be uncovered.60, 62, 63 In rodent models, cellular rhythms involving 

transcriptional and translational and post-translational feedback mechanisms have been 

shown to predict the development of depressive symptoms 64, as well as antidepressant 

response to SSRIs.65 Consequently, to the extent that these fluctuations are meaningfully 

correlated, average-level designs may be sub-optimal for detecting and/or interpreting these 

relationships. For example, while average severity levels of common symptoms related to 

mood, anxiety, and distress may differ significantly between healthy controls and psychiatric 

patient populations, there is nevertheless substantial overlap in these distributions.27, 28, 55, 66 

An average-level design relying on a single time-point for assessment of a biological 

variable (e.g., an MRI scan session) may include a subset of patients that were scanned on a 

relatively “low-symptom” day as well as controls who were scanned on a comparatively 

“high symptom” day, despite robust differences when averaging over time for each 

individual (e.g., by using a retrospective report).

To better quantify this issue, we conducted a pubmed search to identify papers that have 

used AA measures of mood, affect and stress in healthy controls and various patient groups. 

The studies included a total of 9,628 healthy/low-symptom subjects and 2,815 patients with 

various disorders (please see Supplementary Information and Table S1). Importantly, these 

studies reported both the mean and standard variation for group level of positive affect (PA) 

and negative affect (NA) ratings averaged individually within-subjects over time, but also the 

mean and standard variation for variability of affect.67, 68 This allowed us to first examine 

the magnitude of within subject variability (average of the standard deviation for daily, 

within subject ratings) relative to mean affect level for healthy controls and different patient 

groups. Across studies, values for group within-subject variability (WSD) were first divided 

by group average level to standardize values across the different instruments used. This 

provides a simple index of the proportion of within-subject variability that was observed 

relative to affect level, with zero indicating no within-subject variability. We found that for 

both patients and controls, within subject variability ranged from 24%-37% of the mean 

level for PA and NA (Figure 1A). The effect was significantly higher for PA in patients 
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compared to controls (Mann-Whitney, p = 0.003), but not for NA (Mann-Whitney, p = 

0.785) (see Supplemental Materials). In addition to examining within-subject variability 

relative to mean affect level, we also examine within-subject variability relative to between 

subject variability. For both positive and negative affect, within/between variability ratios 

were close to 1 (NA: 0.94; PA: 0.87) suggesting that within-subject variability in both 

positive and negative affect over time is almost as large as between-subject variability 

(Figure 1B).

In sum, contrary to prior studies positing that psychiatric disorders were associated with 

extremely low levels of within-subject variability,69 this analysis of the existing AA 

literature on affect in psychopathology suggests that daily lability in both negative and 

positive affect is relatively high compared to the differences in average level commonly 

found between patients and controls, which may result in “average” experience ratings are 

significantly different from “day-of” experiences during biological measurement. 

Additionally, this variability appeared to be consistent across both clinical and non-clinical 

samples.

A closely related challenge is the dynamic fluctuations of biomarkers themselves. While 

some sources of variance may be known and controlled for (e.g., diurnal variation), many 

are likely unknown. When single ‘basal’ measures are taken, as in a single measure of a 

target protein or imaging of the brain “at rest”, these sources of variability may significantly 

attenuate potential relationships. For example, many fMRI studies using functional 

connectivity techniques have identified networks that appear to be remarkably stable across 

different individuals and cognitive/emotional states, suggesting a trait-like nature; 70, 71 yet 

other studies have reported significant changes in network connectivity as a consequence of 

short-term (e.g., 10-30 minutes) dynamic state change. 72-74 Indeed, one recent paper using a 

large (n = 575) imaging sample of healthy individuals found that different cognitive states 

accounted for almost half of the variance in functional connectivity networks. 75 Many 

studies seek to control this issue by using repeated laboratory assessments of a target 

biomarker in response to conditions of interest (e.g., change following cognitive or 

emotional task conditions, a lab stressor, or a pharmacological challenge). While a 

significant improvement, without some extended characterization of a biomarker's normal 

range within an individual, such assessments may still suffer from intra-individual variability 

across different days. Additionally, it is often unknown the extent to which the dynamic 

range of a target biomarker within the lab matches relevant external environments. Finally, 

some biomarker relationships may not be readily observable without prolonged, high-

density sampling, similar to how ambulatory blood-pressure monitoring studies were 

necessary to identify cardiovascular disease risks associated with so-called “non-dippers”–

individuals with a flattened diurnal variation–that could not be detected using average-level 

designs 76. In some cases, the relative stability of target biomarkers is unclear.

Taken together, the short-term temporal structure of both symptoms and candidate 

biomakers is under-studied, and may exert significant impact on the measurement of 

symptom-substrate relationships. While the classic trait-state distinction has long been 

recognized in psychiatry, in practice, ‘states’ are often operationalized to extend from 

several weeks to several months. Available data from the AA literature suggests that 
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variability may exist in this window, highlighting the importance of alternative approaches to 

data collection.

The Effects of Symptom-Specific Measurement Bias on Symptom-Substrate 

Relationships

A related concern for ‘average-level’ designs is the use retrospective measures that call upon 

the individual patient to perform a “mental averaging” of their daily experience. A 

substantial amount of AA data has emerged in the last decade to suggest that, contrary to 

expectations, such retrospective measures correlate only moderately with average experience 

sampled using AA approaches.28, 55 This lack of strong agreement between retrospective 

and AA reports of the same experiences has led researchers to posit the existence of two 

distinct “selves”; the “experiencing self” and the “believing self”. 28-30, 77-79 The former 

reflects an aggregate of reported “in-the-moment” experiences, while the latter is influenced 

by retrospective reporting biases.

The potential biases that arise from retrospective report, including “peak-and-end effects”, 

mood-congruent recall, focusing illusions and heuristic-based reconstruction, have been 

thoroughly reviewed elsewhere.28-30, 79, 80 Here, we raise the question of how these different 

“selves” may influence symptom reports in average-level designs, and, in turn, biomarker 

detection. As most symptom inventories are retrospective in nature, they will be susceptible 

to some reporting biases that more strongly reflect personal narratives about experience 

rather than experience itself. Importantly, the effect size of these biases may differ both 

across disorders, as well as across symptom domains within a disorder. For example, a 

substantial amount of evidence now supports the presence of significant discrepancies 

among patients with schizophrenia regarding their believed and experienced negative 

symptoms; patients report significantly less expected enjoyment to laboratory stimuli as 

compared to their actual enjoyment;81-85 are found to have difficulty reporting consistently 

about their preferences86-88 and appear unable to translate reported anticipation of pleasure 

into goal directed behavior.89 Consequently, retrospective reports on rewarding experiences 

might be expected to substantially diverge from ‘in-the-moment’ reports, reducing observed 

relationships between average-level symptom scores and biological measures. Similarly, 

while panic attacks have often been described as occurring unexpectedly, AA data suggest 

clear alterations across multiple physiological domains prior to onset,90 and studies using 

actigraphy have identified clear inconsistencies between recorded and retrospectively 

reported levels of physical activity,91 which may be relevant for predicting the onset of 

depressive symptoms.92 In short, these studies illustrate that asking patients to report 

retrospectively on certain types of experiences may access self-related beliefs that are 

unlikely to be predictive of “in-the-moment” experiences or their neurobiological correlates. 

Further, the extent to which retrospective reports may be more or less accurate is likely to 

depend on the individual, the symptom and the disorder.

Conversely, there may be other symptom domains for which isolated assessment of the 

‘believing self’ and its associated biomarkers are especially relevant. For example, repeated 

studies have shown the presence of a persistent negative bias in disorders such as 
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depression,93-96 leading to affective forecasting predictions that are often worse than 

experienced.97, 98 Consequently, neuroimaging studies seeking to identify the mechanisms 

of such biases may do better to avoid “in-the-moment” measures of negative affect –which 

may be less differentiated from controls than reported–and focus on markers of negative 

forecasting judgments.

It should be noted that while AA measures are potentially helpful against retrospective 

biases, they may be equally vulnerable to other forms of bias, including focusing effects, 

demand and social desirability biases, individual differences in item comprehension, and 

reporting effort among others 29, 30, 99. Additionally, to the extent that momentary 

assessments clash with important self-narratives (e.g., one who is depressed but feeling ok in 

a given moment), cognitive dissonance and self-beliefs may still influence AA reports. In 

other cases, AA measures may introduce sources of bias that retrospective measures help 

avoid; for example, many assessments of interest can require a significant amount of mental 

or emotional effort to report on, which may confound their measurement as they unfold 

experientially. Indeed, it can at times be easier to report accurately on the nature of a 

particularly distressing experience after the fact.

These limitations aside, the growing evidence that AA and retrospective symptom measures 

often paint very different portrayals of subjective experience–even over relatively short time 

periods–should raise important questions about the most appropriate symptom measures 

selected average level-designs. As discussed in greater detail below, one solution is to 

increase the use of hybrid designs, that may compare measures of “in-the moment” 

neurobiological responses to laboratory stimuli with AA data,100 which have helped identify 

predictive markers of behavior in both clinical and non-clinical populations.101, 102 While 

such designs do not eliminate sources of bias for either AA or retrospective measures, they 

do offer a potential means of examining their shared and unshared variance in relationship to 

biological measures of interest.

Individual differences in symptom inter-relatedness

As noted in the introduction, one common explanation for the lack of biomarkers is the 

heterogeneity of diagnostic categories, case-control designs have largely failed to identify 

“final common pathways” for psychiatric disorders. The NIMH's Research Domain Criteria 

(RDoC) initiative has sought to address this issue in part by focusing on markers for specific 

symptoms rather than diagnostic entities as whole. However, it has long been recognized that 

like disorders, even a single symptom can reflect different pathologies.103,104 One factor that 

may impede identification common of pathways at the individual symptom level is the 

potential for individuals differences in the interactions among symptoms. Consider an 

example of a hypothetical average-level study design seeking to identify resting functional 

connectivity relationships with depression severity using individual BDI scores. Patient A is 

highly self-critical, and often fails to enjoy things because of an active self-critical 

rumination process, which has frequently been associated with altered medial prefrontal 

activity.105, 106 For her, anhedonic and fatigue symptoms of depression are not highly 

central, but are downstream in her symptom network from rumination, guilt and low self-

esteem. Patient B, however, experiences chronic inflammation, which has been shown to 
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induce hypodopaminergia and subsequent symptoms of anhedonia and fatigue. 107-113 For 

him, the severity of immuno-linked anhedonic symptoms may be a primary factor that drives 

subsequent symptoms related to guilt, self-esteem and others. As result, patients A and B 

could theoretically present with near-identical scores across all symptoms on the BDI, but 

with markedly divergent biosignatures stemming from distinct patterns of causality within 

symptoms (Figure 2). While immuno-related effects on depressive symptoms are 

themselves heterogenous and complex, identifying patients for whom fatigue and apathy are 

driving symptoms may significantly enhance the ability to identify inflammation-related and 

non-inflammation related forms of depressive symptoms. Accomplishing this, however, will 

require more time-series assessment of symptom inter-relationships. Indeed, recent efforts to 

characterize intra-individual changes in personal omics 114 and neuroimaging data 115 and 

their relationship to mood and illness highlight the complexity of such relationships as they 

unfold over time.

Fortunately, a number of analytical approaches for analyzing the influences of symptoms on 

other symptoms as they unfold through time have begun to emerge. One such approach has 

emerged from dynamical systems theory. Given the hypothesis that symptoms may be 

influenced by each other, it would be expected that increasing inter-correlation among 

symptoms may indicate a “tipping point” at which symptom convergence results in a 

transition to a clinical state116. One could easily imagine adopting a similar strategy of 

identifying such “tipping point” periods and then assessing biomarkers within this time, 

similar to the strategy recently adopted by Rahdar and Galvan 117. A second approach to 

such time-series data is the study of symptom networks and network dynamics. 118, 119 

Network analysis has received growing attention across a number of closely related fields, 

and a variety of software tools for the purposes of analysis and visualization of networks 

have been developed (120, 121 that can help characterize the ebb and flow of individual 

symptom expression in a variety of ways 122, 123. While most network analyses have been 

applied at the group level, recent studies have begun to focus on using individual networks 

to capture multi-level phenotypes over time (e.g., 115).

Future Directions

As summarized above, the combination of symptom fluctuation, well-established reporting 

biases and individual differences in symptom inter-relationships can all pose challenges for 

biomarker detection. These issues are not insuperable, however, and in this final section we 

point to several approaches through which they may be addressed. As mentioned in the 

introduction, these challenges are also relevant for other aspects of measurement in 

psychopathology. Indeed, some of these recommendations may be useful for improving the 

measurement of psychopathology without the end goal of identifying biomarkers, and could 

help developing novels means of predicting onset or recurrence (e.g., 116).

First, we wish to reiterate that while we have focused on some of the limitations of average-

level designs, this critique should not to be taken to imply that such designs are without 

substantial merit. As noted at the outset, average level designs can have important 

advantages by reducing noisy fluctuations in symptom expression that may be unrelated to 

biological variables of interest as well as measurement noise in the assessment of biological 
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measures themselves. Here, we suggest that for some target biomarker relationships, such 

designs may “average-over” important intra-individual variance. To address this issue, one 

approach will be an increased use of intra-individual designs with repeated assessments for 

both symptoms and target biomarkers. While AA measures of symptom severity are not 

without bias, the collection of both AA and retrospective measures provides a means of 

potentially identifying the magnitude of these discrepancies for different symptoms and 

different individuals. This strikes us as an important starting place for improving our 

understanding of how “believing” and “experiencing” selves may impact the identification 

of relevant biomarkers. Such data will also help better characterize the short-term temporal 

structure of various symptoms. While our literature search of available AA studies suggested 

that there may significant daily variability in positive and negative affect, other symptoms 

may show greater stability, and it would be useful for future studies to be able to select AA 

or retrospective measures on this basis. In some cases, AA measures may allow for the 

comparison of objective and subjective measures, as metrics such as actigraphy, 

cardiovascular physiology, or estimates of social contact, all of which can be used to assess 

symptomatic states without some of the biases of self-report. Optimally one could collect, 

subjective, objective and target biomarkers at a comparable sampling rate; the necessary 

technology for real-time analysis of saliva, EEG measures and movement is increasingly 

rapidly (e.g. 124), and this provides new possibilities for measuring symptoms and substrates 

at an heretofore unprecedented temporal resolution.

There are, however, some limitations to this strategy that will need to be addressed. The first 

is that for many biomarkers, inexpensive, wearable technology remains some ways off, and 

is simply not possible at present. The increase in cost is partially offset by the significant 

increases in statistical power that may be achieved as has been evident by the success of 

multi-session imaging studies in identifying neural mechanisms underlying dynamic 

cognitive processes over time (e.g.,125, 126). However, such studies are still difficult and 

expensive to run. A second challenge is that many biomarkers of interest may only be 

detectable in particular contexts (e.g., extreme stress or negative affect), and may show 

relatively little or no association during euthymic periods, requiring long periods of passive 

data collection. A third option is a hybrid approach that would use repeated-measures 

assessments of both symptom and substrate measures over a brief amount of time, such as a 

single 3-4 hour laboratory visit, and then examine how these fluctuations relate to “real 

world” fluctuations during an extended AA follow-up period.127-129 Ongoing AA can also 

be used as an alternative to random sampling to help characterize their intra-individual 

variance patterns prior to biologic assessment, which can help ensure that such assessments 

are performed when everyone is in a comparable state relative to an individualized 

baseline. 117

Using AA data to classify symptom relationships prior to biological measurement may also 

increase the likelihood of identifying subgroups of patients with a shared biological 

diathesis. For example, by collecting daily symptom data for a period of time prior to 

biological assessment, one may be able to identify individuals who share common “driving 

symptoms” who are therefore more likely to exhibit common circuit-level abnormalities than 

individuals who merely exhibit similar symptom severity. As outlined in figure 2, a group of 

patients with fatigue as a common symptom of high centrality may be more likely to exhibit 
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abnormalities in inflammation and striatal circuitry than patients for whom fatigue is a 

consequence of anxious rumination and insomnia. Conversely, one can also take the 

approach of stratifying patients along a particular candidate biomarker to identify symptom 

clusters that differentiate between high and low marker expression levels.130

In sum, this review has focused on how recent developments in the conceptualization and 

measurement of symptoms have raised important caveats for the detection of symptom-

substrate relationships. Adoption of recently developed symptom measurement and analysis 

techniques will help increase power to detect reliable markers of symptom expression, 

thereby facilitating the development of objective tests for symptoms of psychiatric disorders.

Supplementary Material
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Figure 1. 
Summary of within-subject variability in positive affect (PA) and negative affect (NA) 

relative to mean affect level. A. Depictions of EMA-based measures of within-subject 

variability in PA and NA relative to mean affect in patients and controls. Larger values 

indicate greater change over time relative to mean. B. Depictions of EMA-based measures of 

within-subject variability in PA and NA relative to mean affect in patients and controls. 

Values ≥ 1 indicate within-subject variability in PA and NA over time is as large or larger 

than between-subject variability. * Indicates a p<0.05 (Mann-Whitney).
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Figure 2. 
Schematic of how symptom inter-relationships may result in different symptom networks 

that produce similar scores on a dimensional measure of depressive symptom severity 

despite unique pathophysiologies. A. Patient A has altered connectivity patterns in 

corticolimibic circuitry that underlie and reinforce self-focused rumination,106 leading to 

frequent experiences of guilt and low self-esteem.131, 132 B. For patient B, high-

inflammation disrupts dopamine synthesis, leading to a chroming hypodopaminergic state 

and feelings of fatigue and anergia107-113, which in turn precipitates social withdrawal, 

feelings of failure and subsequent other depressive symptoms. In both examples, the 

activation of a single symptom with differing pathologies can activate interconnected 

depressive symptoms, resulting in similar levels of symptom expression.
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