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Abstract

Background

The current classification of human lung adenocarcinoma defines five different histological

growth patterns within the group of conventional invasive adenocarcinomas. The five growth

patterns are characterised by their typical architecture, but also by variable tumor biological

behaviour.

Aims

The aim of this study was to identify specific gene signatures of the five adenocarcinoma

growth patterns defined by the joint IASLC/ATS/ERS working group.

Methods

Total RNA from microdissected adenocarcinoma tissue samples of ten lepidic, ten acinar,

ten solid, nine papillary, and nine micropapillary tumor portions was isolated and prepared

for gene expression analysis. Differential expression of genes was determined using the R

package “LIMMA”. The overall significance of each signature was assessed via global test.

Gene ontology statistics were analysed using GOstat. For immunohistochemical validation,

tissue specimens from 20 tumors with solid and 20 tumors with lepidic growth pattern were

used.
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Results

Microarray analyses between the growth patterns resulted in numerous differentially

expressed genes between the solid architecture and other patterns. The comparison of tran-

scriptomic activity in the solid and lepidic patterns revealed 705 up- and 110 downregulated

non-redundant genes. The pattern-specific protein expression of Inositol-1,4,5-trispho-

sphate-kinase-A (ITPKA) and angiogenin by immunohistochemistry confirmed the RNA lev-

els. The strongest differences in protein expression between the two patterns were shown

for ITPKA (p = 0.02) and angiogenin (p = 0.113).

Conclusions

In this study growth pattern-specific gene signatures in pulmonary adenocarcinoma were

identified and distinct transcriptomic differences between lung adenocarcinoma growth pat-

terns were defined. The study provides valuable new information about pulmonary adeno-

carcinoma and allows a better assessment of the five adenocarcinoma subgroups.

Introduction

In 2011, a joint IASLC/ATS/ERS working group introduced a new classification of human

lung adenocarcinoma [1]. This new classification defined five different histological growth pat-

terns within the group of conventional invasive adenocarcinomas: lepidic (corresponding to

the former non-mucinous bronchioloalveolar pattern), acinar, papillary, micropapillary

(newly added) and solid predominant adenocarcinoma. Overall tumor classification was sug-

gested to be done according to the predominant pattern with additional documentation of the

percentage distribution of all evident architectures [1,2]. The five growth patterns should be

characterised by their typical architecture, but also by variable tumor biological behaviour.

The predominant pattern has relevant influence on the disease-free and long-term survival of

patients. Whereas lepidic predominant adenocarcinoma seems to be the one with the best

prognosis, the micropapillary and solid architectures are associated with a particularly poor

prognosis [3–7]. On the molecular level, lung adenocarcinomas have been characterised by

diverse transcriptional profiles [8–10]. Three molecular subtypes (bronchoid/terminal respira-

tory, magnoid/proximal-proliferative and squamoid/proximal-inflammatory) were defined

and successfully verified across several microarray and sequencing datasets [11–13]. Such

molecular profiles are used to decipher prognostic/predictive biomarkers and therapeutic tar-

get sites specific for patient subgroups. However, the present transcriptomic profiles of lung

adenocarcinoma do not necessarily reflect the distinct histological architectures. Our study

combined tissue microdissection and molecular profiling of the five lung adenocarcinoma

growth patterns in order to precisely identify specific genes signatures. Selected biomarkers

and drug targeted candidates were validated by immunohistochemistry (IHC) in the lepidic

and solid growth patterns.

Materials and methods

Patients

Cryopreserved tumor tissue of 48 patients was selected based on the histopathological findings

following surgery for lung adenocarcinoma. All tumor sections were analysed for their growth
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patterns including lepidic (10), acinar (10), papillary (9), micropapillary (9) and solid (10)

architecture. Cryopreserved tumor tissue was provided by lung biobank Heidelberg, a member

of the biomaterial bank Heidelberg (BMBH) and of the biobank platform of the German Cen-

ter for Lung Research (DZL) (Ethical Approval Number: 2070/2001). Tumor sections from an

additional 20 patients were used for IHC validation. Paraffin tissue was provided by the tissue

bank of the National Center for Tumor Diseases (NCT, Heidelberg, Germany) in accordance

with the regulations of the tissue bank and the approval of the ethics committee of Heidelberg

University (Ethical Approval Numbers: 206/2005 and 207/2005). All data was fully anon-

ymized before we accessed them. All patients gave their written informed consent to have sam-

ples from their medical records used in research.

Laser-capture microdissection

The isolation of tumor areas representing a specific growth pattern was performed by laser cap-

ture microdissection (PALM’s LMPC technology, Carl Zeiss Microscopy GmbH, Göttingen,

Germany). Fresh frozen tumor samples were cut in 18 μm thick sections and applied to ZEISS

Membrane Slides 1.0 PEN (polyethylene naphthalate), baked for 3.5 h at 180˚ C, irradiated with

UV light (312 nm) for 30 min and cooled to -22˚C just before use. The tissue sections were

stained with 1% cresyl violet (Sigma) for 15 s. Using the RoboLPC method, between 4 and 10

mm2 of cells were cut out [14]. The tissue areas of interest were circumscribed electronically

under the microscope, cut automatically by cold laser ablation and catapulted into an opaque

ZEISS AdhesiveCap 500 by damage-free laser-induced propulsion [15]. The composition (fre-

quencies) of all 5 growth patterns in each of the 48 tumors has been analyzed (Table 1).

Table 1 shows the percentage distribution of the 5 growth patterns in 48 fresh frozen tumor

samples used for microdissection.

Microarray experiments

Total RNA from microdissected adenocarcinoma tissue sections was extracted and quantified

using the RNeasy protocol (Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. For RNA quality assessment the Agilent 2100 Bioanalyzer System together with

the Agilent RNA 6000 Nano Kit was used according to the manufacturer’s instructions (Agi-

lent Technologies, Santa Clara, CA, USA). About 20 ng of total RNA was prepared for micro-

array hybridisation using the MessageAmpTM Premier RNA Amplification Kit (Thermo

Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Frag-

mented biotinylated amplificated RNA was hybridised on Illumina HumanHT-12 v4 Ex-

pression Bead Chip including more than 47,000 Probes (Illumina, San Diego, CA, USA).

Processing of the Illumina microarray data was performed using the opensource pipeline

“Lumi” [16]. More specifically, this pipeline comprises background correction, quantile nor-

malization, model based variance stabilization (PMID 18178591) and detection p-value based

present/absent calling. For the following analysis only Entrez ID allocated transcripts with a

presence call in each sample of at least one of the studied patient subgroups were considered.

The microarray dataset has been deposited, MIAME compliant, into the NCBI Gene

Expression Omnibus database (GSE58772).

Molecular subtype assignment was done as previously described: TCGA data was DESeq

normalised and reduced to the 5761 genes, which could be mapped to the data studied here

[11–13,17]. Datasets were first Blom-transformed and subsequently adjusted by an empirical

Bayes approach to allow for an integration of the data studied here and the TCGA data [18,19].

Genes were further reduced to the overlap with the previously reported signature [12]. Based

on the resulting 260 genes, an SVM classifier was trained on the TCGA data in order to predict
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Table 1. Percentage distribution of growth patterns.

Sample Microdissected growth pattern solid acinar papillary micropapillary lepidic

LC01 acinar 0 75 0 0 25

LC02 acinar 0 80 10 5 5

LC03 acinar 0 80 0 0 20

LC04 acinar 0 95 5 0 0

LC07 acinar 0 90 10 0 0

LC09 acinar 0 70 20 0 10

LC15 acinar 0 80 20 0 0

LC19 acinar 10 70 20 0 0

LC26 acinar 0 95 0 0 5

LC36 acinar 0 25 70 0 5

LC06 lepidic 0 5 0 0 95

LC18 lepidic 80 0 0 5 15

LC23 lepidic 0 30 10 0 60

LC27 lepidic 0 45 30 0 25

LC30 lepidic 0 0 0 5 95

LC32 lepidic 0 0 10 0 90

LC33 lepidic 30 30 0 0 40

LC34 lepidic 0 10 0 0 90

LC43 lepidic 15 10 15 10 50

LC47 lepidic 0 0 0 20 80

LC08 micropapillary 0 0 10 10 80

LC14 micropapillary 0 80 0 20 0

LC29 micropapillary 0 75 5 20 0

LC31 micropapillary 0 80 0 20 0

LC35 micropapillary 5 30 20 15 30

LC45 micropapillary 5 20 5 40 30

LC37 micropapillary 60 0 0 40 0

LC41 micropapillary 0 70 5 5 20

LC42 micropapillary 0 60 30 10 0

LC17 papillary 15 25 40 20 0

LC22 papillary 0 70 10 5 15

LC24 papillary 0 0 60 20 20

LC28 papillary 10 80 10 0 0

LC44 papillary 0 65 5 5 25

LC46 papillary 0 20 20 0 60

LC38 papillary 10 40 10 0 40

LC39 papillary 10 30 20 10 30

LC40 papillary 0 0 80 0 20

LC05 solid 70 20 10 0 0

LC10 solid 95 0 5 0 0

LC11 solid 100 0 0 0 0

LC12 solid 80 20 0 0 0

LC13 solid 100 0 0 0 0

LC16 solid 60 40 0 0 0

LC20 solid 95 5 0 0 0

LC21 solid 40 60 0 0 0

LC25 solid 80 20 0 0 0

LC48 solid 80 20 0 0 0

https://doi.org/10.1371/journal.pone.0206132.t001
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expression subtypes defined in 12 [12]. The prediction performance of the classifier was evalu-

ated via 10-fold cross-validation, yielding an estimated prediction accuracy of the expression

subtype of around 90%. The final SVM model was then asked to make predictions for each

sample in our dataset. Respective expression subtype predictions (class probabilities) were

illustrated by a clustered heatmap.

Differential expression of genes was determined using the R package “LIMMA” [20]. The

overall significance of a signature was assessed via a “global test” [21]. The global test is a set

based method, which tries to reject the null hypothesis that all genes in set of interest (in our

case all signature genes) show no association to a defined clinical outcome or grouping. Gene

ontology statistics were analysed using GOstat [22].

Immunohistochemistry (IHC)

IHC was done for the validation of identified differentially expressed genes. Additional tissue

sections from 20 tumors that had been used for the microarray experiment and another 20

specimens from other tumors with solid and lepidic growth patterns were stained with the cor-

responding antibodies for ITPKA (inositol-1,4,5-trisphosphate-3-kinase-A) (polyclonal anti-

rabbit ITPKA, 1/100, Atlas, Stockholm, Sweden), PFKP (phosphofructokinase, platelet) (poly-

clonal anti-rabbit PFKP, 1/50, (Thermo Fisher Scientific, Waltham, MA, USA), ERRFI1
(MIG6,mitogen-inducible gene 6) (polyclonal rabbit anti-ERRFI1, 1/100, Atlas, Stockholm,

Sweden) and angiogenin (ANG) (polyclonal rabbit anti-angiogenin, 1/100, Abcam, Cambridge,

United Kingdom) using an automated staining protocol on the DAKO autostainer (antigen

retrieval with citrate buffer pH 6.0). Positive control tissue sections were chosen according to

the manufacturers’ antibodies information, i.e. cerebral cortex for ITPKA, kidney for PFKP,

breast cancer for ERRFI1, and liver for angiogenin. Isotype- and concentration-matched con-

trol antibodies (Dako, Hamburg, Germany) served as negative controls.

Semi-quantitative evaluation of protein expression was done using the H-Score method

according to Pirker et al [23]. The percentage of tumor cells at different staining intensities

was determined by visual assessment at 200-fold magnification, with the score calculated using

the formula 1 x (% of 1+ cells) + 2 x (% of 2+ cells) + 3 x (% of 3+ cells) [23,24]. Samples were

classified as negative (H-Score 0–50), weakly positive (H-Score 51–100), moderately positive

(H-Score 101–200) or strongly positive (H-Score 201–300). The average H-Score values for

each growth pattern and each antibody staining were calculated and compared.

Results

Molecular profiling of IASLC/ATS/ERS classified growth patterns

In total microdissected tissue sections of 48 specimens were addressed for RNA extraction and

microarray experiments. RIN (RNA integrity number) values between 7 and 8 indicate suffi-

cient RNA quality of microdissected tissues (mean RIN 7.5, SD 0.86) for microarray analysis

(S1 Fig). Microarray analyses between the five different growth patterns resulted in numerous

differentially expressed genes between the solid architecture and other patterns (S1 Table).

Only a few solid-independent comparisons (e.g. papillary vs. micropapillary) indicated signifi-

cant transcriptome differences. In the following, we focused on the gene signature between the

solid and lepidic pattern associated with different clinical outcomes. Earlier, we tested all 48

adenocarcinoma transcriptomes according to their similarities to previously reported gene

expression subtypes [12]. Supervised classification using 260 informative genes from the Wilk-

erson signature showed that our 48 samples could be assigned to each of the three classes prox-

imal-inflammatory (PI), proximal-proliferative (PP) and terminal respiratory unit (TRU) with

high confidence (S2 Fig). Furthermore, the unsupervised multidimensional scaling plot of the
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joint expression data from our samples and the TCGA data indicated, that all our samples fell

clearly within the distribution of each of the three classes (S3 Fig). Altogether, the solid pat-

terns (90% of specimens) clearly assigned for the PI subtype, acinar patterns (70%) predomi-

nantly assigned for the PP and lepidic patterns (70%) for the TRU subtype (S2 Table).

However, differentially expressed genes between the microdissected histological patterns dif-

fered from previously reported gene signatures in adenocarcinoma subtypes, as highlighted for

the solid-lepidic gene signature in the following paragraph.

Differences in gene expression, cellular processes and signalling pathways

in the solid and lepidic patterns

Comparison of the transcriptomic activity between the solid and lepidic patterns revealed 705

up- and 110 downregulated non-redundant genes (FDR (false discovery rate) 5%, fold change

>1.5 or < 0.66) (S3 Table). A clear separation of the specimens of both patterns could be con-

firmed by hierarchical clustering (S4 Fig). Furthermore, only 25 of 815 deregulated genes (3%)

overlapped with the reported 506 LAD predictor genes classifying the molecular subtypes [12].

Similarly, further reported sets of differentially expressed genes between intrinsic molecular

subtypes displayed a poor overlap (S4 Table).

Gene ontology analysis suggested several biological processes, which are linked to overrep-

resented, upregulated genes in the solid pattern. Cancer-associated processes included cell

motility, proliferation, cell cycle and negative regulation of apoptosis (Table 2).

Table 2 shows gene ontologies for 710 significantly upregulated genes in solid compared

with lepidic architecture using GOstat p-value� 0.005. No significant gene ontologies were

resulted for the 105 downregulated genes.

Gene expression regulation was represented by RNA processing and splicing. Protein

linked processes included ontologies like protein transport, protein targeting, ribonucleopro-

tein complex biogenesis and ubiquitin cycle. Focusing on signal transduction pathways, mem-

bers of the MAPK [mitogen-activated protein kinases) signalling (MAP2K1,MAPK6,

MAPKAPK5,MAP2K1IP1 andMAPK8IP3) and NF-κB (nuclear factor ’kappa-light-chain-

enhancer’ of activated B-cells) signalling (IKBKG, LITAF, STAT1, BCL3, TFG and TBK1) were

upregulated in the solid pattern.

Independent on DEseq and gene ontology analysis, known oncogenes and tumor suppres-

sors in lung adenocarcinoma have been investigated for gene expression variance. Most of the

genes were not informative on transcript level, only MET and MAP2K1 expression indicates

upregulation in the solid pattern (S5 Table).

For IHC validation, we selected PFKP, ITPKA and ERRFI1 upregulated in the solid pattern

and ANG upregulated in the lepidic pattern as putative novel biomarkers in distinct predomi-

nant architectures.

Immunohistochemical validation

The pattern-specific protein expression of ITPKA and angiogenin by immunohistochemistry

confirmed the RNA levels. The protein ITPKA was more abundant in the solid pattern, show-

ing cytoplasmic staining, and angiogenin was more abundant in the lepidic pattern, showing

nuclear staining. The strongest differences in protein expression between the two patterns

using the H-Score was shown for ITPKA (p = 0.02) and angiogenin (p = 0.113, not significant).

Cytoplasmic and nuclear expression of PFKP was present in both patterns, slightly more in the

solid architecture (not significant). The cytoplasmic expression of ERRFI1 remained below the

50 point H-score level for both patterns, and was slightly higher expressed in the solid architec-

ture (Fig 1).
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Discussion

For a long time, the nature of adenocarcinomas was histologically and clinically seen as a

monolithic block. Clinical research within the last decade has led to a precise definition of sub-

types considering growth patterns and molecular characteristics which are associated with

diverse clinical outcomes [1,5,13]. However, histopathological growth patterns and prognostic

diversity did not necessarily match with molecular subtypes defined by transcriptional profiles,

CpG island methylation or oncogene mutations [13]. So far, biomarkers and molecular targets

specific for tumor growth patterns have been sporadic. For example, an association was

reported between higher expression of TTF-1 and the lepidic pattern [25]. In the solid pattern,

Table 2. Gene ontologies.

GO GO as name Genes Groupcount Totalcount Pvalue

GO:0015031 protein transport mtx1; sdcbp; ap3b1; lgtn; zw10; tomm40; kpna4; fbxo34; kpna6; pttg1ip; vps35;

stx3; tpr; srp19; trpc4ap; stx6; mtx2; nup37; nxt1; snapin; kdelr3; sec22b;

rab11fip5; clta; xpo1; ctsa; arl6ip1; rab9a; stat1; bcl6; chchd4; arfgap1; gdi1;

copb2; mcm3ap; chmp1b; bcl3; rab22a; rab8a; nup205; atg16l1; tmed2; exoc4;

stxbp2; vps37c; unc50; sec31a; exoc7; tomm20; ap2m1; sels; aftph

52 866 2,80E-18

GO:0006915 apoptosis pmaip1; glo1; pdcd6; fadd; mrps30; tubb2c; api5; casp2; ripk2; igfbp3; rnf34;

rb1cc1; tnfrsf12a; mcl1; dpf2; rtkn; trib3; becn1; pdcl3; smndc1; map1s; axin1;

puf60; sema4d; tnfrsf21; tia1; acvr1; ctnnbl1; litaf; arhgdia; qrich1; raf1; bcl6;

atg12; stat1; bag3; ywhaz; dnajb6; bcl3; mrpl41; hspa1a; ikbkg; ube2z; ifih1;

dap3; tfdp1; tax1bp1; elmo2; rasa1

49 855 5,85E-16

GO:0006396 RNA processing imp3; exosc1; bop1; hnrpul1; ints5; utp6; prpf4; ddx56; magoh; nsun2; prpf19;

wbp11; ints8; u2af1; sf3b4; rbm5; hnrnpr; sf3b2; prpf3; dkc1; raly; sfrs17a;

snrpb2; smndc1; u2af2; rbm22; pabpc1; adar; puf60; fars2; rnps1

31 525 1,65E-10

GO:0008380 RNA splicing prpf4; wbp11; magoh; prpf19; u2af1; sf3b4; hnrnpr; sf3b2; prpf3; raly; sfrs17a;

snrpb2; smndc1; u2af2; rbm22; puf60; pabpc1; rnps1

18 225 6,84E-06

GO:0009615 response to virus bcl3; becn1; hnrpul1; banf1; isg15; stat1; ifih1; ifnar2; mx2; irf3; xpo1; tbk1 12 98 8,32E-06

GO:0006605 protein targeting bcl3; srp19; sdcbp; ap3b1; nup205; arl6ip1; bcl6; nxt1; stat1; kpna4; tomm20;

tomm40; kpna6; pttg1ip; mcm3ap; tpr; xpo1

17 218 1,80E-05

GO:0000902 cell morphogenesis nrp1; net1; sdcbp; bcl6; cap1; e2f4; igfbp3; cyfip1; rb1cc1; baiap2l1; tbce;

tnfrsf12a; c20orf20; ogfr; top2b; ryk; plxna3; map1s; sema4d; sipa1; smad4;

rasa1; dgkd

23 478 3,87E-05

GO:0022008 neurogenesis nrp1; map2k1; nptn; prpf19; cyfip1; tbce; tnfrsf12a; tubb3; cdk5rap1; eif2b2;

top2b; ryk; pxmp3; map1s; eif2b4; plxna3; sema4d; ngrn

18 262 4,41E-05

GO:0022613 ribonucleoprotein complex

biogenesis and assembly

imp3; ebna1bp2; exosc1; mtif3; bop1; lgtn; utp6; ddx56; wbp11; eif2b2; dkc1;

gnl2; nip7; smndc1; eif2b4; eif4h; eif3b

17 246 6,98E-05

GO:0043066 negative regulation of apoptosis bcl3; mcl1; glo1; rtkn; acvr1; becn1; hspa1a; api5; arhgdia; bcl6; bag3; rb1cc1;

ywhaz; sema4d; tax1bp1; rasa1

16 227 0,0001

GO:0006512 ubiquitin cycle fbxo28; pcnp; trim33; fbxl11; atg12; isg15; sumo2; zc3hc1; ube2a; map1lc3b;

rnf34; prpf19; spsb1; tceb1; march7; ubac1; fbxo18; klhl12; ubr4; rnf167; ube2z;

mib2; fbxo6; syvn1

24 549 0,000184

GO:0006606 protein import into nucleus bcl3; nup205; bcl6; stat1; kpna4; kpna6; pttg1ip; mcm3ap; tpr; xpo1 10 96 0,000189

GO:0007243 protein kinase cascade oxsr1; litaf; fadd; ripk2; stat1; ifnar2; mapk8ip3; rb1cc1; slc20a1; tfg; atp6ap2;

bcl3; ikbkg; map2k1ip1; mib2; irak1; akap11; tbk1

18 376 0,000448

GO:0007249 I-kappaB kinase/NF-kappaB

cascade;

bcl3; litaf; fadd; ikbkg; ripk2; stat1; irak1; mib2; slc20a1; tfg; tbk1 11 139 0,00078

GO:0006928 cell motility actb; nrp1; actr2; acvr1; map2k1; sdcbp; tubb2c; top2b; arhgdia; bcl6; arpc3;

plaur; pxmp3; parp9; plxna3; tnfrsf12a; mkln1

17 383 0,00269

GO:0008283 cell proliferation nrp1; map2k1; mapre1; gnl3; bcl6; e2f4; mdk; raf1; ripk2; crip2; prpf19; rbbp7;

myc; capn1; gpc4; sbds; cnot8; ctnnbip1; dkc1; csk; prmt5; hdgf; tfdp1; sipa1;

smad4; klf11; col18a1

27 745 0,00327

GO:0007049 cell cycle acvr1; map2k1; mapre1; pcnp; zw10; bcl6; e2f4; zc3hc1; ckap5; mapk6; rb1cc1;

rbbp8; supt5h; tubb3; cdk5rap1; myc; rbm5; mrpl41; krt7; prmt5; hcfc1;

rabgap1; ppp1cb; tfdp1; axin1; hbp1; sipa1; tusc4; rpa1

29 839 0,00484

https://doi.org/10.1371/journal.pone.0206132.t002
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C4.4A was reported as a surrogate marker for a poor outcome [26]. The objective of this proj-

ect was to broaden our knowledge of the different molecular structures between distinct pat-

terns of lung adenocarcinoma. Furthermore, this may help to establish novel biomarkers and

target sites that are valuable for future individualised treatment strategies in human pulmonary

adenocarcinoma. To our knowledge, we present the first screening study to identify growth

pattern-specific gene signatures. Our approach included laser-captured microdissection to

separate specific growth patterns in tissue sections of lung adenocarcinoma. Subsequent

microarray analyses depicted transcriptome differences between the solid pattern and other

Fig 1. Immunohistochemistry. Immunohistochemical staining of inositol-1,4,5-trisphosphate-3-kinase-A (ITPKA),
phosphofructokinase, platelet (PFKP),mitogen-inducible gene 6 (ERRFI1) and angiogenin (ANG) in pulmonary

adenocarcinoma with predominant lepidic (B, E, H, K) and solid growth patterns (C, F, I, L). 200x magnification.

Histograms depict mean staining scores with standard deviation of n = 20 adenocarcinomas each (A, D, G, J).

https://doi.org/10.1371/journal.pone.0206132.g001
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growth patterns. A gene classifier could be adopted to assign all 48 gene expression profiles to

previously defined molecular subtypes linked to lung adenocarcinomas. For example, the

majority of solid specimens matched with the PI subtype. This association was also described

in a comprehensive study including 230 adenocarcinomas [13]. Here, upregulated genes in the

solid pattern were found to be more frequently aberrant in the PI subtype. Moreover, we sug-

gest molecular similarities between the acinar pattern and the PP subtype as well as the lepidic

pattern and the TRU subtype. Of note, both these tumor subgroups have been independently

found to be prognostically favourable [5,12].

Microarray profiles revealed a clear separation between the solid and lepidic growth pat-

terns upon tissue microdissection. Further downstream analyses of the gene signature sug-

gested oncogenic targets, pathways and gene ontologies in both growth patterns. Genes

upregulated in the worse prognostic solid architecture were associated with cell proliferation,

cell cycle activation, inhibition of apoptosis and cell motility. Our signature did not show a sig-

nificant overlap with existing lung adenocarcinoma microarray data. The poor accordance

with other signatures is likely reasonable since microdissected growth patterns are not readily

comparable with unselected tumor tissues.

Four candidate genes were selected for IHC protein analyses according to their expression

differences between the solid and the lepidic pattern. The IHC results indicated a higher abun-

dance of ITPKA in the solid pattern of pulmonary adenocarcinoma. Up-regulation of ITPKA
in tumor cell lines with low endogenous ITPKA expression increases migration [27]. ITPKA is

preferentially expressed in cell lines derived from metastases of small cell lung cancer and

squamous lung carcinoma, whereas pulmonary adenocarcinoma shows a high expression fre-

quency of ITPKA in primary tumor cells. The expression of ITPKA in adenocarcinoma might

increase the invasive potential of cancer cells. Furthermore, this enzyme is considered a poten-

tial target for anti-metastatic therapy and small molecule inhibitors [28]. Our results suggest

ITPKA as a potential target for the development of targeted therapies, particular for predomi-

nant solid lung adenocarcinoma.

Angiogenin was shown to be up-regulated in the lepidic pattern on the RNA and protein

levels. Angiogenin is known as a pro-angiogenic growth factor that is up-regulated in several

types of cancer. Nuclear expression of angiogenin has been shown in about two thirds of lung

adenocarcinomas, and target inhibition impairs xenograft tumor proliferation and angiogene-

sis [29]. A p53 interacting function of angiogenin in anti-apoptosis and survival of cancer cells

suggests that targeting angiogenin could be an effective therapy for several cancers [30]. Our

data indicate that angiogeninmight be of importance in the lepidic architecture, nevertheless

our findings were not statistically significant. Upregulation of PFKP and ERRFI1 in the solid

architecture could not be confirmed on the protein level. Possible explanations are the discor-

dance between RNA and protein, or additional tumor characteristics as confounding factors.

For example, it has been shown that ERRFI1/MIG6 expression is associated with EMT and

resistance to EGFR inhibitors in lung cancer xenografts [31].

Overall, this study presents distinct transcriptomic differences between lung adenocarci-

noma growth patterns, which could be validated for the solid-expressed ITPKA and the lepi-

dic-expressed angiogenin proteins. As a limitation, these gene signatures and putative targets

could only indirectly be linked to prognosis via previously defined prognostic adenocarcinoma

subgroups. Our screening and validation cohort was designed for pattern-specific expression

analysis, but not adequate to include clinical follow-up data into statistical analyses. Further

studies in larger cohorts of IASLC/ATS/ERS classified adenocarcinomas are needed to better

understand the associations between molecular heterogeneity and clinical outcome in pulmo-

nary adenocarcinoma.
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Conclusion

To our knowledge, this study is the first to identify growth pattern-specific gene signatures in

pulmonary adenocarcinoma. With tumor profiling at the molecular level the study provides

valuable new information about pulmonary adenocarcinoma and allows a better assessment of

the five adenocarcinoma subgroups. As this study at hand is only a modest contribution to

basic cancer research further validation of individual biomarkers and target sites in distinct

histological patterns are strictliy necessary to pave the way toward novel approaches in patho-

logical diagnostics and personalised therapy in the future.

Supporting information

S1 Fig. RIN (RNA integrity number) values of 48 samples. Illumina chip raw data quartiles

and RIN values were combined for ordered samples LC1-LC48. Left axis defines log2 expres-

sion value quartiles for each chip, numbering on the right assign RIN value for each RNA sam-

ple used for the chip.

(TIF)

S2 Fig. Heatmap showing SVM predictions for the expression subtype for all 48 specimens

in this study. The color code indicates the class probability for each of the three expression

subtypes, thus visualizing the level of confidence of the prediction. Notably, the SVM model

was trained on the data by Wilkerson et al. based on the overlap of their reported signature

and our chip (260 genes).

(TIF)

S3 Fig. Multi-dimensional scaling plot of joint expression data from Wilkerson et al.

(2012) and this study. Samples from Wilkerson et al. (2012) are colored according to the

expression subtype (PI (red), PP (green), TRU (black)). Samples from this study are labeled

with a number, linking to S1 Table (“LC_” is omitted from the text labels in this plot to save

space).

(TIF)

S4 Fig. Comparison of the transcriptomic activity between the solid and lepidic patterns.

Hierarchical clustering (Ward’s method) of differentially expressed genes between the solid

and lepidic growth patterns using Pearson correlation distance.

(TIF)

S1 Table. Differentially expressed genes between all tumor pattern comparisons. S1 Table

shows LIMMA analyses and the number of differentially expressed genes (FDR 5%, fold

change>1.5 or < 0.66) between all tumor pattern comparisons.

(PDF)

S2 Table. Molecular subtype assignment. S2 Table shows molecular subtype assignment

using the reported nearest centroid subtype predictor overlap (Wilkerson PlosOne, 2012)

(PDF)

S3 Table. Differentially expressed non-redundant genes between solid and lepidic architec-

ture specimens. LIMMA analysis revealed 815 differentially expressed non-redundant genes

(FDR 5%, fold change> 1.5 or< 0.66) between solid and lepidic architecture specimens. The

gene list is ordered according to a decreasing fold change.

(PDF)

S4 Table. Comparison of the 50 highest upregulated genes in solid or lepidic growth pat-

tern with published gene signatures using GeneSigDB. S4 Table shows the comparison of
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the 50 highest upregulated genes in solid or lepidic growth pattern with published gene signa-

tures using GeneSigDB. Table view was restricted to studies with a minimum of 20% overlap

(10 genes).

(PDF)

S5 Table. Comparison of known lung adenocarcinoma oncogenes and tumor suppressor

genes between different growth patterns. Known lung adenocarcinoma oncogenes and

tumor suppressor genes were shown with MEAN and SD expression values in all growth pat-

terns. T-test between different growth patterns were mostly not significant (p-value > 0.05,

not adjusted). Only one group comparison indicated higher expression of MET and MAP2K1

(MEK1) in solid compared to lepidic growth pattern (p-value 0.04).

(PDF)
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