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Abstract Cardiac cell therapy is a strategy to treat patients
with chronic myocardial infarction (MI). No consensus exists
regarding the optimal cell type. First, a comparison between
autologous bone marrow-derived mononuclear cells
(BMMNC) and mesenchymal stem cells (MSC) on therapeu-
tic efficacy after MI was performed. Next, the effect of repet-
itive, NOGA-guided transendocardial injection was deter-
mined via a crossover design. Nineteen pigs were allocated
in three groups: (1) placebo (at 4 and 8 weeks), (2) MSC
(followed by placebo at 8 weeks), or (3) BMMNC (followed
by MSC at 8 weeks) delivery including a priming strategy to
enhance MSC effect. At 4 weeks, ejection fraction (EF) was
significantly improved after MSC injection and not by
BMMNC injection. After 8 weeks, no difference was ob-
served in EF between cell-treated groups demonstrating the
positive systolic effect of MSC. This study showed that MSC
rather than BMMNC injection improves systolic function in
chronic MI.
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Introduction

Ischemic heart failure remains a major cause of morbidity and
mortality [1]. Stem cell therapy emerged as an innovative and
attractive therapeutic approach for patients with chronic myo-
cardial infarction (MI). The ultimate goal of this treatment is to
support and enhance the endogenous repair mechanisms by
replacing dysfunctional cardiomyocytes and inducing
angiogenesis.

In clinical and preclinical studies, a modest improvement in
left ventricular ejection fraction (LVEF) was observed using a
single injection of bone marrow cells after MI [2, 3]. Our
preclinical meta-analysis showed that the choice of cell type
is an important significant predictor of improvement in LVEF
[3] suggesting a trend towards more pronounced effects of
mesenchymal stem cells (MSC). Till now, bone marrow
mononuclear cells (BMMNC) and MSC have been well stud-
ied in patients with ischemic heart disease [4]. However, it is
known that functional differences between MSC and
BMMNC exist [3]. A direct comparison on functional end-
points between these cell types has not been performed so far.
We hypothesized that pretreatment of the area of interest could
be helpful to further enhance the effects of MSC. Thus, we
incorporated a repetitive cell injection strategy in the study
design.

Percutaneous transendocardial (TE) delivery, guided by
electromechanical mapping (NOGA), was shown to be safe
in patients with chronic ischemic cardiomyopathy [5] and has
the advantage of detecting hibernating myocardium which is
the area that will probably profit most from cell delivery [6].
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Our objective was to determine the most potent regenera-
tive strategy using autologous bone marrow cell types, i.e.,
BMMNC and MSC, in a large animal model of ischemia/
reperfusion injury. First, a direct comparison between
BMMNC and MSC was performed 4 weeks after transplan-
tation. Second, the effect of repetitive injection after initial
priming was determined by including a crossover with MSC
in the BMMNC group with an additional follow-up period of
4 weeks.

Method
Animals

Nineteen female Dutch Landrace pigs received humane care
in compliance with the “Guide for the Care and Use of Lab-
oratory Animals,” published by the National Institutes of
Health (National Institutes of Health publication 85-23, re-
vised 1985). The study protocol was approved by the Animal
Experimentation Committee of the University of Utrecht.

Study Design

Animals were allocated to one of three groups: (group 1) pla-
cebo (phosphate buffered saline (PBS), Invitrogen, Carlsbad,
CA, USA), (group 2) 10 autologous MSC, or (group 3) 10’
autologous BMMNC injection at 4 weeks. Eight weeks after
MI (thus, 4 weeks after initial injection), the animals in group
3 received an additional injection of MSC to determine wheth-
er priming could rescue the damaged myocardium, while the
other groups received an injection with PBS for control pur-
poses. Twelve weeks after the initial MI, the animals were
euthanized and tissue was prepared for histology. Cardiac
function was assessed by pressure-volume (PV) loops and
echocardiography. The study design is shown in Fig. 1.

Premedication and Anesthesia

After an overnight fast, animals were sedated with an intra-
muscular injection of ketamin (10 mg/kg), midazolam
(0.5 mg/kg), and atropin (0.04 mg/kg). Next, thiopental
(4 mg/kg) was administered intravenously before intubation.
They were intubated with an endotracheal tube and anesthe-
tized in the supine position. The animals were mechanically
ventilated with the use of a positive pressure ventilator with a
mix of oxygen and air (FiO2 0.5). General anesthesia/
analgesia was maintained with midazolam (0.5 mg/kg/h,
Roche, Woerden, the Netherlands), sufentanyl citrate (2 pg/
kg/h, Janssen-Cilag, Tilburg, the Netherlands), and
pancuronium bromid (0.1 mg/kg/h, Organon, Oss, the Neth-
erlands). Metoprolol (Centrafarm, Etten-Leur, the
Netherlands) was administered intravenously (5 mg) to reduce
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the mechanical irritation of the heart. During surgery, animals
were anticoagulated with heparin (ACT>250 s). At the end of
the experiment, the animals were euthanized by pentobarbital
overdose.

Myocardial Ischemia/Reperfusion Model

During the entire procedure, electrocardiogram, arterial pres-
sure, and capnogram were continuously monitored. Prior to
M1, all animals received an oral dose of amiodarone (400 mg/
day; starting 10 days prior to MI) and clopidogrel (75 mg/day;
starting 3 days prior to MI; Sanofi Aventis, Gouda, the Neth-
erlands) [7]. A bolus of 500 mg acetylic salicylic acid
(Centrafarm, Etten-Leur, the Netherlands) was given the day
before the occlusion. Myocardial infarction was created by a
percutaneous balloon of equivalent size to the proximal left
circumflex artery (LCX). The balloon was inflated for 75 min
at 5-8 atm [8]. Complete occlusion of the LCX was confirmed
by angiography. To prevent ventricular arrhythmias, 300 mg
amiodarone (Centrafarm, Etten-Leur, the Netherlands) intra-
venously was given. External defibrillation (150-200 J) was
used when ventricular fibrillation occurred. After the proce-
dure, coronary angiography was performed to confirm vessel
patency. After recovery, the animals received daily an oral
dose of 50 mg metoprolol, 400 mg amiodarone, 75 mg
clopidogrel, and 160 mg acetylic salicylic acid until termina-
tion to prevent thrombosis and arrhythmias [7].

MSC Culture and Labeling

Bone marrow was aspirated (35—40 mL) from the sternum by
a heparinized syringe. BMMNC were isolated by Ficoll den-
sity gradient centrifugation and frozen in 10 % DMSO and
90 % culture medium.

MSC were isolated and characterized as previously de-
scribed [9]. Autologous MSC were cultured at 37 °C in Alpha
MEM (Invitrogen, Carlsbad, CA, USA), supplemented with
10 % FBS, heparin, and 1 % penicillin/streptomyocin. Cells
were cultured, replacing medium every 3 days and used be-
tween passage 5 and 7. Before injection, cells were resuspend-
ed in 2 mL PBS and viability was assessed via trypan-blue
(Sigma-Aldrich, St. Louis, MO, USA) counting.

Transendocardial Delivery

To enable TE injection, an 8-F sheath was placed in a carotid
artery. Next, a mapping catheter (Biosense Webster, Cordis,
Johnson & Johnson, USA) was placed retrogradely through
the aortic valve into the left ventricle (LV). First, a 3-
dimensional electromechanical map of the LV was obtained
using the NOGA system (Biosense Webster, Cordis, Johnson
& Johnson, USA), as described before [10, 11]. Hereafter, 10
injections of 0.2 mL were slowly placed using the
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MYOSTAR® injection catheter (Biosense Webster, Cordis,
Johnson & Johnson, Diamond Bar, USA). Two injections
were placed in the infarct zone and eight in the border zone.
Four weeks after the first injection, this procedure was repeat-
ed and the second injections were given at the same location.
Injections were only given in areas with a unipolar voltage
greater than 6 mV [10, 11].

Echocardiography

A transthoracic echocardiogram (5-MHz probe, 1E-33,
Philips, Best, the Netherlands) was performed directly after
MI, 8 weeks after MI, and at sacrifice as described before
[7]. Short axis images were obtained at the papillary level,
and three consecutive cardiac cycles were acquired. Wall
thickness (WT) of the posterolateral wall was assessed in
end-systole and end-diastole. The left ventricular internal area
(LVIA) was obtained without including the papillary muscles
in end-systole and end-diastole. The fractional area shortening
was calculated as ((LVIAendiastole—LVIAendsystole)/
LVIAenddiastole)* 100.

Pressure-Volume Loop protocol

Pressure-volume loops were obtained using a 7-F conduc-
tance catheter that was inserted via a carotid artery and placed
along the long axis of the LV. The catheter was connected with
a signal processor (Leycom CFL, CD Leycom, Zoetermeer,
the Netherlands). The correct position of the conductance
catheter was verified by angiography and by inspection of
the segmental conductance signals. The conductance signals

were calibrated by thermodilution and hypertonic saline dilu-
tion via a 7-F Swan-Ganz catheter that was placed into the
right or left pulmonary artery [12, 13]. Data were collected
during steady-state conditions with the respirator systems
turned off at end-expiration. From these signals, hemodynam-
ic indices were derived. Data analysis and calculations were
performed using custom-made software (CD Leycom, Zoeter-
meer, the Netherlands), as previously described [14]. Param-
eters of global systolic and diastolic function were calculated
during steady-state conditions at 4, 8, and 12 weeks after ML
Cardiac output (CO) measured by Swan-Ganz was corrected
by multiplying each measurement with 0.62. This number was
based on the following equation (CO Swan-Ganz at sacrifice/
CO transonic aorta flow probe at sacrifice). The isovolumic
relaxation time constant (Tau) was calculated by phase-plot
analysis. The end-systolic pressure-volume relationship was
measured by its slope end-systolic elastance (Ees). Diastolic
stiffness (Eed) was determined as the lineair slope of the end-
diastolic pressure-volume relationship. Both were calculated
by single-beat analysis as described earlier [15].

Histology

After euthanasia, the LV was weighed and tissue samples from
the infarct, borderzone, and remote region of the heart were
obtained. Samples were fixed in 4 % formalin at room tem-
perature. Before cutting 5-pum sections, samples were embed-
ded in paraffin for analysis. For quantification of collagen
content, picrosirius red staining and detection with circularly
polarized light and digital image microscopy was used [16].
Five random images at x20 magnification of the infarcted,
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borderzone, and remote area were obtained per animal. After
conversion into gray value images, the average number of
grey values was expressed as a mean grey value per square
micrometer. Capillary density was assessed by Lectin staining
(Sigma-Aldrich) and counterstained with Hematoxilin and
Eosin to identify nuclei. In total, five fields per section at
%20 magnification were counted per animal per zone.

Statistical Analysis

Values derived from echocardiography were analyzed in a
blinded fashion. For statistical analysis, we used a linear
mixed effects model to account for repeated measurements
on each animal. In this model, we included a generalized
estimation equations-type matrix to account for the associa-
tion between residual covariance, e.g., time point of measure-
ment (8 and 12 weeks after MI). Statistical comparison of data
between groups was done using a one-way ANOVA with a
post hoc Tukey or Kruskal-Wallis test. Data are presented as
mean+SE or median with interquartile ranges in case of non-
normal distributed data. All statistical analyses were

performed using SPSS 18.1.1, and P values <0.05 were con-
sidered statistically significant.

Results
Procedural Data

In total, 19 animals underwent the MI procedure. One animal
in the placebo died due to severe heart failure evidenced by
obduction (group 1; day 71 after MI), and one animal had to
be terminated for reaching a human-defined endpoint due to
an abscess at the right foot not related to the study (group 2).
MSC viability (group 2, 92+4 % vs. group 3, 93+1 %; P=
0.10) and number of MSC (group 2, 1.0+£0.1x 107 vs. group 3,
0.9+0.2x107; P=0.10) did not differ between the cell-treated
groups. BMMNC viability was 92+4 % and the injected num-
ber 1.74+0.2x 10”. No cardiac tamponade or sustained ventric-
ular arrhythmias were observed after any cell or placebo
injection.

Table 1 Hemodynamics derived from pressure-volume loops at baseline, before the second injection and at sacrifice
Hemodynamics Baseline (4 weeks after MI) Injection (8 weeks after MI) Sacrifice (12 weeks after MI)
Parameter Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 Group 1 Group 2 Group 3
General
Weight (kg) 73+3 7142 73+1 80+3 76+2 76+1 83+3 82+3 82+1
LV weight (g) 168+7 15945 175+9
FAS (%) 50+5 5543 47+2 50+2 51+2 43+3
HR (beats/min) 5242 59+4 52+6 63+8 56+1 57+7 51+£7 55+1 53+4
CO (L/min) 3.5+0.3 2.8+0.2 3.0+£0.4 3.2+0.2 3.5+0.3% 2.7+0.2 2.8+0.5 3.5+03 3.1+0.1
Systole
ESV (mL) 4143 37+4 49+7 50+12 31+8 44+7 51+11 23+5% 30+6*
ESP (mmHg) 96+7 87+11 100+5 86+7 90+8 85+4 91+7 8145 T4+4%*
EF (%) 62+2 57+2 55+5 54x7 693" 54+5 5243 74+3% 69+4*
dP/dtyax (mmHg/s) 1586+131  1390+208  1374+46  1372+152  1351+134  1096+64  1460+102  1402+40° 1033+71%
Ees (mmHg/ml) 3.94+0.5 4.2+0.6 3.7+0.1 3.7+0.7 3.7+0.4 3.2+0.2 4.1+£0.9 3.7+0.5 2.5+0.3*
Diastole
EDV (mL) 10748 8545 109+6 106+13 92+13 95+9 10616 86+9 91+10
EDP (mmHg) 16+1 13+1 16+1 14+2 16+1 13+£2 15+1 1442 114£1%8
dP/dtyyy (mmHg/s)  —1428+131 —1345+165 —1393+£91 —1350+224 —1447+119 —1275+£99 —1239+224 —1328+99 —1148+93
PHT (ms) 3442 3142 39+3 36+7 31=+1 34+3 44+7 28+1% 31+£1%*
Tau (ms) 58+4 5244 67+6 62+14 5142 57+5 72416 48+2 49+2%
Eed (mmHg/mL) 0.38+0.04  042+0.02 037£0.06 0.46+0.8%  0.54+0.06° 0.29+0.02 0.30+0.04 0.38+0.07 0.24+0.03

Data are presented as mean+SE

CO cardiac output, HR heart rate, EDP end-diastolic pressure, ESP end-systolic pressure, dP/dty;,x maximal rate of LV pressure increase, dP/dty;y
minimal rate of LV pressure decrease, EDJV end-diastolic volume, Eed myocardial stiffness, Ees end-systolic elastance, ESV end-systolic volume, EF
ejection fraction, FAS fractional area shortening, LV left ventricle, PHT pressure halftime, 7au isovolumic relaxation time constant

*#P<0.05 BMMNC vs. placebo, # P<0.01 MSC vs. placebo, ¥ P<0.05 MSC vs. BMMNC
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Comparison Between MSC and BMMNC on Cardiac
Function at 4 weeks after Cell Transplantation

Four weeks after MI (baseline), no difference in LVEF be-
tween groups was observed (P=0.30; Table 1). When com-
paring LVEF differences between baseline and 4 weeks after
injection (Fig. 2), placebo-treated animals showed a reduction
in LVEF whereas in MSC-treated animals, LVEF was signif-
icantly improved (group 2, 11.9+3 % vs. group 1, =7.8+£8 %;
P=0.002). Animals treated with MSC showed a tendency for
having a decrease in AESV (group 2, —6.0+7 mL vs. group 1,
10+10 mL; P=0.10). No significant difference in ALVEF
between BMMNC and placebo treatment was observed
(group 3, —1.6+6 % vs. group 1, —7.8£8 %; P=0.748). Con-
sequently, MSC injection led to a significant increase in
ALVEF compared to BMMNC injection (group 2, 11.943 %
vs. group 3, —1.6+£6 %; P=0.028) but also significantly im-
proved ACO (group 2, 0.74+0.3 L/min vs. group 3, —0.4+
0.4 L/min; P=0.037) and thereby reflects an increased systolic
cardiac performance. After BMMNC injection, a trend for
impaired AdP/dty;ax was observed compared to MSC-
treated animals (group 2, —38+154 mmHg vs. group 3,
—277+£57 mmHg; P=0.08).

Regarding global diastolic function, no significant differ-
ence in Aend-diastolic volume between groups could be ob-
served (group 1, —0.2+4 mL; group 2, 7.7+£13 mL; group 3,
—14+£8 mL; all P>0.1). In addition, dP/dtyn, Tau, end-
diastolic pressure (EDP), and pressure halftime (PHT) were
similar in the different treatment groups (Table 1). However,
passive diastolic function was improved in the BMMNC
group compared to the other groups, indicated by AEed (group
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Fig. 2 Effects at 4 weeks after cell therapy: group 2 (MSC injection)
improves systolic function compared to group 3 (BMMNC) and group
1 (placebo). Percentage of change in LVEF between baseline and 4 weeks
after injection in each treatment group. *P<0.01 compared to group 1.
TP=0.028 compared to group 3. LVEF left ventricular ejection fraction§

1, 0.08+£0.05 mmHg/mL; group 2, 0.12+0.08 mmHg/mL;
group 3, —0.08+0.05 mmHg/mL; BMMNC vs. placebo, P=
0.04; MSC vs. BMMNC, P=0.004; MSC vs. placebo, P=
0.349).

Directly after MI, echocardiographic recordings showed
that end-systolic WT was similar between groups (group 1,
1.25+0.2 cm; group 2, 1.38+0.1 cm; group 3, 1.01+0.2 cm;
P=0.78). Also, no difference in end-diastolic WT was ob-
served (group 1, 1.21£0.3 cm; group 2, 1.18+0.3 cm; group
3, 1.01+0.2 cm; P=0.48). Four weeks after treatment, no
significant effect on Aend-diastolic WT (group 1, 0.03+
0.06 cm; group 2, 0.01+£0.03 cm; group 3 0.10+0.05 cm)
and Aend-systolic WT (group 1, 0.28+0.07 cm; group 2,
0.06+0.06 cm; group 3, 0.16+0.09 cm) was found.

Effect of Repeated Cell Injection on Cardiac Function
at 8 weeks after Cell Transplantation

Since no effect of BMMNC on ALVEF was observed, we now
did not expect a synergistic effect of repetitive BMMNC in-
jection in group 3. However, we now were able to study
whether a second injection of MSC could rescue the damaged
myocardium.

When comparing ALVEF between baseline and at sacrifice
(Fig. 3), placebo-treated animals showed a reduction in
ALVEEF, whereas in cell-treated animals, AEF was significant-
ly improved (group 2, 18+3 %; group 3, 13+4 % vs. group 1,
—9+3 %, all P<0.01) caused by a significant reduction in

ALVEF (%)
-]

A 2 »
,\@ ,»@ ,5@

S8 S8 S8

& & &
Fig.3 Effectat 8 weeks after (repeated) cell therapy: no difference on EF
between single (group 2) versus pretreated injections (group 3) with
MSC. No significant effect on ALVEF (baseline and 8 weeks after injec-
tion) between single and repeated cell injection was observed. LVEF left
ventricular ejection fraction
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AESV (group 2, —14+4 mL; group 3, —20+4 mL vs. group 1,
11£10 mL; all P<0.01). However, no difference in AEF or
AESV between single MSC injection and repeated cell deliv-
ery could be observed (P=0.28 and P=0.79). Contractility
measured by AdP/dtyax Was significantly increased after sin-
gle MSC injection, compared to BMMNC and MSC injection
(group 2, 105+193 mmHg; group 3, —340+63 mL; P=0.003).
In fact, the second MSC injection on top of the first BMMNC
injection (without significant difference compared to placebo)
once more revealed the magnitude of effect on systolic func-
tion by MSC.

Overall, both cell groups showed an improvement in dia-
stolic active relaxation parameters compared to placebo-
treated animals. This was reflected by a shortened ATau and
decreased APHT. Myocardial stiffness (Eed) was unaffected
by cell therapy. No statistical difference in active and passive
diastolic function between the cell-treated groups could be
observed, except for EDP.

No significant difference in echocardiographic parameters
between single cell injection and repeated cell injection was
observed.

Capillary Density and Collagen

Histological samples were not available for two animals (both
group 1). Due to technical issues, in 175 of the 225 samples
(78 %), representative Lectin stainings were obtained and
used for analysis. Both collagen and vascular density data
showed a non-normal distribution.

A significantly higher number of capillaries in the infarcted
area was seen in group 3 compared to both group 1 and group
2 (median value 104 vs. 36 vs. 57, respectively; P<0.01,
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Fig. 4). Between groups, no significant difference between
the number of vessels in the border zones was found (median
value for group 1, 157; group 2, 207; group 3, 209). Also, no
difference was found for the remote areas. Within groups, the
number of vessels was lower in the infarcted area as compared
to border zone and remote area as expected. Furthermore, no
significant difference was found in the number of vessels in
the remote and border zone. Figure 5 shows representative
Lectin-stained images from each group.

Collagen density assessment could be performed on 100 %
(225 samples) of the picrosirius red stainings. As expected,
infarcted tissue from all groups showed a substantial increase
in collagen density compared to tissue from remote areas and
border zones.

Group 3 showed a significantly lower collagen density in
the infarcted area compared to group 1 (median 64x 107" vs.
3181077, respectively; P<0.01, Fig. 6), but not group 2 (me-
dian 288x1077). However, a significantly higher collagen
density was observed in the border zone of group 3 compared
to group 2 (median 29x1077 vs. 3x1077, respectively;
P<0.05, Fig. 6). Figure 7 shows representative picrosirius
red-stained images from each group.

Discussion

In this study, we performed a comparison between MSC and
BMMNC via TE cell delivery in a porcine model of chronic
ischemic heart disease. The main novel findings of our study
are the following: (1) MSC are superior to BMMNC in im-
proving systolic function, and (2) the delivery strategy of re-
peated cell injection was safe and feasible. Interestingly, MSC
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Fig. 4 Microcirculatory remodeling in the damaged myocardium after
cell delivery 12 weeks post-MI. Microvascular formation determined by
Lectin staining at sacrifice was significantly higher in the infarcted zone
in group 3 (BMMNC+MSC injection) compared to the other groups
(P<0.01). Furthermore, a nonsignificant increase in vessel density was
observed in both cell-treated groups in both the remote and border zones
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Group1 Group2 Group3

Group1 Group2 Group3

(both P>0.1). Group 1: 4 animals, 13 images used for analysis of remote
zone, 14 for border zone, 13 for infarct zone. Group 2: 5 animals, 14
images used for analysis of border zone, 23 images for border zone, 18
for infarct zone. Group 3: 6 animals, 23 images used for analysis of
remote zone, 27 for border zone, 30 for infarct zone
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Fig. 5 Representative images of Lectin staining at sacrifice from remote
area, border zone, and infarcted tissue. a Group 1 (placebo+placebo)
remote, b group 1 border, ¢ group 1 infarct. d Group 2 (MSC+placebo)

on top of BMMNC led to normalization of LV function,
supporting the notion that MSC rather than BMMNC improve
systolic function.

MSC Treatment Improves Systolic Function in Contrast
to BMMNC

We performed a head-to-head comparison of treatment with
autologous BMMNC and MSC and demonstrated a beneficial
effect for MSC on systolic function (EF 11.9+3 %), whereas
no effect of BMMNC on LVEF was found compared to pla-
cebo (EF —1.6+6 % and —7.8+8 %, respectively).

This was despite the fact that even a slightly higher number
of cells were used in the BMMNC group (1.7x 10’ BMMNC

remote, e group 2 border, f group 2 infarct. g Group 3 (BMMNC+MSC)
remote, h group 3 border, i group 3 infarct. Magnification x20

vs. 1.0x 107 MSC). This observation is in line with the results
of our large preclinical meta-analysis, showing more benefit
of MSC in ischemic heart disease compared to BMMNC [3].
On the contrary, Li et al. did not found significant difference
between MSC and BMMNC. However, they infused far more
BMMNC than MSC (BMMNC 4.7+1.7x 107 vs. MSC 6.2+
1.6x10°) [17]. It is known that the number of cells is related to
the magnitude of effect [3, 4]. In our study, no statistical dif-
ference between injected cell number was observed. Our re-
sults may appear to be in contrast with the data from previous
clinical studies that did show modest but significant improve-
ments of LVEF after treatment with BMMNC (approximately
3-5 %) [18-20]. However, such studies were mainly per-
formed in the setting of acute MI and these effects were
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Fig. 6 Collagen density after cell therapy. Collagen quantification
12 weeks post infarction of remote areas, border areas, and infarcted
areas. A significantly decreased collagen density was observed in the
infarcted zone in group 3 (BMMNC+MSC) compared to group 1
(placebo+placebo) (P<0.01). However, in the border zone of group 3,

predominantly found in subgroups of large infarctions (base-
line EF<48 %) [18]. In fact, several trials with BMMNC in
chronic patients did not show improvement of systolic func-
tion [5, 21, 22]. On the contrary, in a comparable patient co-
hort, it was demonstrated that indeed MSC were able to im-
prove cardiac function [23]. Recently, a clinical study (TAC-
HFT trail) directly compared these cells and demonstrated the
safety of both cell types [24]. However, after MSC injection, a
reduction in infarct size was observed which was not the case
after BMMNC. Unfortunately, this study was not powered to
provide a definitive statement on therapeutic efficacy. Taken
together, these results provide a robust rationale for a larger
trial comparing both cell types to determine whether or not
bone marrow stem cells have a clinical future.

Repeated Cell Injection was Safe but Does Not Further
Improve Cardiac Function

Repetitive cell injections led to no serious adverse events (e.g.,
death, persistent ventricular arrhythmias) but did not further
improve systolic function compared to single MSC injection.
This is largely due to the lack of an effect of BMMNC; this
was surprising and not anticipated. Several studies investigat-
ed in particular the effect of repetitive cell transplantations
[25]. Our observations are in line with a clinical trial investi-
gating the effect of repeated BMMNC injections in patients
with chronic heart failure showing no additional benefit of
repeated BMMNC treatment on LVEF. [26] However, Yao
et al. demonstrated that repeated BMMNC injection in pa-
tients with large acute MI resulted in a significant improve-
ment in ALVEF compared to single cell injection [27]. This
effect may be explained by the low baseline LVEF values (20—
39 %) which were higher in our study. Our results are in line
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Group 2 Group 3

Group1 Group2 Group3

an increase in interstitial fibrosis was measured compared to group 2
(MSC+placebo) (P<0.05). Group 1: 4 animals, 20 images used for
analysis per section. Group 2: 5 animals, 25 images used for analysis
per section. Group 3: 6 animals, 30 images used for analysis per
section. Note differences in Y-axis

with an observation [28], in which skeletal myoblasts were
sequential injected in a chronic infarcted porcine myocardium.
Although a different cell type was used, repeated cell injec-
tions showed no difference in ALVEF (repeated 15.1 % vs.
single 11.1 %).

Histological Effects of MSC Injection

It is postulated that a decreased collagen density and an in-
crease in vascular density in border and/or infarct zone could
be the explanation for the observed effects on systolic function
in groups 2 and 3. Indeed, collagen density was significantly
reduced in the infarcted area in group 3 (BMMNC+MSC)
compared to group 1 (placebo+placebo). However, this was
not the case for group 2. Surprisingly, the opposite was found
for the border zone of group 3. Therefore, the histological
analysis of infarcted tissue only partly explains the found ef-
fects in the present study.

Second, measurement of capillary density showed a signif-
icant increase in the number of microvessels in the infarcted
area after BMMNC+MSC injection compared to placebo
treatment and MSC+placebo treatment. These data do not
directly explain the functional changes although there seems
to be a slight trend of increased capillary density in both the
border zone and infarcted area of both cell groups; however, a
significant increase in the number of vessels was only found in
the infarcted area of the BMMNC-primed group as seen in
Fig. 4. This suggests a more pronounced angiogenic response
after priming with BMMNC before injecting MSC (group 3).

Finally, some MSC were observed in the infarcted tissue by
fluorescent microscopy (data not shown), but it is unlikely that
the observed effect was caused by differentiation of MSC into
cardiac lineages as also suggested by others [29]. However,
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Fig. 7 Representative images of picrosirius red staining at sacrifice from
remote area, border zone, and infarcted tissue. a Group 1 (placebo+
placebo) remote, b group 1 border, ¢ group 1 infarct, d group 2 (MSC+

MSC may lead to prolonged secretion of paracrine factors
activating capillary angiogenesis.

Study Limitations

Our ischemia/reperfusion model resulted in a limited decrease
in LVEF (appr. 50 %), but not severe heart failure. This is
related to the chosen model (temporary occlusion of LCX
for 75 min) and maybe by the fact that animals were treated
with similar medication protocols (e.g., beta blockers, which
may be cardioprotective) compared to the patients suffering
from MI. Nevertheless, significant effects on LVEF were
observed.

The porcine model is considered the best possible model to
resemble the clinical situation, although major differences

placebo) remote, e group 2 border, f group 2 infarct, g group 3
(BMMNC+MSC) remote, h group 3 border, i group 3 infarct.
Magnification x20

exist (e.g., risk factors, cell isolation protocols [30], comorbid-
ity, follow-up duration), which prevent direct extrapolation to
patient management. Nevertheless, our group demonstrated
that large animal models can accurately predict human clinical
outcome and these models are frequently used for translational
purposes [3].

Care was taken to perform adequate analysis of collagen
and vascular density; however, both sampling error and stain-
ing issues may have had impact on this histological assess-
ment. By analysing five sections per sample, we attempted to
minimize this bias.

Nowadays, cardiac MRI is considered the gold standard to
measure LVEF and volumes. However, due to practical rea-
sons, we performed echocardiographic and pressure-volume
loop analysis. These techniques are still considered reliable,
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reproducible, and a valid measure of LV function and are
therefore most often used in preclinical research models.

Finally, our results show that the anticipated synergistic
effect by pretreatment with BMMNC before MSC treatment
in group 3 was suggested by the increased capillary density,
but was not represented in functional endpoints. Knowing
this, a fourth group comparing repetitive MSC injections
would have been helpful to elucidate this effect for repetitive
MSC treatment. Nevertheless, we feel that the take-home mes-
sage from this particular group is now reassuring that indeed
MSC outperform BMMNC in this setting.

Conclusions

We demonstrated that MSC are more potent in terms of im-
provement of LVEF than BMMNC in a chronic model for
ischemic heart disease. Our data do not support strategics
using repetitive injections, although using different combina-
tions of cells may be of value in more severe heart failure.
These data should encourage researchers and clinicians to
focus future studies on other cell types (i.e., MSC) than
BMMNC.
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