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Abstract 

Background:  The aim of this study was to construct a model based on the prognostic features associated with epi-
thelial–mesenchymal transition (EMT) to explore the various mechanisms and therapeutic strategies available for the 
treatment of metastasis and invasion by hepatocellular carcinoma (HCC) cells.

Methods:  EMT-associated genes were identified, and their molecular subtypes were determined by consistent clus-
tering analysis. The differentially expressed genes (DEGs) among the molecular subtypes were ascertained using the 
limma package and they were subjected to functional enrichment analysis. The immune cell scores of the molecular 
subtypes were evaluated using ESTIMATE, MCPcounter, and GSCA packages of R. A multi-gene prognostic model 
was constructed using lasso regression, and the immunotherapeutic effects of the model were analyzed using the 
Imvigor210 cohort. In addition, immunohistochemical analysis was performed on a cohort of HCC tissue to validate 
gene expression.

Results:  Based on the 59 EMT-associated genes identified, the 365—liver hepatocellular carcinoma (LIHC) samples 
were divided into two subtypes, C1 and C2. The C1 subtype mostly showed poor prognosis, had higher immune 
scores compared to the C2 subtype, and showed greater correlation with pathways of tumor progression. A four-
gene signature construct was fabricated based on the 1130 DEGs among the subtypes. The construct was highly 
robust and showed stable predictive efficacy when validated using datasets from different platforms (HCCDB18 and 
GSE14520). Additionally, compared to currently existing models, our model demonstrated better performance. The 
results of the immunotherapy cohort showed that patients in the low-risk group have a better immune response, 
leading to a better patient’s prognosis. Immunohistochemical analysis revealed that the expression levels of the FTCD, 
PON1, and TMEM45A were significantly over-expressed in 41 normal samples compared to HCC samples, while that of 
the G6PD was significantly over-expressed in cancerous tissues.

Conclusions:  The four-gene signature construct fabricated based on the EMT-associated genes provides valuable 
information to further study the pathogenesis and clinical management of HCC.
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Background
Liver cancer is the sixth most common type of cancer in 
the world and the third leading cause of cancer-related 
deaths worldwide, with high morbidity and mortality as 
well as an extremely poor prognosis [1]. Hepatocellular 
carcinoma (HCC) is the most common type of liver can-
cer, accounting for 85–90% of all primary liver cancers 
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and causing 700,000 deaths worldwide each year; it is 
more prevalent and fatal in developing countries [2–4]. 
Until recently, Sorafenib, a kinase inhibitor drug, was 
the only systemic treatment option available for patients 
with advanced HCC. In 2020, atezolizumab and bevaci-
zumab combination therapy turned into a new frontline 
standard of care for unresectable or metastatic HCC [5]. 
Despite advancement in treatment strategies in recent 
decades, the overall 5-year survival rate of patients with 
HCC is currently less than 12%. This is primarily due to 
the high recurrence rate and the intra- or extra-hepatic 
metastases. Most patients with HCC are diagnosed at the 
advanced stage and therefore, experience limited clini-
cal benefit from treatment [6–9]. Since HCC has a rather 
poor prognosis and is highly resistant to most anticancer 
therapies, efforts have been made to unravel the complex 
molecular mechanisms underlying hepatocarcinogen-
esis and progression, including epithelial mesenchymal 
transition (EMT), tumor-stromal interactions, tumor 
microenvironment, tumor stem cells, and evasion of 
senescence [10]. A better understanding of these mech-
anisms can enable the development of new and more 
effective therapeutic and prognostic strategies, which is 
the need of the hour.

EMT is an important biological process in embryonic 
development, cell differentiation and reprogramming, 
and cancer progression [11, 12]. A growing body of 
evidence suggests that EMT confers tumor stem cell-
like features, which results in treatment resistance and 
tumor recurrence [13]. Therefore, EMT is considered 
as one of the primary mechanisms determining can-
cer cell invasion and metastasis [14]. Much evidence 
suggests that EMT is associated with the invasion and 
progression of various malignancies, including HCC 
[15, 16]. EMT in HCC cells, similar to other tumors, 
appears to be driven by the aberrant activation of the 
Wnt/β-catenin signaling pathway [17–20], which 
increases hypoxia-induced EMT in HCC [21]. Mount-
ing evidence suggests that EMT aids in cell prolifera-
tion, invasion, and metastasis during HCC progression, 
and contributes to chemotherapy resistance, thereby 
leading to poor patient prognosis [22–24]. In addi-
tion, EMT has also been found to positively correlate 
with resistance to sorafenib, cis-platin, and Adriamy-
cin [25–27]. However, a pervious study has revealed 
that sorafenib inhibits the migration of HCC cells by 
inhibiting EMT, which is one of the potential mecha-
nisms responsible for the antitumor effect of sorafenib 
in HCC [28]. Although the mechanisms underlying 
EMT in HCC have been extensively studied, the prog-
nostic value and the biological role of EMT-associated 
genes have not been elucidated. Therefore, studying the 
molecular subtypes of HCC with respect to EMT, and 

evaluating their prognostic relevance, is of great impor-
tance to identify therapeutic targets and improve the 
prognosis of HCC patients.

In this study, we identified certain EMT-associated 
genes and constructed molecular subtypes of liver 
hepatocellular carcinoma (LIHC) models based on 
EMT. Subsequently, we evaluated the relationship 
between the molecular subtypes, and their prognos-
tic and clinical features. A four-gene signature (PON1, 
FTCD, G6PD, and TMEM45A) prognostic risk model 
was constructed using the DEGs identified among 
the LIHC molecular subtypes and validated using the 
HCCDB and GEO gene expression datasets. On vali-
dation, we found that the constructed four-gene prog-
nostic marker showed good performance, therefore 
proving useful for the prognostic classification of HCC 
patients and identification of new therapeutic targets 
for HCC.

Materials and methods
Data source and pre‑processing
The expression data and clinical follow-up information 
coming from LIHC patient tissues were downloaded 
using TCGA, and the data were processed through the 
following steps: (1) Samples without clinical follow-
up information were removed. (2) Ensemble was con-
verted to Gene Symbol. (3) The middle value was taken 
in the presence of multiple Gene Symbol expressions.

The GSE14520 microarray dataset was downloaded 
from Gene Expression Omnibus (GEO), and the GEO 
dataset was processed with the following steps: (1) 
Samples without clinical follow-up information were 
removed. (2) Probes were converted to Gene Symbols. 
(3) Removal of probe corresponding to multiple genes. 
(4) The middle value was taken in the presence of mul-
tiple Gene Symbol expressions.

The HCCDB18 data were downloaded from the 
HCCDB18 database (http://​lifeo​me.​net/​datab​ase/​
hccdb/​home.​html), and the RNA-Seq data were pro-
cessed in the following steps: (1) Samples without clini-
cal follow-up information were removed. (2) Samples 
without expression profile data were removed.

The genes of EMT-associated pathways (HALL-
MARK_EPITHELIAL_ MESENCHYMAL_TRANSI-
TION) were downloaded from Molecular Signature 
Database v7.0 (MSigDB), and a total of 200 EMT-asso-
ciated genes were collated and gathered.

After preprocessing three datasets, a total of 365 
samples for TCGA-LIHC, 203 samples for HCCDB18, 
and 221 samples for GSE14520 were attained. The clini-
cal statistical information of the samples is shown in 
Table 1.

http://lifeome.net/database/hccdb/home.html
http://lifeome.net/database/hccdb/home.html
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Identification of molecular subtypes using 
the ConsensusClusterPlus algorithm
The TCGA expression profile data were first filtered by 
the process of removing genes having expressions less 
than 1, which accounted for less than 50% of all sam-
ples, and a univariate COX analysis was performed to 
filter out unnecessary genes at a threshold of P < 0.05. 
EMT genes associated with prognosis were obtained, 
followed by the application of consistent clustering of 

TCGA samples using ConsensusClusterPlus (V1.48.0; 
parameters: reps = 100, pItem = 0.8, pFeature = 1, 
distance = “spearman”).

D2 and Euclidean distance were used as clustering 
algorithms and distance metrics respectively to obtain 
molecular subtypes. DEGs between molecular subtypes 
were calculated using the limma package and subjected 
to functional enrichment analysis. GSEA was used in the 
LIHC dataset to analyze the significantly enriched path-
ways in different groups, where the selected gene set was 
c2.cp.kegg.v7.0.symbols.gmt that contains the KEGG 
pathway. The GSEA input file containing the TCGA 
expression profile data and the molecular subtype were 
labeled as C1 or C2 group according to the sample labels. 
The enriched pathways were selected having a threshold 
of p < 0.05 and FDR < 0.25 as the basis.

Construction of prognostic risk model based on EMT genes
Partitioning of the training and validation sets
A total of 365 samples in the TCGA dataset were sub-
divided into training and validation sets. In advance, all 
samples were randomly grouped 100 times with replace-
ment and group sampling was performed in the ratio of 
training set: validation set = 1:1 to avoid random assign-
ment bias affecting the stability of subsequent mode-
ling. The most suitable training and validation sets were 
selected based on the following set conditions: (1) the 
two groups had to have similar age distribution, gender, 
follow-up time, and the proportion of patient deaths; 
(2) there was a similar number of dichotomous samples 
between the randomly grouped cohorts following gene 
expression profile clustering. The selection yielded 182 
samples in the training set and 183 in the validation set.

The information on both the training and validation set 
samples of the TCGA data, shown in Table 2, were tested 
using the chi-square test and showed a validated group-
ing method having no significant difference between 
groups (p > 0.05).

Lasso cox regression analysis
The lasso regression was employed on prognostic genes 
to reduce the number of genes found in the risk model. 
Lasso method is a type of shrinkage estimation that 
obtains a more refined model by constructing a penalty 
function that allows shrinking of coefficients, setting 
some coefficients to zero, and retaining the advantage of 
subset shrinkage. This is a biased estimate that deals with 
data multicollinearity that achieves variable selection, 
parameter estimation, and problem-solving capabilities 
for multicollinearity in regression analysis. The trajectory 
of each independent variable was analyzed by performing 
lasso cox regression using the R package glmnet. Subse-
quently, an optimal model was constructed using fivefold 

Table 1  Cohorts information

Clinical features TCGA-LIHC HCCDB18 GSE14520

OS

 0 235 168 136

 1 130 35 85

  T stage

 T1 180

 T2 91

 T3 78

 T4 13

 TX 3

  N stage

 N0 248

 N1 4

 NX 113

  M stage

 M0 263

 M1 3

 MX 99

  Stage

 I 170

 II 84

 III 83

 IV 4

 X 24

  Grade

 G1 55

 G2 175

 G3 118

 G4 12

 GX 5

  Gender

 Male 246

 Female 119

  Age

 ≤ 60 173

 > 60 192

  Recurrence

 Yes 198

 No 167
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cross-validation to analyze the confidence intervals under 
each lambda and to find the number of targeted genes.

Immunohistochemistry
To verify the expression of the candidate four genes, tis-
sue microarrays (TMA) comprised of 41 HCC tissues 
and 41 normal samples were obtained from Shanghai 
Outdo Biotech Co., Ltd. (Shanghai, China). The stud-
ies were conducted in accordance with the International 
Ethical Guidelines for Biomedical Research Involving 
Human Subjects (CIOMS), and the research protocols 

were approved by the Ethics Committee of Hainan Gen-
eral Hospital, Hainan Affiliated Hospital of Hainan Medi-
cal University.

The TMA slides were dried overnight at 37 °C, dewaxed 
in xylene, and dehydrated in a gradient ethanol series. 
Antigen’s retrieval was performed by heating the tissue 
sections in a microwave oven inside a vessel filled with 
EDTA antigen retrieval buffer (pH 9.0). Subsequently, the 
tissue sections were immersed in 3% hydrogen peroxide 
for 25  min to block the activity of endogenous perox-
ides. Next, the TMA tissues were coated with 3% bovine 
serum albumin (BSA) and sealed at room temperature 
for 30  min to reduce non-specific staining. Then, the 
TMA slides were incubated with anti-TMEM45A (1:500 
dilution; Sigma, HPA062101), anti-PON1 (1:100 dilution; 
Abcam, ab92466), anti-FTCD (1:250 dilution; Abcam, 
ab129005)and anti-G6PD (1:2000 dilution; Abcam, 
ab210702) overnight at 4 °C.

The tissues were rinsed with 0.01  mol/L phosphate 
buffer saline (PBS; pH = 7.4) for 5  min each. The tis-
sues were incubated at room temperature for 50  min 
with horseradish peroxidase (HRP)-labeled goat anti-
rabbit secondary antibody (1:200 dilution, ServiceBio, 
GB23303). Then, the tissues were washed in PBS and 
stained with 3,3-diaminobenzidine (DAB). Finally, the 
TMA sections were counterstained with Mayer’s hema-
toxylin, dehydrated, and fixed. To evaluate IHC staining, 
semi-quantitative scoring criteria were used.

The stained sections were scored by three pathologists 
who were blinded to the patients’ clinical characteristics. 
The scoring system was based on the proportion of posi-
tively stained cells in all tissues and the staining intensity 
of these positively stained cells. The staining intensity 
was classified as follows: 0 (negative), 1 (weak), 2 (moder-
ate), or 3 (strong). The staining ratio of positive cells was 
classified as follows: 0 (< 5%), 1 (5–25%), 2 (26–50%), 3 
(51–75%), or 4 (> 75%). According to the staining inten-
sity and the proportion of positively stained cells, the 
tissues were graded as follows: 0–1 grade, negative (−); 
> 1–4, weakly positive (+); > 4–8, moderately positive 
(++), and > 8–12, strongly positive (+++).

Results
  Identification of molecular subtypes using non-negative 
matrix factorization (NMF) algorithm

The expression of 200 EMT genes was first extracted 
from the TCGA expression profile data, followed by uni-
variate cox analysis by coxph function in R. Fifty-nine 
genes (Additional file 1: Table S1) associated with LIHC 
prognosis (p < 0.05) were obtained, and the LIHC samples 
were clustered by non-negative matrix factorization algo-
rithm (NMF). An optimal clustering of k = 2 was deter-
mined based on cophenetic, a residual sum of squares, 

Table 2  Sample information of TCGA training set and validation 
set

Clinical features TCGA-LIHC 
train

TCGA-LIHC test P

  OS

 0 116 119 0.8822

 1 66 64

  T stage

 T1 94 86 0.3129

 T2 37 54

 T3 41 37

 T4 8 5

 TX 2 1

  N stage

 N0 123 125 0.5998

 N1 3 1

 NX 56 57

  M stage

 M0 132 131 0.1966

 M1 3 0

 MX 47 52

  Stage

 I 90 80 0.3149

 II 34 50

 III 43 40

 IV 3 1

 X 12 12

  Grade

 G1 29 26 0.9548

 G2 88 87

 G3 56 62

 G4 6 6

 GX 3 2

  Gender

 Male 119 127 0.48

 Female 63 56

  Age

 ≤ 60 87 86 0.9604

 > 60 95 97
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and other metrics, thus obtaining two molecular sub-
types (C1, C2) (Fig. 1A–C).

Further analysis on the prognostic relationship between 
subtypes revealed a significant difference between C1 
and C2 groups in terms of overall survival (OS) time and 
disease-specific survival (DSS) time (Fig. 1D, E, log-rank 
p < 0.01). It was also found that the C1 subtype carried a 
poorer prognosis.

Comparison and analysis of immune and matrix scores 
between molecular subtypes
The different clinical features in two molecular subtypes 
were compared, the results revealed that (1) survival rates 
were significantly different amongst the two subtypes and 
the C1 group showed a poorer prognosis (Fig. 2A); (2) the 
proportion of T-stage was significantly different between 
the two subtypes, and a higher proportion of T2, T3, and 
T4 in the C1 group carried a poor prognosis (Fig.  2B); 
(3) the proportion of Stage was significantly different 

between the two subtypes, with a higher proportion 
of Stage II and III in the C1 group with poor prognosis 
(Fig.  2C); (4) the proportion of Grade was significantly 
different between the two subtypes, with a higher pro-
portion of G3 in the C1 group having poor prognosis 
(Fig. 2D).

The six types of immune infiltration identified in human 
tumors are as follows: C1 (wound healing), C2 (INF-r 
dominant), C3 (inflammation), C4 (lymphocyte depletion), 
C5 (immunologically silent,) and C6 (TGF-beta domi-
nant) [29]. Utilizing this subtyping outcome, KM curves 
were plotted and found that the immune subtype C1 had 
the worst prognosis (Fig. 2G, H). A comparison was made 
between this subtyping method and the study’s subtyping 
sample (Fig.  2E, F) and an analysis of the distribution of 
this subtyping against the study’s EMT molecular subtypes 
indicated a consistent tendency that immune subtype C1 
was more distributed in the molecular subtype C1.
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Fig. 1  A Consensus map of NMF clustering; B cophenetic distribution having rank = 2–10, where cophenetic correlation is obtained from the 
consistency matrix proposed by Brunet et al. that is reflective of the stability of the cluster obtained from NMF. The value is between 0 and 1, 
where a larger value signified a more stable cluster; C the rss distribution with rank = 2–10. Rss is the residual sum of squares and shows clustering 
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subtypes; E DSS time prognosis survival curve of LIHC molecular subtypes
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Comparison of immune scores between molecular 
subtypes
To identify the relationship of immune scores between 
molecular subtypes in the TCGA dataset, the R software 
package ESTIMATE was used to evaluate three immune 
scores of StromalScore, ImmuneScore, and ESTIMATES-
core. Ten and twenty-two immune cells scores were 
also evaluated using MCPcounter and CIBERSOTR, 
respectively.

Comparing the differences of immune scores in molecu-
lar subtypes (Fig. 3A–C) elucidated that the immune scores 
of C1 subtypes were generally higher than C2 subtypes 
as seen in the three software. Heat maps of the immune 
score also visually demonstrated the differences in immune 
scores between subtypes (Fig. 3D).

Identification of DEGs between subtypes and functional 
analysis of pathways
DEGs between C1 and C2 molecular subtypes were cal-
culated using the limma package, with a total of 1130 
DEGs filtered according to the threshold FDR < 0.01 
and |log2FC| > 1, of which 931 were up-regulated genes 
and 199 were down-regulated genes. An up-regulated 
expression pattern between C1 and C2 was the predomi-
nant form (Fig.  4A). The DEGs are shown in Additional 
file 2: Table S2 and the 100 genes with the largest up- and 
down-regulation were selected and plotted in the heat map 
(Fig. 4B).

The KEGG pathway analysis and GO functional enrich-
ment analysis were performed on 931 up-regulated differ-
ential genes of LIHC subtypes using the Goplot R package, 
in which 1001 annotated genes showed significant differ-
ences in Biological Process (BP) (Fig. 4C, FDR < 0.05).

Fig. 2  A–D A comparison of distribution as seen in different clinical features of the two molecular subtypes in the TCGA dataset; E comparison 
between metabolic subtypes and existing molecular subtypes; F distribution comparison between different metabolic subtypes; G KM curve of OS 
time between existing immune molecular subtypes; H KM curve of DSS time between existing immune molecular subtypes

Fig. 3  Comparison of immune scores as seen in the three-immune software between molecular subtypes of TCGA dataset. A Comparison of 
CIBERSOTR immune scores between molecular subtypes of TCGA dataset; B comparison of MCPcounter immune scores between molecular 
subtypes of TCGA dataset; C comparison of ESTIMATE immune scores between molecular subtypes of TCGA dataset; D comparison of three 
immune software immune scores between molecular subtypes of TCGA dataset

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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As to the differential genes of LIHC, KEGG pathway 
enrichment was performed and genes were significantly 
enriched in: ECM-receptor interaction, Proteoglycans 
in cancer, Rap1 signaling pathway, PI3K-Akt signaling 
pathway, Pathways in cancer, and other tumor-related 
pathways (Fig.  4D). The same approach was used to 
perform both pathway analysis and functional enrich-
ment analysis for 199 down-regulated differential genes. 

The down-regulated genes were also found to be signifi-
cantly enriched in: retinol metabolism, glycine, serine, 
and threonine metabolism, metabolism of xenobiotics 
by cytochrome P450, PPAR signaling pathway, and other 
metabolism-related pathways (Fig. 4E, F).

Further employment of GSEA revealed that PATH-
WAYS_IN_CANCER, WNT_SIGNALING_PATH-
WAY, and NOTCH_SIGNALING_PATHWAY and 
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other tumor-related pathways were enriched in the 
C1 subtype group (Fig.  4G), thus showing a clear rela-
tionship between C1 subtype and tumors; in contrast, 
metabolism-related pathways such as: FATTY_ACID_
METABOLISM, PPAR_SIGNALING_PATHWAY, 
and DRUG_METABOLISM_CYTOCHROME_P450 
were more enriched in the C2 subtype group (Fig.  4H) 
depicting a close association between C2 subtype and 
metabolism.

Construction of a prognostic risk model
A total of 182 samples were obtained from the training 
set while 183 samples were derived from the validation 
set (Table 2). The data in the training set (a total of 1130 
differential genes of C1 and C2 molecular subtypes) was 
subjected to the univariate Cox proportional risk regres-
sion model and the survival data used the R package surv 
coxph function, where p < 0.01 was selected as the thresh-
old for filtering and resulted to a total of 71 prognostic 

genes (Additional file 3: Table S3). However, these genes 
are not conducive to clinical testing and still need fur-
ther reduction using the lasso regression to maintain 
a high accuracy rate. The R package glmnet was used 
for lasso cox regression analysis, where the independ-
ent variable trajectories were analyzed (Fig.  5A), and 
the results showed that as lambda gradually increases, 
the number of independent variable coefficients also 
gradually increases. Fivefold cross-validation was done 
to analyze the confidence intervals under each lambda 
(Fig. 5B) and indicated that the model was optimal when 
lambda = 0.08091131, therefore 9 genes at lambda = 0. 
08091131 were selected as the target genes for the next 
step.

The Akaike Information Criterion (AIC), a stepwise 
regression, was utilized to take into account the statisti-
cal fit of both models and parameters. The AIC method 
in the MASS package first started off with a complex 
model that later removed one variable to reduce the AIC 

Fig. 5  A Independent variable trajectory: horizontal axis (representing the log value of the dependent lambda) and the vertical axis (representing 
the coefficient of the independent variable); B confidence interval under each lambda; C–F KM curves of 4 genes (TCGA training set)
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thus resulting in a better model having fewer parameters. 
Using this algorithm, the final 9 genes were reduced to 
4 genes, namely: PON1, FTCD, G6PD, and TMEM45A, 
and the prognostic KM curves for the 4 genes (Fig. 5C–F) 
can significantly separate the TCGA training set samples 
(p < 0.05). The final 4-gene signature formula is as follows: 
RiskScore = − 0.125 * PON1 − 0.144FTCD + 0.133 * G6P
D + 0.134 * TMEM45A.

The calculation of RiskScore for each sample was 
according to the expression levels per sample and the 
higher the RiskScore correlated with a worse progno-
sis (Fig.  5G). The R package time ROC performed an 
analysis for the prognostic classification of RiskScore at 
1 year, 3 years, and 5 years, which showed the model with 
a high AUC above 0.7 (Fig.  5H). Finally, samples with a 
Riskscore greater than zero and less than zero were clas-
sified as high-risk group and low-risk group respectively. 
A plotted KM curve classified 74 samples as a high-risk 
group and 108 samples as a low-risk group (Fig. 5I).

Validation of the risk model
To determine the robustness of the model, a validation 
set of the TCGA applied the same model and the same 
coefficients as the training set. The RiskScore distribution 
of the TCGA validation set (Fig. 6A), showed that LIHC 
samples with high RiskScores correlating with worse 
prognosis were significantly smaller than those with 
low RiskScores. In addition, prognostic prediction effi-
ciency at 1 year, 3 years, and 5 years was analyzed using 
R package timeROC (Fig. 6B). The plotting of KM curves 
showed that 77 samples were classified as a high-risk 
group while 106 samples were categorized as a low-risk 
group (Fig. 6C, p < 0.01).

The distribution of RiskScore for the full TCGA dataset 
(Fig.  7A) suggested that high RiskScore samples have a 
worse prognosis and the prognostic prediction efficiency 
of RiskScore at 1  year, 3  years, and 5  years was ana-
lyzed using the R software package timeROC (Fig.  7B). 
The plotted KM curves showed that 152 samples were 
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classified as a high-risk group and 213 samples as a low-
risk group (Fig. 7C, p < 0.001).

Robustness of 4‑gene signature verified by external 
dataset
The same model and coefficients as in the training set 
were used in the external validation sets GSE14520 and 
HCCDB18. The RiskScore of each sample was calculated 
separately based on the expression level of each sample 
followed by the plotting of the RiskScore distribution.

The distribution of RiskScore for independent vali-
dation dataset GSE14520 (Fig.  8A) suggested that high 
RiskScore samples have a worse prognosis and the prog-
nostic prediction efficiency of Riskscore at 1 year, 3 years, 
and 5  years was analyzed using the R software package 
timeROC (Fig. 8B). The samples having Riskscore greater 
than zero and less than zero were classified as high-risk 
group and low-risk group respectively. The plotted KM 
curves showed a significant difference, with 98 samples 

being classified as a high-risk group and 123 samples as a 
low-risk group (Fig. 8C, p < 0.01).

The distribution of RiskScore for the independent vali-
dation dataset HCCDB18 is shown in Fig. 9A. The ROC 
analysis of RiskScore for prognostic classification was 
performed using the R software package timeROC. With 
very few 5-year survival samples from this dataset, only 
the prognostic prediction of Riskscore at 1 year, 3 years, 
and 4  years was analyzed (Fig.  9B). The plotted KM 
curves showed a significant difference, with 91 samples 
were classified as high-risk group and 112 samples as a 
low-risk group (Fig. 9C, p < 0.01).

Correlation analysis of risk model having clinical features 
and pathways
A 4-gene signature showed it could significantly distin-
guish the Age, T Stage, N Stage, M Stage, Stage, Grade, 
and Recurrence groups from the two high-and low-risk 
groups, respectively (Fig.  10A−I, p < 0.05), thus sugges-
tive of the model’s predictive ability. After comparing 
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the distribution of RiskScore amongst clinical groups, 
significant differences were found among T Stage, Stage, 
Grade, and Recurrence groups (Fig.  10J−L, p < 0.05), 
and a more advanced stage correlated with a higher 
RiskScore. The same is seen with Grade samples, where 
the higher degree of differentiation correlated with a 
higher RiskScore and RiskScores of Recurrence samples 
were higher than the Non-recurrence samples.

The relationship between RiskScores and biological 
functions of different samples are observed through cor-
responding gene expression profiles that were subjected 
to single-sample GSEA. The ssGSEA scores for each 
function were calculated for each sample. Then, the cor-
relation between these functions and the RiskScore was 
further calculated, and a correlation greater than 0.55 
was selected in Fig. 10M (4 showing a positive RiskScore 
correlation and 26 showing a negative RiskScore correla-
tion). The 30 most relevant KEGG Pathways were selected 
and clustered (Fig. 10N), and those tumor-related path-
ways: KEGG_PATHWAYS_IN_CANCER and KEGG_

CELL_CYCLE increased with increasing RiskScore, 
and metabolism-related pathways: KEGG_FATTY_
ACID_METABOLISM, KEGG_RETINOL_METAB-
OLISM, KEGG_PPAR_SIGNALING_PATHWAY, 
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 
decreased with increasing RiskScore.

The relationship between the immune and matrix 
scores of the RiskScore was established using the R soft-
ware package estimate and Pearson correlation coeffi-
cient. The calculated values showed that the RiskScore 
and the StromalScore, ImmuneScore, as well as ESTI-
MATEScore all showed a significant positive correlation 
(Fig. 10O−Q, P < 0.05).

Univariate and multivariate analysis of 4‑gene signature
Clinical independence of 4-gene signature in the TCGA 
dataset was identified using univariate and multivariate 
COX regression analysis, and the univariate COX regres-
sion analysis found that RiskScore was significantly asso-
ciated with survival and the multivariate COX regression 
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analysis revealed that RiskScore (HR = 1.86, 95% 
CI = 1.25−2.76, p = 0.002) remained significantly associ-
ated with survival (Fig.  11). The above results indicated 
that our 4-gene signature model possesses a good clinical 
predictive performance.

The comparison of risk model with other models
By retrieving the literature, three prognosis-related risk 
models, namely 4-gene signature (Zheng) [30], 6-gene 
signature (Ke) [31] and 6-gene signature (Liu) [32] were 
finally selected for comparison with our 4-gene model. 
To make models comparable, RiskScores were calcu-
lated for each LIHC sample based on the corresponding 
genes in 3 models. The Riskscore greater than zero were 
classified as a high-risk group and those with less than 
zero were classified as a low-risk group. Survival analy-
sis revealed that the prognosis of LIHC differed between 
the high- and low groups of the three models (Fig. 12B, 
D, F, log-rank p < 0.05), their 5-year AUC values, how-
ever, were lower compared to our model (Fig. 12A, C, E), 

highlighting the more reasonable and effective result with 
a reasonable number of genes.

To compare the predictive performance of these mod-
els to the LIHC sample, the concordance index (C-index) 
of the four model was calculated using the rms package 
in R. The result showed that our RiskScore model yielded 
a higher C-index value thus indicating a good predictive 
performance.

Prediction of immunotherapy by the risk model
With the limited effective predictive markers for immu-
notherapy, there is a critical need to identify novel 
predictive markers to further advance precision immu-
notherapy. Imvigor210, an immunotherapy dataset con-
taining transcriptomic data, was retrieved to explore if 
the 4-genes model could predict the benefit of immuno-
therapy. This resulted in imvigor210 recording expression 
data from patients who responded and failed to respond 
with anti-PD-L1 immunotherapy.
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Fig. 9  A RiskScore, TTL, survival status and 4-gene expression in the independent validation dataset HCCDB18; B ROC curve and AUC of 4-gene 
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Kaplan−Meier curves showed that higher RiskScore 
values were associated with poorer survival in mUC 
patients receiving immunotherapy (Fig.  13A) whereas 
ROC analysis revealed that the complex model inte-
grating Riskscore, NEO, and TMB had higher predic-
tive performance (Fig.  13B, ROC = 0.75). Comparing 
the RiskScore differences between different groups also 
showed that patients belonging in the complete response 
(CR) group had a significantly lower RiskScore than those 
in the progressive disease (PD) group (Fig.  13C) and 
that fewer samples were responding to immunotherapy 
(CR + PR) in the high-risk group than in the low-risk 
group (18% vs. 26%) (Fig. 13D).

Immunohistochemical verification of genes in the model
To verify the expression differences of FTCD, G6PD, 
PON1 and TMEM45A, protein expressions in 82 cases 
of HCC and para-cancerous tissues was detected using 
immunohistochemical assays and reflected higher 
expressions of FTCD, PON1, and TMEM45A genes in 
para cancerous tissues (Fig. 14A, C, D) and higher expres-
sions of G6PD genes in cancerous tissues (Fig. 14B). It is 
important to make mention that the transcript expres-
sion of the above genes analyzed in the UALCAN (http://​
ualcan.​path.​uab.​edu/) database was consistent with the 
data presented in the study (Fig. 14E−H).

Discussion
Patients with HCC usually lack clinically significant 
symptoms in the early stages of the disease. Owing to the 
high morbidity and mortality associated with the disease, 

Fig. 10  Prognostic performance of risk models reflective of different clinical features. A Based on Riskscore, patients in the Age > 60 group can be 
divided into two groups with significant prognosis; B Based on Riskscore, patients with Age ≤ 60 can be divided into two groups with significant 
prognosis; C Based on Riskscore, patients in the T1+T2 group can be divided into two groups with significant prognosis; D Based on Riskscore, 
patients in the N0 group can be divided into two groups with significant prognosis; E Based on Riskscore, patients in the M0 group can be divided 
into two groups with significant prognosis; F Based on Riskscore, patients in Stage I+II group can be divided into two groups with significant 
prognosis; G Based on Riskscore, patients in the Grade3+4 group can be divided into two groups with significant prognosis; H Based on Riskscore, 
patients in the Grade 1+2 group can be divided into two groups with significant prognosis; I Based on Riskscore, patients in the Recurrence_Yes 
group can be divided into two groups with significant prognosis

http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
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these patients remain a major public health challenge 
worldwide [33]. Given the enormous heterogeneity of 
HCC, the identification of new prognostic markers and 
the construction of more accurate prognostic models 
are crucial. In this study, we classified 365 LIHC sam-
ples from TCGA based on the 59 EMT-associated genes 
identified, and assigned them to two molecular subtypes 

which had different clinical features and prognostic out-
comes. In general, the C1 group showed poor prognosis 
and had a higher proportion of deaths, higher T-stage, 
higher differentiation degree, more advanced staging, 
and higher immune scores, compared to the C2 group. 
Based on this, a prognostic evaluation model was con-
structed, which not only distinguished the different 
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Fig. 11  A Forest plot of univariate cox regression analysis; B forest plot of multivariate cox regression analysis
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molecular subtypes but also better evaluated the progno-
sis of patients with HCC.

In recent years, increasing number of studies have 
reported on tumor prognostic models. However, no 
studies have focused on predicting HCC prognosis 
based on EMT-associated markers. In this study, we 
fabricated a novel, highly robust four-gene marker 
(including PON1, FTCD, G6PD, and TMEM45A) 
for the prediction of HCC prognosis, based on 
EMT-associated genes, and validated the marker 
in two other independent cohorts. Paraoxonase-1 
(PON1), a Ca2+-dependent high-density lipoprotein 

(HDL)-associated endostatin, is the first member of the 
paraoxonase (PON) multigene family. It is associated 
with the antioxidant effect of HDL, possesses athero-
protective properties, and is associated with the patho-
genesis of many diseases, including cardiovascular 
disease and cancer [34–36]. A number of studies have 
shown that PON1 activity is associated with the pro-
gression of many cancers [37, 38]. For example, PON1 
gene polymorphism has been associated with breast 
cancer susceptibility [39], while PON1 concentration 
has been positively correlated with the degree of bone 
destruction in multiple myeloma [40]. Moreover, PON1 
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Fig. 14  Gene expression amongst the liver cancer cohort. A−D Immunohistochemical expression of FTCD, G6PD, PON1, and TMEM45A genes in 
the real cohort; E−H transcriptome expression levels of FTCD, G6PD, PON1, and TMEM45A genes in the TCGA HCC cohort, respectively
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activity is elevated in the serum of patients with colo-
rectal cancer and tissues of patients with colon cancer 
[41]. In addition, since serum PON1 concentration is 
significantly reduced following radiotherapy, it can be 
used as an indicator of radiotherapy efficacy [42, 43]. 
PON1 has also been extensively studied in HCC [44–
48]. Currently, serum PON1 is used as a biomarker to 
assess microvascular infiltration in HCC [49, 50].

Formimidoyl transferase cyclodeaminase (FTCD) cata-
lyzes the degradation of histidine during folate metabo-
lism. In addition, it has also been found associated with 
the Golgi complex [51]. The FTCD gene, a candidate 
tumor suppressor gene in HCC [52], is significantly 
downregulated in HCC tumor tissues. Therefore, it 
serves as a useful diagnostic biomarker for distinguish-
ing early stage HCC from benign tumors [53]. Moreover, 
most hepatocellular and metastatic cancers are diag-
nosed by examining the combined expression of arginase 
1 + FTCD + MOC 31 [54]. In addition, FTCD has also 
been found to correlate with drug sensitivity to metho-
trexate chemotherapy [55].

Glucose-6-phosphate dehydrogenase (G6PD) is the 
rate-limiting enzyme of the pentose phosphate path-
way, and its deficiency results in one of the most com-
monly inherited enzyme deficiency disorders. Reduced 
NADPH, which is produced by G6PD, is essential for 
the maintenance of intracellular redox homeostasis and 
reductive biosynthesis [56]. G6PD is frequently acti-
vated in human malignancies to produce precursors for 
nucleotide and lipid synthesis. The abnormal activation 
of G6PD leads to proliferation of a variety of cancer cells 
[57]. G6PD activity is increased in several cancer types, 
including esophageal, gastric, colorectal, bladder, breast, 
and lung cancers [58–60]. Increased expression levels of 
G6PD mRNA results in poor clinical outcomes in cancer 
patients, including increased drug resistance, and tumor 
cell migration or proliferation. Therefore, G6PD has been 
predicted as a valuable potential target for cancer therapy 
in the near future [61]. In particular, one study has identi-
fied G6PD as an important miR-122 target that regulates 
glucose metabolism in HCC. In addition, the upregula-
tion of G6PD has been reported to be associated with 
higher tumor grade, increased tumor recurrence, and 
poor survival in patients with HCC [62].

TMEM45A is a member of the transmembrane pro-
tein (TMEM) family. These proteins are components of 
various cell membranes including the mitochondrial, 
endoplasmic reticulum, and Golgi membranes [63]. 
TMEM45A has been reported to be associated with 
chemotherapy resistance in human breast cancer and 
HCC cells under hypoxic conditions. It also affects the 
proliferation and invasion of human ovarian cancer and 
glioma cells [64–67]. TMEM45A gene knockdown has 

been found to be effective in inhibiting multidrug resist-
ance and suppressing EMT by inhibiting the TGF-β 
signaling pathway in human colorectal cancer cells [68]. 
These studies suggest that TMEM45A may be a poten-
tial biomarker. In our study, we found that the four-gene 
marker construct was involved in a wide range of tumo-
rigenic processes and was closely associated with HCC 
tumor cell growth, metastasis, or invasion, thereby mak-
ing the four-gene signature construct a powerful bio-
marker for the prediction of HCC prognosis.

Evaluation of the four-gene construct using GSEA 
showed certain significantly enriched tumor features and 
various metabolic features. The analysis revealed that a 
large number of tumor-related pathways were signifi-
cantly overexpressed in subtype C1, suggesting that the 
tumors of this subtype are more aggressive. This finding 
is also consistent with the clinical features of the tumors 
of C1 subtype such as late stage tumor, high degree of dif-
ferentiation, and high mortality. On the other hand, the 
expression levels of metabolism-related pathways were 
higher in the C2 subtype compared to C1, and most of 
these metabolic pathways were related to physiologi-
cal hepatocyte metabolic functions such as fatty acid 
metabolism, PPAR signaling pathway, and drug meta-
bolic processes. This indicates a more intact hepatocyte 
function, thereby contributing to a better clinical out-
come compared to the C1 subtype. Besides, we found 
that the tumor-related pathways increased with increas-
ing RiskScore, while the metabolism-related pathways 
decreased with increasing RiskScore, which indicates 
that RiskScores can help predict the prognosis of HCC 
and aid in better understanding the molecular mecha-
nisms underlying HCC onset and progression.

Three published gene signatures of HCC were com-
pared to demonstrate the superiority of our model. Using 
a four-gene signature marker (Zheng) [30], we obtained 
149 pairs of HCC specimens from GEO and identified 98 
DEGs between HCC and normal hepatic tissues. Subse-
quently, we established and validated a four-gene subset 
of prognostic gene expression signature markers for HCC 
(SPINK1, TXNRD1, LCAT​, and PZP). We found that 
the expression panel of these four genes strongly corre-
lated with the methylation status of the genes. Another 
six-gene signature (Ke) marker [31] helped identify two 
prognostic molecular subtypes of HCC with different 
expression profiles and clinical outcomes. It also helped 
establish a prognostic evaluation model that not only dis-
tinguished the different subtypes of HCC, but also pro-
vided a good evaluation of patient prognosis. Another 
six-gene signature (Liu) marker [32], which included 
CSE1L, CSTB, MTHFR, DAGLA, MMP10, and GYS2, 
helped classify HCC patients into high- and low-risk 
groups with significant differences in their survival rates. 
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ROC analysis of the four models showed that the 5-year 
AUC values of the four-gene signature (Zheng), six-gene 
signature (Ke), and six-gene signature (Liu) markers were 
lower than that obtained in our model, indicating that our 
model is more reasonable and effective with similar num-
ber of genes. Besides, the C-index values of our RiskScore 
model were higher than those of the other three models, 
proving the good performance of our model.

Researchers have identified several genetic mark-
ers associated with cancer immunotherapy responsive-
ness, such as PD-L1 expression, tumor mutation burden 
(TMB), and DNA mismatch repair defects [69–71]. In 
2020, the NCCN guidelines prioritized the use of ate-
zolizumab and bevacizumab combination therapy [5]. 
However, the current use of immunotherapy for HCC is 
limited owing to the limited number of effective predic-
tive markers [72, 73]. Therefore, we explored the ability of 
our four-gene model to predict immunotherapeutic effi-
cacy by using an immunotherapy dataset (Imvigor210). 
We found that patients in the CR group had a signifi-
cantly lower RiskScore compared to the PD group. We 
also found that higher RiskScore values were associated 
with poorer survival, and that the proportion of samples 
with immunotherapy response (CR + PR) was smaller in 
the high-risk group compared to the low-risk group (18% 
vs. 26%). In short, HCC patients from the high RiskScore 
group respond poorly to immunotherapy. However, this 
needs to be verified in the future via clinical trials.

Despite the promising findings obtained, our study has 
certain limitations. Firstly, our findings were based on 
a single platform and the study was retrospective. Data 
from different centers and different platforms are needed 
to further verify the performance of our model. Secondly, 
the limited sample size could have resulted in selection 
bias. Thirdly, our process of screening for differential 
genes was mainly based on statistics. Consequently, cer-
tain biologically significant genes may have been over-
looked. Finally, the four genes identified in this study 
need to be subjected to more in-depth cellular experi-
ments and animal studies to further explore their role in 
EMT, which will aid in laying the foundation for clinical 
applications.

Conclusions
In this study, a four-gene signature (PON1, FTCD, G6PD, 
and TMEM45A) prognostic stratification system was 
constructed based on the EMT-associated genes of HCC 
cells, to effectively predict HCC prognosis. Additionally, 
the stability and accuracy of the model were evaluated. 
Our results reveal that the performance of our model is 
superior compared to that of the currently existing mod-
els. Therefore, through this study, we propose the use of 

this classifier as a molecular diagnostic marker for the 
evaluation of the prognostic risk of patients with HCC.
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