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In the decision-making field, it is important to distinguish between the perceptual

process (how information is collected) and the decision rule (the strategy governing

decision-making). We propose a new paradigm, called EXogenous ACcumulation Task

(EXACT) to disentangle these two components. The paradigm consists of showing a

horizontal gauge that represents the probability of receiving a reward at time t and

increases with time. The participant is asked to press a button when they want to

request a reward. Thus, the perceptual mechanism is hard-coded and does not need

to be inferred from the data. Based on this paradigm, we compared four decision rules

(Bayes Risk, Reward Rate, Reward/Accuracy, and Modified Reward Rate) and found that

participants appeared to behave according to the Modified Reward Rate. We propose

a new way of analysing the data by using the accuracy of responses, which can only

be inferred in classic RT tasks. Our analysis suggests that several experimental findings

such as RT distribution and its relationship with experimental conditions, usually deemed

to be the result of a rise-to-threshold process, may be simply explained by the effect of

the decision rule employed.

Keywords: optimal performance, reward rate, speed-accuracy trade-off, perceptual choice, decision rules

INTRODUCTION

Decision-making can be broken down, at least conceptually, into two components: a perceptual
process and a decision rule. We define the perceptual process as the mechanism that accumulates
information in order to decide between alternative responses. It does not include all the
perceptual information an observer is experiencing during a decision/experimental task, but
only that which affects the ultimate decision. We define the decision rule as the quantity being
optimized during the task, which will therefore establish when enough information has been
gathered and a decision can be made. A great amount of work in the decision-making field
has focused on the perceptual process implemented in the brain, resulting in several models
that can account for a wide variety of data (e.g., LaBerge, 1962; Laming, 1968; Ratcliff, 1978;
Busemeyer and Townsend, 1993; Usher and McClelland, 2001; Ratcliff and Smith, 2004; Ratcliff
et al., 2004a,b). In most cases, these models assume a noisy accumulation of information toward
one of two alternatives, until a decision threshold is reached, whereupon a response is made
(e.g., drift diffusion model: Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff and Rouder,
2000; linear ballistic accumulation: Brown and Heathcote, 2008; Ornstein-Uhlenbeck model:
Busemeyer and Townsend, 1993). There is, however, a growing interest in the decision rule
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per se, which affects how participants set their decision
thresholds, that is when to stop collecting information and make
a decision (Gold and Shadlen, 2002; Bogacz et al., 2006; Holmes
and Cohen, 2014; Moran, 2014).

The usual approach to investigating decision rules consists of
(1) collecting data from a classic reaction time (RT) experiment;
(2) assume a particular perceptual process, usually the drift
diffusion model; (3) based on the perceptual process assumed,
test different decision rules (for example, see Simen and Cohen,
2009; Bogacz et al., 2010). This approach has serious drawbacks:
the predictions of the decision rule depend on the perceptual
mechanism assumed, and there are a variety of possible
perceptual mechanisms (e.g., Ratcliff et al., 1999; Ratcliff and
Smith, 2004; Smith and Ratcliff, 2004). When considering more
than two alternatives, there are even more approaches which
differ in behavioral and neurobiological assumptions (Krajbich
and Rangel, 2011). This leads to a problem when fitting decision
rules: which perceptual process should one assume? Moreover,
should a decision rule not fit the data, would that be due to
the decision rule itself or to the perceptual process assumed?
Hypothetically, this issue could be solved by comparing different
perceptual processes with different decision rules, but this is
rarely done in practice. Even in this case, it is not possible to
know if the sample of perceptual processes tested comprises the
one used by human participants. This is a serious limitation when
the focus of the investigation is on the decision rule, and not the
perceptual process. There is also a second limitation of applying
perceptual process in testing decision rules: the commonly used
perceptual models are employed in case of fast decisions (average
RT < 1 s) (Voss et al., 2013) but their applicability for longer
decision remain untested, even though real-life decisions may
take several seconds.

We believe that there is a need for a new paradigm which
will allow researchers in the decision-making field to reduce
the interdependence of the perceptual and decision processes.
We propose a new paradigm, called EXACT (EXogenous
ACcumulation Task) which allows the decision rule to be
investigated without the need of making any assumption about
the underlying perceptual process.

The perceptual process affects the decision rule by defining
a certain relationship between time of response and accuracy
of response: ACC(t), where t is the time taken to make a
response. ACC(t) defines the speed-accuracy trade-off: it is the
probability of being correct at time t, and it is assumed to
increase with time so that the slower the response, the more
accurate it is (Heitz, 2014). The particular shape of this function
depends on the perceptual model assumed. To understand
the decision rule without making any assumption about the
perceptual process, we need to hard-code ACC(t) itself into the
experimental design. Instead of showing two or more stimuli and
having the participant choose the correct one by an endogenous
accumulation of information and subsequent increase of ACC(t),
the ACC(t) can be presented directly to the participants who are
asked to make the decision based on this exogenous ACC(t). We
call this paradigm EXACT, because the speed-accuracy trade-
off function is presented exogenously to the participant, instead
of being an endogenous process. In this task, we are assuming

that the perceptual accumulation of information is separable
from the decision rule, such that if we replace the perceptual
accumulation exogenously, we can observe the decision rule in
a meaningful way.

To present ACC(t) directly to the participant, a horizontal
gauge is displayed. There are no separate visual targets. During
a trial, the position of the gauge level is moved to the right
corresponding to an increasing ACC(t) predetermined by the
experimenter. Zero probability corresponds to an empty gauge,
and unit probability corresponds to a full gauge. At the beginning
of the trial the gauge starts at ACC(0) (not necessarily zero).
The participant wins X reward tokens with probability ACC(t)
when they press a button at time t, and loses Y tokens with
probability 1 − ACC(t). After the response, a new trial starts.
The experimenter can specify a delay between trials. Figure 1
(top) shows an example of the monitor screen shown to the
participants. On the bottom panels the corresponding ACC(t)
(an exponential function, as discussed below) is shown (not seen
by participants). The axes are inverted so that the horizontal axis
corresponds to the direction of the gauge movement.

For an illustrative experiment with the EXACT paradigm, we
chose an exponential ACC(t):

ACC (t) = 1+ (α − 1) exp (−λt) (1)

so that:

t(ACC) = −ln

(

(ACC − 1)

α−1

)

/λ (2)

where λ is a parameter controlling how fast the function grows,
and α is the value at t = 0. In the EXACT paradigm, λ

corresponds to the speed of the gauge, and α is the gauge level at
the beginning of the trial, that is ACC(0). This choice of ACC (t)
was based on ease of mathematical tractability, capability of
capturing different aspect of the task, and similarity to theACC(t)
produced by widely used models1. However, other functions
could be used to test decision rules. The main point is that the
function is completely known by the researcher and not derived
from an assumed perceptual process.

The EXACT paradigm can be easily compared with a classic
RT task. The λ parameter controls the speed of the gauge, which
can be compared to manipulating the trial difficulty (for example,
by changing stimulus intensity, stimulus contrast, etc. . . ). When
the task is difficult, the rate of accumulation of evidence is
smaller, and ACC(t) grows slower. Similarly, changing α, the
gauge level at the beginning of the trial corresponds to the
number of alternatives: α = 0.5 represents a 2AFC, α =
0.25 a 4AFC. With the EXACT paradigm it is also possible to
explore more complicated designs, such as α = 0.75, which

1For example, consider the ACC (t) resulting from a drift diffusion model with two

boundaries (that is, two alternative forced choice task): ACC(t) = 1− φ
(

− A
c

√
t
)

,

where A is the drift rate, c is the standard deviation of the process and φ is

the normal standard cumulative function (Bogacz et al., 2006). Notice that this

function is monotonically increasing, concave, and asymptotically approaches

unity, similarly to our function. However, the function does not allow us to model

different starting points, because the drift diffusion model can be only used in case

of two alternative forced choice tasks, and the difficulty of the trial is controlled by

two parameters instead of one of our function.
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FIGURE 1 | Top Panels: Example of the experimental design used to implement the EXACT paradigm, showing how the gauge represents the

probability at time t assuming a starting point at 25% during a hypothetical trial. The small green +1 displays the feedback from the previous trial

(point won/lost). The number below represents the total current score for that condition. The “minutes left” refers to the minutes left for that condition. (A) Top:

the screen as seen by the participant at the beginning of the trial (t = 0) and (B) after 1 s, assuming λ = 1. Bottom: the ACC(t) functions with different λs,

representing the probability of getting a reward with time. The gauge on the top panels is only referred to the function with λ = 1. The other functions show

how the accuracy would change in time for different λ. For example, with λ = 2.5, after 1 s, the accuracy is equal to ∼0.95 (the gauge would be almost

completely full).

corresponds to a task with three correct alternatives out of four
possible choices. Conceptual differences from the classic RT task
and limitation of the EXACT paradigm are addressed in the
discussion (Limitations of the EXACT paradigm).

By knowing the shape of ACC(t), it is straightforward to test
possible decision rules. Four decision rules have been proposed
frequently in the literature (Bogacz et al., 2006; Simen and Cohen,
2009; Harris et al., 2014; see Materials and Methods for further
details):

Bayes Risk (BR). This rule was first used by Wald and
Wolfowitz (1948) in proving the optimality for the Sequential
Probability Ratio Test. It assumes that decision makers seek to
minimize a cost function that is the weighted sum of the time and
the error rate, without taking into account the total length of the
trial. The optimum response time depend on the ratio between
the subjective weights of time and error rate.

Reward Rate (RR). It is defined as the proportion of correct
trials divided by the average duration between trials (Bogacz et al.,
2006). According to RR, responses should not depend on the
payoff matrix used in the task.

Reward/Accuracy (RA). This has been proposed by Bogacz
et al. (2006) by formalizing the COBRA theory of Maddox and
Bohil, 1998). It is a weighted difference of RR and accuracy, in
which the optimum response depends on the punishment/reward
ratio and on the total length of the trial.

Modified Reward Rate (RRm). This rule has been proposed
by Bogacz et al. (2006) and Harris et al. (2014). It describes a
situation where a correct response corresponds to a subjective
reward, and an incorrect response to a subjective punishment,
and participants are trying to maximize the rate of gain (Harris
et al., 2014). The optimum response does not depend on the

absolute values of punishment and reward, but only on their
ratio. RR only takes into account the correct responses (a
better definition for RR would be Success Rate, but we use RR
to be consistent with the literature), whereas RRm considers
both correct and incorrect response and their relative weight.
Furthermore, RRm is the optimal strategy in paradigm with fixed
task duration (seeMaterials andMethods; e.g., Simen and Cohen,
2009; Bogacz et al., 2010). Harris et al. (2014) have hypothesized
that the RRm may also account for the observations that response
times have a reciprocal normal distribution (Carpenter, 1981).
As it will turn out, the distributions resulting from the EXACT
paradigm, with the current design, does not appear to be
reciprocally normally distributed, so this point will be considered
more deeply in the discussion.

The purpose of this study was threefold. First, we were
interested to see how participants responded to this novel
paradigm. In particular, we explored whether participants would
choose a response time RT and a response gauge position
ACC(RT) that depended systematically on our manipulation of
the ACC(t) parameters α and λ. Second, we asked whether the
data could allow us to distinguish among the four decision rule
models. Third, we use the results from the paradigm to explain
patterns of behavior that have usually been explained with a
rise-to-threshold accumulator process.

MATERIALS AND METHODS

At the beginning of each trial, a gauge was shown on a
monitor screen (Figure 1). The gauge started at a predetermined
level and “filled up” according to ACC(t) (Equation 1). The
participant pressed the CTRL key to request a reward. Reward
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and punishment were in form of points. When the participant
requested a reward, 1 point was awarded with probability given
by the level of the gauge (i.e., ACC (t)), or 1 point was taken
away with probability 1 − ACC(t) (punishment/reward ratio
q = 1). After every response, a text saying “Please Wait”
appeared for 0.5 s (delay d). When a reward was awarded, “+1”
in green appeared on the screen, and “–1” in red appeared for
a loss (Figure 1). Each participant started with 25 points at the
beginning of each condition. During each condition, the screen
also displayed how many minutes were left as well as the current
total accrued points. Each condition lasted 3 minutes regardless
of performance (no participant lost all their points), so that faster
responses would lead to more trials (and possibly more profit).
Participants were instructed to win as many points as possible.
They were informed on the relationship between the gauge level
and the probability of getting/losing a point, and were given a
practice session.

This study was approved by the Faculty of Health and Human
Sciences Ethics Committee at Plymouth University, with written
informed consent from all participants. All participants gave
written informed consent in accordance with the Declaration of
Helsinki.

Procedure
We recruited 17 female and 3 male Psychology students to take
part in the study. To increase motivation, they were informed
that the participant who won the most points would receive
a £10 Amazon voucher. Each participant underwent 2 × 4
conditions. The starting point of the gauge was set to either
α = 0.25, or 0.75, and the speed of the gauge was set
to λ = 0.166, 0.33, 1, or 2. This means that at the
very beginning of the trial the chance of receiving a reward
was equal to α and the chance of receiving a punishment was
equal to 1 − α. After that, the chance of receiving a reward
increased according to the ACC(t) (the chance of getting a
punishment decreased accordingly). Higher values of λ indicates
faster increase. Sequences were randomized across participants,
except that each participant was tested on all the speed conditions
for a particular starting point, before being tested on the other
starting point condition. The participants performed an initial
training session to make sure they understood the task (α =
0.5, λ = 1). They were then given another training session at
the beginning of each starting point condition (in the training we
set α equal to the starting point for that condition and λ = 1).
They were allowed to take a break between conditions. There was
no response deadline.

Decision Rules Predictions
Each decision rule generates different predictions based on the
assumed ACC(t). The mathematical formulation of the four
decision rules is similar to the one in Bogacz et al. (2006),
with few minor differences: firstly, they use the parameter
“Error Rate” (ER(t)) instead of ACC(t). The parameterization
in terms of ACC(t) was found to be more convenient for the
experimental design employed here (ER (t) = 1 − ACC(t)).
Conversely to Bogacz et al., the additional penalty delay following
an error was ignored, since it is not used in our experiment
and it is not common in classic RT paradigms. We also did

TABLE 1 | Summary of decision rules with associated optimum response

time t* for the exponential ACC(t) in Equation (1).

Decision rule Optimum response (t*)

by assuming ACC (t) = 1+ (α − 1)exp (−λt)

BR = −
[

t+q
(

1−ACC (t)
)]

t*
BR

= −
ln

(

1

λq(1− α)

)

λ

RR = ACC(t)/(t+ d) t*
RR

= −d −
W−1

(

exp (−λd − 1)

α−1

)

+1

λ

RA = RR−
q

d

(

1− ACC (t)
)

No explicit form

RRm =
ACC (t) − q

(

1− ACC (t)
)

t+ d
t*
RRm

= −d−
W−1

(

exp (−λd−1)

(α−1)(q+ 1)

)

+1

λ

not separate decision time (the time in which the information
is accumulated and therefore accuracy increases) from non-
decision time (sensory and motor processing), because in the
EXACT paradigm any time spent on the trial increases accuracy.

The mathematical formulation of the decision rules with the
corresponding optimum response time t∗ is shown in Table 1. In
these formulae d is the delay across trials, t is the time from the
beginning of the trial to the participant’s response, q is the weight
of accuracy relative to the speed of reward (Bogacz et al., 2006)
and it is assumed to be subjective and dependent on individual
differences.

We derived the optimum time of responding t∗ (right column
of Table 1) by setting the derivative of the decision rule to 0
and solve for t (see Appendix in Supplementary Materials for
details). Figure 2 shows both the optimum t∗ as a function
of λ for different parameters value (how long a participant
should wait before responding, left panel), and the ACC(t∗)
value (what accuracy level is reached upon responding, right
panel), assuming the exponential ACC(t) in Equation (1). For
most models, the optimum response t∗ goes to 0 when λ goes
to 0, which means that when the accumulation of evidence
in time is too slow (because the trial is difficult, the stimulus
is dim, etc. . . ), then it is not convenient to spend long time
accumulating information. This is not true for the RRm model
with some combination of parameters α and q. In particular, the
optimum t∗ goes to infinity when λ goes to 0 given that α <

q
q+1

(see Figure 2, bottom panels, and Appendix in Supplementary
Materials for derivation) and goes to 0 when α <

q
q+1 . The RRm

model is particularly relevant because it is the only criterion
that actually maximizes the gain for a task (including but not
limited to the EXACT paradigm) with a fixed task duration
(in subjective utility value, see Harris et al., 2014)2. For RRm

the parameter q can be interpreted as the punishment/reward
ratio. The experimenter can try to affect this parameter (by using

2To show why this is true, note that c1ACC (t) − c2 (1− ACC (t)) (the numerator

in RRm) is the average gain of a subject for a trial, where c1 and c2 are the

subjective utility (reward and punishment). For an experiment lasting l min,

the subject will be able to perform n = l/(t + d) trials, where t is the

response time of the subject, d the other delay of the trial. Therefore to get as

many points as possible for an experiment, the participants should maximize

[c1ACC (t) − c2 (1− ACC (t))] l
t+d

, which maximum correspond exactly to t∗RRm ,

with q = c2/c1.
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FIGURE 2 | Optimal response time, t* (left column) and ACC(t*) (right column) vs. λ for the four decision rules, with different parameters q and d.

ACC(t*) indicates the optimum level of accuracy that has to be reached upon responding. The arrows indicate how the shape changes when the d or q parameter is

increased. The q parameter represents the subjective punishment/reward ratio; the d parameter represents the length of the trial, excluding the reaction time.

Increasing q or increasing d corresponds to an increase in the optimum response time (t*) and a consequent increase of ACC(t*). For the Modified Reward Rate

(bottom panels), two very different t* shapes are produced with different combinations of q and α (the starting point of the gauge).
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monetary reward, sound feedback, instruction set, etc. . . ), but
other characteristics may be more relevant for the participants,
such as intrinsic loss avoidance.

Statistical Analysis
Due to small sample size (sometime less than 15 responses)
obtained in some conditions (especially with small λ), we
aggregated the data by calculating the median response for
each participant. We fitted the three decision rules (BR, RA,
RRm) response predictions (the condition-dependent t∗ shown
on the right side of Table 1) to the aggregated median responses
by an optimization procedure that minimizes the least squares
(MATLAB fminsearch). RR did not need to be fitted because it
is parameter free (d is assumed to be known by the participant
to be equal to 0.5). For BR, RA and RRm, the parameter q was
estimated with two different approaches: by leaving q free to vary
across the two α conditions or by fixing it to be equal for the two
α conditions. The value of q was bounded to be positive.

To analyse how RT and ACC(RT) changed within a particular
condition, the responses were binned for each participant and
each condition according to the time elapsed from the beginning
of the trial. This was made in order to have the same dataset
size for each participant, regardless of the number of responses
produced. For the λ = 0.166 and λ = 0.33, bins of 10 s were
used and for λ = 1 and λ = 2, bins of 5 s were used. The
difference in bins was due to generally slower RTwith smaller λ in
the α = 0.25 condition, and longer bins were needed to include
enough datapoints for reliable statistics. The mean and standard
deviation were calculated for each bin, resulting in two time series
for each participant and each condition.We computed two linear
regressions (mean against time and standard deviation against
time) for each dataset, and the resulting slopes were analyzed
with a Two-way repeated measure ANOVA and a multiple
comparison test.

To understand the sequential dependency along trials,
the average partial autocorrelation function (PACF) for each
participant and each condition was computed. This function
returns the autocorrelation between a response RTt and RTt+lag

removing the dependency through RTt+1 and RTt+lag−1. We
used a maximum lag of 10. The average PACF across all
participants was computed by averaging the individual PACF
values for each condition.

Participants’ RTs were grouped in order to have a single
distribution for each condition by using the Vincentizing method
(Ratcliff, 1979). To calculate the response in the rate domain, we
computed the rate for each response (1/RT), then standardized
the data into z-scores for each participant and each condition,
which allowed us to collapse all the data together (Harris et al.,
2014).

Any ACC(RT) distribution must be truncated because
ACC(RT) is bound to lie between 0.25 or 0.75 (depending
on the α condition) and 1. We wanted to check whether
the ACC (RT) distribution generated by each participant was
close to a truncated Normal. This was complicated by small
individual samples, and by the fact that aggregating truncated
Normal with different moments makes it ambiguous whether
the original distributions were truncated Normal or not. We

excluded the conditions where truncation was severe, that is
when the sum of mean and two standard deviations was
over one and the difference between mean and two standard
deviations below α (the truncation point). The value of two
for the standard deviation was chosen as a balance between
excluding truncated datasets and not excluding too many data
points (see Harris et al., 2014). The remaining distributions were
standardized into z-scores and collapsed together. By excluding
the most severely truncated distribution and aggregating the
remaining standardized distributions, we expect to obtain a
normal distribution with a milder truncation, if the original
distributions were truncated Normal.

RESULTS

The examination of the total score gained (points at the end
of each condition) can be used to understand how participants
responded to the task. Their score can be compared to the
optimum average score (expected amount of point at the end
of each condition, given that participants were actually trying to
maximize the amount of point earned). The optimum expected
score was computed by finding the maximum points that could
be won for a fixed task duration (RRm with q = 1 and d =
0.5) (Figure 3, solid circles). For α = 0.25, the total score
increased systematically with λ (Figure 3A, open circles), and
clearly demonstrates that participants were sensitive to the speed
of the gauge. As the gauge level increased it was possible to
obtain more points in the available 3min, and although there was
variability among participants, some were close to the optimum
performance.

For α = 0.75, the optimum response is t∗= 0 for all values of
λ, and the maximum score was always 205 points (filled circle in
Figure 3B). Participants scores were more variable than before
and depended on λ, with an increasing mean and decreasing
variance with λ. Even though participants could not possibly
reach a RT = 0, they should have had the same average RT for
the four λ conditions when α = 0.75, if they were maximizing
RRm with q = 1 and d = 0.5.

Figure 4 shows responses for one representative participant in
terms of RT (blue lines) and positional responses along the gauge,
ACC(RT) (orange lines). The positional response ACC(RT) were
variable but typically showed an increasing trend with higher
λ. Positional responses were lower for α = 0.25 than 0.75.
This participant was selected because his/her responses followed
quite closely the trend found in aggregated data for all the
conditions.

Note that high variability in RT does not always correspond
to high variability in ACC(RT) because RT depends on on the
speed of the gauge [see Equation (2)]. For example, in Figure 4,
when λ = 0.16 and α = 0.75, RTs vary widely across trials, but
corresponds to only a slight variation in ACC(RT).

We next examined median response times mdRT and
median positional response ACC(mdRT), across all (aggregated)
participants for each condition (Figures 5A,B). For each
participant and condition, the first 10 responses were omitted
to avoid contamination from any potential adaptive/learning at
the start of a condition. There was a significant effect of both

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 November 2015 | Volume 9 | Article 288

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Biscione and Harris The EXACT paradigm

FIGURE 3 | Open circles: total score for each participant for the low (A) and high (B) starting point condition. For clarity, each circle is plotted with a

random horizontal offset. Filled circles: expected score with optimum performance for the four speed conditions and the two starting points conditions.

FIGURE 4 | Participant 1 responses in terms of RT (blue lines) and ACC(RT) (orange lines) for each λ and α condition. The black dot indicates that a

punishment has been given on that trial. On average, ACC(RT ) increases with λ and is usually lower for the α = 0.25 condition. Note that the different number of trials

depended on the condition (which always lasted 3 minutes). For example, when α = 0.25, λ = 0.16, the gauge grew more slowly, participant’s RT were slower, and

less trials were made. Note that high variability in RT does not always correspond to high variability in ACC(RT ). Compare this plot with Figures 5A,B, for the grouped

RT and ACC(RT ) across participants. Note that the two α conditions have two different scales.

the starting point α and speed λ on mdRT (Two-way repeated
measures ANOVA; for λ: F(3, 152) = 24.61, p < 10−12; for α:
F(1, 152) = 53.2, p < 10−10, and for the interaction α × λ:
F(3, 152) = 10.84, p < 10−5).

For α = 0.25, mdRT decreased monotonically with λ.
We were able to capture these data by a power law function

mdRTi = γ + kλ
−β
i for i = 1, 4 (yellow line in Figure 5A).

The estimated values were γ = 203ms, k = 1.45, β = 0.80,
with R2 = 0.997, indicating an excellent fit. This implies an

equivalence between λ and conventional stimulus intensity in
classic Piéron’s law (see Discussion). For α = 0.75, mdRT was
much less than for = 0.25, and did not follow a power law.
Moreover, mdRT was not monotonic and exhibited a small peak
at λ = 0.33.

Similarly ACC(mdRT) clearly depended on α and λ. This
means that participants were actually adjusting their positional
response for different conditions and not responding to a fixed
position along the gauge independently of λ and α.
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FIGURE 5 | (A) Median RT across the 20 participants for four speed conditions and two starting point conditions. A power (Piéron) function was fitted for the low

starting point condition (α = 0.25). Median RT appear to be dependent both on λ and α and on their interaction. In particular, when α = 0.75 the mdRT were not

monotonic with a peak at λ = 0.33. (B) ACC(mdRT ), showing how participant adjusted their positional response along the gauge based on both α and λ.

Fitting the Models to the Aggregate Data
The mdRT were fitted with the optimum t∗ predictions from
four decision rules: Bayes Risk, Reward Rate, Reward/Accuracy,
Modified Reward Rate (Figure 6). We minimized the residual
least squares by allowing q to vary and to be fixed across the
two α conditions (this does not apply to RR which does not have
free parameters). The plots when q is allowed to vary are shown
in Figure 6 and the residual least squares in Table 2. When q
was allowed to vary across α conditions, the only model that
could provide a reasonable fit was RRm. The estimated q (showed
in Figure 6) clearly differed from the two α conditions (see
Discussion). When the parameter qwas fixed the resulting curves
did not seem to be able to capture the different shape between the
two α conditions. In particular the residuals for α = 0.25 were
similar for the two fitting methods, but they were higher with
fixed q in the α = 0.75 condition (see Table 2). Note that with
α = 0.75, a residual value of 2.32 corresponds to a horizontal
zero line.

Time Series Analysis
We examined sequential dependencies of RT by calculating
the partial autocorrelation function (PACF) averaged across
participants and conditions (see Materials and Methods). The
mean PACF with lag one was 0.457, and with lag two was 0.090.
Higher order lags were negligible. Thus, responses depended
explicitly on the previous two responses. To explore this further,
we examined how this sequential dependency depended on the
reward/punishment on previous trials. We computed differences
between consecutive RT responses depending on whether the
previous response had been punished or rewarded. These
differences were averaged across participants and conditions.
For a punishment, the mean change in RT was an increase of
345.92ms (SE: 97.95) and for a reward, a decrease of 61.88ms
(SE: 30.32ms). For two punishments in a row, the mean increase
was 583ms (SE: 139.26), and for two rewards in a row, the
mean decrease was 94.01ms (SE: 28.62). For three or more
rewards/punishments in a row, there was little additional change,
consistent with the PACF results. Repeating the analysis for

ACC(RT) showed a similar pattern. After one punishment there
was a mean increase of 0.0218 (SE: 0.0058), and after two
punishments in a row, a mean increase of 0.048 (SE: 0.0082).
After a reward there was a mean decrease 0.0038 (SE: 0.0022),
and after two rewards a decrease of 0.0066 (SE: 0.0020). We
also analyzed how the 1st order changes depended on λ and α.
The size of RT adjustment after a punishment became larger for
smaller λ, but with no obvious dependency on α (Figure 7A).
However, the change in ACC(RT) showed the opposite pattern,
with strong dependency on α and a weaker dependency on λ

(Figure 7B).
The time course of participants’ responses during a condition

showed variability and small trends. The mean and standard
deviation for each participant’s response during a condition was
computed by dividing the total duration (3minutes) into bins of 5
or 10 s depending on the condition (see Materials and Methods),
and then we performed a linear regression against time. There
was little difference between RT and ACC(RT), so here we
consider only RTs. Considering the changing in RT mean across
condition duration, we found that the slope was significantly
affected by both λ and α conditions (Two-way repeated measure
ANOVA; for λ:F(3, 152) = 10.49, p < 10−13, for α:F(1, 152) =
12.15, p < 0.001). However multiple comparison tests on
the slopes of the fitted regression model showed that the only
significantly different condition (at 0.01 critical level) was found
for α = 0.25 and λ = 0.16, which corresponded to an average
increase of 13.5ms for second (99% CI [9ms, 17ms]). None
of the other slopes were significantly different from zero. An
analysis on the slope of standard deviation of RT vs. time revealed
no significant differences from zero for any of the λ and α

conditions.

Distribution Analysis
The resulting distributions collapsed across participants are
shown in Figure 8. The distributions are right skewed (apart
from the condition λ = 0.16, α = 0.25). We used the estimated
q values found with the aggregated data (shown in Figure 6) to
plot for each condition the four decision rules functions (colored
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FIGURE 6 | Fitting the four decision rules to the data by minimizing the least squares. RR does not have any free parameter, whereas for the other decision

rules the free parameter q had to be estimated. In the figure, the parameter q is allowed to vary across the two α conditions. The best fit was provided by RRm. The

two estimated q values were largely different between the two α conditions.

TABLE 2 | Residual least squares for each decision rule and the two

starting point conditions.

α = 0.25 α = 0.75

q free q fixed q free q fixed

BR 3.43 3.53 1.08 1.55

RR 55.56 2.32

RA 36.64 36.64 2.04 2.32

RRm 0.29 0.29 0.0009 2.32

Models were fitted by fixing q across α conditions or by allowing it to vary (this does not

apply to RR, which does not have any free parameter). A residual least square value of

2.32 for α = 0.75 corresponds to a horizontal zero line. Fixing q resulted in consistently

poor fit with the α = 0.75 conditions. The best fitting decision rule was RRm. When q was

allowed to vary, RRm provided an excellent fit of empirical data for both the α conditions

(see Figure 6).

curves), representing the expected gain for that decision rule (the
equation for each decision rule function is shown in Table 1,
left column). If a participant is trying to maximize a decision
rule, she should always respond precisely at t∗ (filled circles in
Figure 8). With time estimation error, temporal uncertainty, and
other source of sensory/motor noise, participants might respond
according to a distribution that roughly follows the shape of the
decision rule function, with the maximum point slightly ahead of

the distribution mean (see Section Asymmetricity of the decision
rule and optimization algorithm for further discussion). In our
data RRm is the only decision rule that follows this pattern (the
only exception being for α = 0.75 and λ = 0.16).

The distribution in the rate domain was analyzed by using
the standardization approach (see Materials and Methods). The
distributions did not appear normal as observed in choice RT,
but were positively skewed. Figure 9 shows the standardized rate
distributions collapsed across all the participants and conditions
(there was no significant difference between different conditions).

We also examined the distributions of ACC(RT). Because
of the possible left truncation at 0.25 and 0.75 for the two α

conditions, and right truncation at 1 for both conditions, we
excluded severely truncated dataset (see Materials and Methods).
The remaining 89 out of 160 (20 participants×2× 4 conditions)
mildly truncated datasets were standardized and collapsed
across subjects. Figure 10 shows the original, standardized and
aggregated distributions (in blue) and the modified standardized
and aggregated distributions (in black). As a comparison, a
normal distribution is fitted to the modified dataset. Note that for
most of the conditions, excluding the truncated datasets does not
have a big effect, and both distribution pre- and post-exclusion
are approximately truncated Normal. The two exceptions are the
distributions in the α = 0.75 and λ = 0.16, 0.33 conditions,

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 November 2015 | Volume 9 | Article 288

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Biscione and Harris The EXACT paradigm

FIGURE 7 | (A) Size of the adjustment in ms after a punishment and after a reward for α and λ.The adjustment is larger after a punishment, and seems to be

dependent on the conditions itself. (B) Size of adjustment in terms of ACC(RT ). As before, the adjustment is larger for punishment. Contrary to what shown in (A), the

plot reveals that the size of adjustment is dependent on α and more weakly on λ. It is plausible that participants were adjusting their accuracy by a certain proportion,

and in so doing changed RT depending on λ.

FIGURE 8 | Response Distributions for each condition obtained by averaging the quantiles across each participant and each condition (Vincentizing).

The distributions are scaled so that the area of each one is unity. The distributions appear to be skewed on the right side and their shape depends on λ and α. The

colored lines refer to four decision rule functions. Note that with respect to the decision rules, the vertical axis corresponds to the expected gain given that particular

decision rule. To increase visibility we shift the BR function up by subtracting to the function its maximum value (which was negative) and adding 0.5. In this way the

maximum of the BR is always 0.5, but the shape is unchanged. Note that the absolute value of the function is not important for the distribution shape, but the

time-depending shape of the decision rule function is. Therefore, shifting the function up or down does not have any theoretical implication for the distribution shape.

which were skewed and clearly not normal before processing.
These two conditions also contained the highest number of
severely truncated distributions (only 7 and 8 datasets remaining,
see Figure 8). These results are in accord with the hypothesis
that accuracy of responses is normally distributed and with most
severe truncation with when λ is small and α is high (see Section
Accuracy is normally distributed).

DISCUSSION

Participants’ responses to the trials clearly indicated sensitivity
to the paradigm. Participants did seem to be attempting to
win points, as can be seen in Figure 3. Their median response
positions along the gauge depended systematically on the
accuracy function ACC(t) (Figure 5A). When the gauge level
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FIGURE 9 | Standardized Rate Distributions obtained by collapsing the

standardized rate for all participants and all conditions (see Materials

and Methods). The distribution is clearly not normal. Similar shapes were

found when analysing each condition separately.

moved faster (higher λ), participants’ RT decreased, and they
selected a position further along the gauge [increasingACC(RT)].
This implies that participants were not simply choosing some
fixed or idiosyncratic position for all λ and α conditions, which
would correspond to a decreasing RT but equal ACC(RT), but
they were actually changing strategy for each λ condition.

Their response also depended on the starting point. When
α was lower, participants on average waited longer, and
their accuracy decreased. The dependence on λ was strongly
dependent on the starting point. Participants slowed their
response when α = 0.25 and λ = 0.16 (very slow gauge speed).
However, the same did not occur with α = 0.75 and a slow
gauge speed. In this condition, most of the participants realized
that slowing their response would not correspond to a significant
increase of accuracy, and therefore their response was faster.

Comparison of the aggregated data to models supported the
RRm decision rule. The fitting with RRm, when the parameter q
was allowed to vary, was better than the other models (Figure 6).
For all the models, included RRm, fixing q resulted in a worse
fit. The q parameter, when compared with experimental reward
and punishment, can be interpreted as a measure of risk attitude.
Thus, risk aversion/seeking corresponds to observed q being
greater/lower than actual punishment/reward ratio (1 in our
experiment). In our experiment, estimated values of q were
quite dissimilar for the two starting point conditions, with
significantly higher q for the a = 0.75 condition. This suggests
that participants changed their subjective punishment/reward
ratio and become more cautious with increasing α. This is
consistent with the “fourfold pattern of risk attitudes” in prospect
theory (Tversky and Kahneman, 1992), according to which risk-
averse behavior (in our terminology, setting a high q) are more
common when gains have high probability (like in our α = 0.75
condition). Balci et al. (2011) found that the estimated q values for
the RRm decision rule decreased with training, to∼0.2. The short
session duration in our experiment did not allow us to perform

the same analysis, but is in principle possible to with the EXACT
paradigm.

There may also be a gender difference in the decision rules
in the distribution of parameters. Bogacz et al. (2010) found
a clear difference in male and female performance, female
responses being less optimal (more risk averse) with respect
to the RR strategy. The EXACT paradigm could be similarly
(and, we believe, more conveniently) used to investigate whether
difference in attitude across gender may be captured by a
different estimation of the q parameter and hence risk aversion.
Unfortunately, this analysis is not possible in the current work
due to the severe imbalance between female and male, which
reflects the female-male ratio in Psychology classes in our
University.

Even though RRm is the decision rule that maximizes the rate
of gain for any task with a fixed duration (Harris et al., 2014), it
has been found (Bogacz et al., 2010) that for some participants,
RA may be a better model than RRm. However, Bogacz et al.
assumed the drift diffusion model. This assumption constrained
the set of predictions generated by the decision rule. For some
participants the drift diffusion model may not be a good model
of the perceptual process, which may affect the goodness of fit
of the decision rule. By using the EXACT paradigm, the current
work overcomes this problem.

The EXACT paradigm can be considered as an abstract
version of a classic RT task, in which more factors are controlled
(more specifically, all the accumulation usually performed by the
perceptual process is artificially manipulated by the researcher).
We believe it is important to compare this paradigm with the
classic RT design. Disentangling the perceptual process from the
decision rules mean that is possible to understand which features
of the experimental data are due to one or the other part of
the decision mechanism. For example, the right-skewness of the
distributions that we observed in our dataset is usually deemed
to be the result of a rise-to-threshold diffusion process. There
is no reason why they should emerge in our paradigm because
ACC(t) is exogenous. However, this does not mean that assuming
a rise-to-threshold mechanism is unnecessary in a classic RT
task. The ACC(t) in a perceptual task has to emerge from a
process that accumulates information, and a rise-to-threshold
model seems plausible. Nevertheless, these distribution features
can be explained by an alternative process implying that the rise-
to-threshold model may be modified/re-interpreted differently.

The results along conditions for an individual participant
(Figure 4) and the size of adjustment after a punishment or a
reward (Figure 7) show an important point about the EXACT
paradigm: the possibility to analyse the result not only in terms
of RT, but also in terms of ACC(RT). This is not possible
in the classic RT paradigm because ACC(RT) is not known
by the experimenter, unless a particular perceptual process is
assumed. The analysis of ACC(RT) gives additional information
about the strategy employed by the participants. For example,
by analysing the size of adjustment in terms of RT after a
punishment/reward, we would have concluded that participants
adjusted their response based on the speed of the gauge itself.
However analysing the data in terms of ACC(RT) reveals that
participants may be focusing on adjusting the positional response
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FIGURE 10 | Standardized positional response along the gauge: ACC(RT). The blue lines represent the original standardized and collapsed distributions; the

black lines represent the standardized and collapsed distributions after eliminating the datasets with severe truncation. N represents the number of remaining datasets

(out of a total of 20 participants) after eliminating severely truncated distributions. A normal density is fitted to each modified distribution.

along the gauge, trying to increase or decrease their accuracy at
the same proportion for different λ.

The EXACT paradigm has some similarities with the “Beat
the Clock” task (Simen et al., 2011), in which a participant
earns a reward that is an exponential function of time. If the
participant responds after the deadline the reward is zero. In our
task, waiting increases the probability of getting a reward, but
not the reward itself. Furthermore, in our paradigm participants
know perfectly the function shape, as it is shown on the monitor
screen, whereas in the “Beat the Clock” they have to infer it.
Finally, Simen et al. did not fix the condition’s length, which
is part of our paradigm. Generally, “Beat the Clock” seems
more suited for investigating temporal discrimination, whereas
the EXACT paradigm is more suited for analysing decision
rules.

Piéron’s Law
We found that a power law provided an excellent fit for themdRT

in the α = 0.25 condition:mdRTi = γ+kλ
−β
i . In psychophysics,

a similar power law describes the relationship between stimulus
intensity and mean RT, (Piéron’s Law). During the last century,
the law has been reported to match observed data in numerous
sensory modalities and experimental paradigms (e.g., brightness
detection: Piéron, 1914; color saturation: Stafford et al., 2011;
taste signals: Bonnet et al., 1999; simple and choice reaction times:
Pins and Bonnet, 1996). Obtaining a Piéron’s function with the
EXACT paradigm strongly supports the idea that λ corresponds
to stimulus intensity in a classic RT paradigm. We estimated

these parameters to be γ = 203 ms, β = 0.8, and k = 1.45.
These values are consistent with the literature for Piéron’s law
(Luce, 1986). Within this new framework, β can be interpreted as
being dependent on the relationship between λ and the physical
stimulus intensity.

Recently, it has been proposed that Piéron’s Law is a necessary
consequence of rise-to-threshold decision making (Stafford and
Gurney, 2004; Donkin and Van Maanen, 2014). However, as
shown inHarris et al. (2014), the RRm decision rule automatically
generates a range of optimum responses which follow a power
law. Of our 4 tested rules the RRm is the only decision rule that
admits both a Piéron shape and a non-Piéron shape depending on
α and q (see Figure 2 andAppendix in SupplementaryMaterials).
For the RRm model, a Piéron’s function is obtained only when
α < q/(q + 1). In a 2AFC, which is the classic paradigm used
in studying with Piéron’s law, α = 0.5 which requires that
q > 1; that is, the punishment must have a higher subjective
magnitude than the reward for the function to follow Piéron’s
law. On the other hand, the non-Piéron’s shape that we have
observed for α = 0.75 requires α > q/(q + 1). This shape has
never been observed in classic RT experiments. However, for a
2AFC experiment (α = 0.5), it would require q < 1; that is,
punishment would need have a lower subjective magnitude than
reward. Thus, it is conceivable that the non-Piéron function may
emerge in a 2AFC experiment, if the experimenter could augment
the subjective reward over the punishment by manipulating
the obtained gain or by verbal instruction. We are currently
exploring this.
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Time Series Analysis
The PACF showed that responses were dependent on the
previous trials with a lag of one and weakly with a lag of two.
We found that the change in response depended on whether the
previous trial was rewarded or punished, and was particularly
sensitive to punishment. A similar phenomenon is found in
classic RT task, where trials following an error are usually
substantially slower and more accurate than trial following a
correct response (post-error slowing, e.g., Rabbitt, 1966; Laming,
1968; Brewer and Smith, 1984; Jentzsch and Dudschig, 2009;
Strozyk and Jentzsch, 2012), and has been interpreted as a
strategic adjustment of a response criterion (e.g., Brewer and
Smith, 1984; Botvinick et al., 2001; Jentzsch and Leuthold,
2006). It is interesting to note that feedback does not give
further accuracy information than the gauge, but may provide
information on the rate of subjective reward (RRm) which is
not easily calculated from ACC(t). It is possible that post error
slowing arises the same mechanism, and may therefore reflect a
reward rate maximizing algorithm.

Investigating the relation between the size of the adjustment
and λ and α revealed the importance of examining ACC(RT)
as well as RT. RT clearly changed based on λ, but not on α.
But ACC(RT) depended on α but only weakly on λ. It is not
possible to know exactly whether participants were adjusting
their strategy based on RT orACC(RT), but the latter seems more
likely. Is it conceivable that participants adjusted their accuracy
by a certain proportion, and in so doing changed RT via its
dependence on λ (Equation 1). The dependency on α may be
explained by noticing that, when α = 0.25, participants’ range
of adjustment is higher, because the gauge starts on a lower level,
and therefore they have a larger range for adjustment than in the
α = 0.75 condition.

We also examined responses as a time series in order
to explore possible strategies (or algorithms) used by the
participants to maximize their subjective gain (e.g., exploration
vs. exploitation). However, we found little evidence for a learning
algorithm. The only significant trend between mean RT and
condition duration was found for the condition α = 0.25 and
λ = 0.16. In this case, participants appeared to increase on
average their response by 13.5ms. We were not able to explain
this trend, and why none of the other conditions showed a
significant trend. Change in standard deviation could underpin
a gradual switching from an exploratory to an exploitatory
phase, as seen in reinforcement learning. However, we found
no significant trends. This may suggest that participants are not
using a learning algorithm with adjustable exploration factor, or
that 3 minutes are not enough to detect any change in their
strategy.

Normality in the Rate Domain
We have found that response distribution is not normal as seen
in manual choice RT task (Harris et al., 2014) and saccades
(Carpenter, 1981). This may be because participants are using a
different decision mechanism than in a classic RT task. However,
a different explanation can be offered. The reason for normality
in the rate domainwas explained as fluctuation in the relationship
between response time and accuracy across trial, due to sensory

noise in the stimulus (Harris et al., 2014). However, in our
experiment this noise is drastically reduced, since ACC(t) is
always the same within a block. The response distribution could
be a mixture of an optimization algorithm (see next section)
and a fluctuation in ACC(t). In classic RT experiment, the latter
may usually mask the optimization algorithm. With the EXACT
paradigm, it is possible to design an experiment in which ACC(t)
fluctuates across trials and test for normality in the rate domain,
similarly to what predicted by Harris et al. (2014), but has yet to
be tested.

Effect of Conditions on Distributions
We found that, in all conditions (except with α = 0.25,
λ = 0.16), the RT distributions were skewed on the right,
similarly to what has been found in classic RT tasks. Also,
increased mean resulted in increased the standard deviation
of the distribution. These results are both observed in classic
RT task (Luce, 1986). Within the framework of diffusion
models, these results are explained by taking into account
the geometry of the perceptual process. Most rise-to-threshold
processes will in fact produce a right-skewed distribution which
will generate less spread out distributions with more difficult
conditions (higher mean RT; Ratcliff and Rouder, 1998). The
explanation in terms of diffusion process does not seem to
hold in this paradigm, since the participant is not accumulating
information about a particular stimulus within a single trial,
as usually assumed. We propose two alternative explanations
for these results. Both explanations are for now speculative
and clearly require more investigation. They both aim to
describe what may be the underlying process that generates
the distributions’ shape observed without relying on a rise-to-
threshold model.

Asymmetricity of the Decision Rule and Optimization

Algorithm
The right-skewed distributions and the effect of different λ and α

may be due to the way the participants search for the optimum
t∗, and in particular may be due to the asymmetry of the decision
rule functions (see Figure 11, red lines, for the RRm decision
rule, with a simulated dataset of responses). This might happen
because responses that were too fast (t < t∗), would incur more
cost than responses that were too slow (t > t∗) (for a given
magnitude of error). Thus, any search strategy that was sensitive
to the reduction in optimal reward rate would tend to err to
the right side of the optimum t∗. Since the asymmetry of the
decision rules depends on λ and α, this could also explain the
relationship between distribution shape (e.g., standard deviation
and skewness) and experimental condition found in our data
(Figure 8). For example, when λ is small (slower gauge speed)
or α is small the RRm decision rule function becomes more
symmetric and more flat, which implies that participants’ gain in
terms of RRm would not change much, even with high response
variability: the distribution would become less skewed and more
spread out (compare the simulated distribution in Figure 11

with our empirical results in Figure 8, upper left panel). On
the other hand, as λ increases, the RRm function becomes
asymmetric, which would lead to a skewed and less disperse
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distribution. This distribution would also be biased on the right
side of t∗ (red circles in Figures 8, 11). In our data, most of the
distributions follow for the RRm decision rule, but not for the
other decision rules. A peculiar exception is found with λ = 0.16
and α = 0.75, but this could be partly due to the maximum
point being close to zero, which would force the participant to
produce a skewed distribution regardless of the smooth RRm

function.
This idea is an extension of an approach already presented

by Bogacz et al. (2006) and Balci et al. (2011). In the latter
work, empirical thresholds for the drift diffusion model were
consistently found to be higher than the optimal threshold, which
was deemed to be due to the asymmetry of the RRmcurve. To
our knowledge the same reasoning has not been applied to
RT distributions or to the relationship between experimental
conditions and distribution shapes.

Taking the asymmetry of the decision rule into account also
means to slightly change the predicted t∗ when fitting the data:
all the prediction should be slightly slower than the one used
now. We did not consider this, but suggest it as a possible future
direction.

Accuracy is Normally Distributed
An alternative explanation could be that participants’ responses
are actually distributed such that their accuracy is normally
distributed around ACC(t∗), where t∗ is the optimum point
according to the decision rule used by the participants and
the standard deviation can be interpreted as the individual
precision parameter. ACC (RT) cannot be analyzed in classic
RT task because the accuracy of each single response is not
known, whereas in the EXACT paradigm we can translate
RT in ACC (RT) by Equation (1), and ACC in RT(ACC) by
Equation (2).

Note that we should actually consider a truncated normal
distribution in the accuracy domain (upper truncation is always

one, and lower truncation is α in our experiment and 0.5 in
2AFC). The probability density is found to be equal to

RT
(

t; t∗, λ, α
)

=

φ
(

1+ (α − 1) exp (−λt) ,ACC
(

t∗
)

, σ
)

(1− α) λ exp (−λt)

8 (1,ACC (t∗) , σ) − 8 (α,ACC (t∗) , σ)
(3)

Where φ is the normal probability function and 8 is the
cumulative normal probability function. Figure 12 shows some
examples of this distribution with different λ and α parameter.
This generates an interesting relationship between the number
of alternatives (1/α), and the trial difficulty (λ). By increasing
λ or α the distributions of RT become less spread out and the
mean decreases, corresponding to faster responses. This is similar
to what we empirically found with this paradigm and what is
normally found in the classic RT task (Luce, 1986). This model
does not take into account a sensory motor delay, but adding it
would not drastically change the predictions.

In our dataset, most accuracy distributions were
approximately Normal. However, this was not the case with
small λ and high α (see Figure 10). Normality may be masked
by severe truncation of the original datasets. In fact, as predicted
by our model (Figure 12), the condition with small λ and high α

contained the most severe truncated distributions. By excluding
the most severely truncated distributions the remaining dataset
appear less skewed but the deviation from Normality is still clear.
This may be due to the small sample remaining after eliminating
the seemly truncated distributions. It would be interesting to test
whether accuracy of response distributions follow a near-Normal
shape in classic RT tasks.

Limitations of the Exact Paradigm
The EXACT paradigm has some limitations and differences from
the classic RT task. First, in the EXACT paradigm, the total time
between the beginning of the trial and the participant’s response

FIGURE 11 | Illustration of the hypothesized optimum distributions for the RRm decision rule. The two RRm functions (in red) for two different gauge speeds

(different λ) are maximized by responding precisely at t*. However, if the response is noisy, the asymmetry of RRm make more profitable in terms of reward rate to err

on the right side of t* than on the left. The asymmetry effect is diminished with low gauge speed (small λ): the distributions are less skewed and more spread out. This

also entails that the difference between distribution mean (yellow dotted lines) and t* is greater with high gauge speed. Compare these simulated distributions with the

empirical data in Figure 8.
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FIGURE 12 | Illustration of ACC(RT) distribution and corresponding RT distribution if ACC is normally distributed with truncation at 1 and at various

α’s. The mean of ACC(RT ) is t*RRm and the standard deviation is set to 0.1 for illustration, which can be interpreted as a precision parameter. (A) ACC(RT )

distributions for three α conditions with λ = 1. The dashed vertical lines correspond to the truncation point. (B) Corresponding RT distributions. By increasing α, which

corresponds to decreasing the number of alternatives in a classic RT task, the distribution is less spread out and the mean decreases (faster responses). (C) ACC(RT )

distributions for three λ conditions with α = 0.5 and (D) corresponding RT distributions. By increasing λ, which corresponds to change the trial difficult in a classic RT

task, the distribution become less spread and the mean decreases (faste responses).

corresponds to an increase in reward probability and includes the
motor response time. It is not clear if participants take the motor
response time into account and decide to respond accordingly.
If not, desired accuracy would always be slightly lower than
obtained accuracy. On other hand, in the classic RT experiment,
most rise-to-threshold models assume motor response time to be
an additional component to the accumulation time (Ratcliff and
McKoon, 2008). We designed our experiment so that expected
RTwere of the order of seconds—much longer than typicalmotor
response times so that any overestimation would be minimal.
However, this remains to be further explored.

A second point is that the decision rule may differ
between the EXACT and classic RT paradigms. Similarities in
RT distribution, relationship between distribution shape and
experimental condition, and the emerging of a Piéron’s shape
function lead us to deduce that participants are indeed using
the same decision rule across different paradigms. However, the
critical test would be to obtain the non-Piéron function in a
low punishment classic RT experiment, which we are currently
exploring. However, if this turned out not to be the case, it
would still be interesting to understand why. Is the decision rule

inherently entangled with the perceptual property of the task, or
could it be due to other aspects of the task (different time scale,
different instructions, etc.)?

The final limitation concerns the incentivisation scheme
used. In our experiment we incentivized participants’ with
a prize for the overall best performance, but other schemes
could be used. For example, earned points could be exchanged
for money. We do not think this was important in the
present experiment, since the amount of points earned/lost
was the same for each condition, but it would be important
in an experiment with reward/punishment manipulation. It
is conceivable that different schemes may result in different
decision rules, and future research could explore this possibility.
Indeed, the EXACT paradigm may be a useful procedure
for isolating the decision rule for different incentivisation
schemes.

CONCLUSIONS

The analysis of the decision strategy used by humans has been
constrained by the analysis of the perceptual process underlying

Frontiers in Behavioral Neuroscience | www.frontiersin.org 15 November 2015 | Volume 9 | Article 288

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Biscione and Harris The EXACT paradigm

the decision itself.We designed an experiment, called the EXACT
paradigm, which allows us to analyse participants’ decision rules
and responses based on the accuracy of their response. Instead of
relying on a particular model based on a specific type of sampling
process, the accumulator that substitutes the perceptual process
is exogenously showed to the participant on a computer screen.
This design allowed us to know in advance the relationship
between response time and accuracy of response, ACC(t). In this
way it was possible to directly compare different decision rules,
and found that RRm provided the best fit. We suggest some
innovative way to analyse the dataset that can be easily applied to
classic RT tasks. Most importantly, we found relevant similarities
between our distributions and distributions found in classic
RT tasks: the distributions were generally skewed to the right
and their shape depended on the trial difficulty. Two different
models, one algorithmic and the other based on the accuracy
of response, are proposed to explain the distributions shape

and their dependency on experimental conditions. Both of these
models establish a clear separation from the classic viewpoint of
distributions as a result of a rise-to-threshold mechanism.

This new paradigm opens up new ways to explore the human
decision-making process that are difficult or impossible using
the classic RT paradigm including: exploring the behavior for
unusual ACC(t) functions (e.g., not-increasing, non-monotonic),
easily manipulation of the number of alternatives (α), also by
mimicking unusual setups (α > 0.5), exploring subjective pay-
off (q), and exploring the “algorithm” used by participants use to
find the optimum response time (t∗).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnbeh.
2015.00288
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