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Abstract

Motivation: Analysis of organism-specific interactomes has yielded novel insights into cellular

function and coordination, understanding of pathology, and identification of markers and drug tar-

gets. Genes, however, can exhibit varying levels of cell type specificity in their expression, and their

coordinated expression manifests in tissue-specific function and pathology. Tissue-specific/tissue-

selective interaction mechanisms have significant applications in drug discovery, as they are more

likely to reveal drug targets. Furthermore, tissue-specific transcription factors (tsTFs) are signifi-

cantly implicated in human disease, including cancers. Finally, disease genes and protein com-

plexes have the tendency to be differentially expressed in tissues in which defects cause pathology.

These observations motivate the construction of refined tissue-specific interactomes from

organism-specific interactomes.

Results: We present a novel technique for constructing human tissue-specific interactomes. Using

a variety of validation tests (Edge Set Enrichment Analysis, Gene Ontology Enrichment, Disease-

Gene Subnetwork Compactness), we show that our proposed approach significantly outperforms

state-of-the-art techniques. Finally, using case studies of Alzheimer’s and Parkinson’s diseases, we

show that tissue-specific interactomes derived from our study can be used to construct pathways

implicated in pathology and demonstrate the use of these pathways in identifying novel targets.

Availability and implementation: http://www.cs.purdue.edu/homes/mohammas/projects/ActPro.

html

Contact: mohammadi@purdue.edu

1 Introduction

Proteins are basic workhorses of living cells. Their overall quantity

is tightly regulated across different tissues and cell types to manifest

tissue-specific biology and pathobiology. These regulatory controls

orchestrate cellular machinery at different levels of resolution,

including, but not limited to, gene regulation (Göring, 2012; Mele

et al., 2015), epigenetic modification (Chatterjee and Vinson, 2012;

Mendizabal et al., 2014), alternative splicing (Buljan et al., 2012;

Ellis et al., 2012) and post-translational modifications (Ikegami

et al., 2014; Vaidyanathan and Wells, 2014). Transcriptional regu-

lation is a key component of this hierarchical regulation, which has

been widely used to study context-specific phenotypes. In the con-

text of human tissues/cell types, genes can exhibit varying levels of

specificity in their expression. They can be broadly classified as: (i)

tissue-specific (unique to one cell type); (ii) tissue-selective (shared

among coherent groups of cell types); and (iii) housekeeping (HK;

utilized in all cell types). Tissue-specific/tissue-selective genes have

significant applications in drug discovery, since they have been

shown to be more likely drug targets (Dezso et al., 2008). Tissue-

specific transcription factors (tsTFs) are significantly implicated in

human diseases (Messina et al., 2004; Raj et al., 2014), including

cancers (Vaquerizas et al., 2009). Finally, disease genes and protein

complexes tend to be over-expressed in tissues in which defects

cause pathology (Lage et al., 2008).

The majority of human proteins does not work in isolation but

take part in pathways, complexes and other functional modules.

Tissue-specific proteins are known to follow a similar trend.

Perturbations that impact interacting interfaces of proteins are signifi-

cantly enriched among tissue-specific, disease-causing variants

(Rolland et al., 2014; Sahni et al., 2015; Wang et al., 2012). This em-

phasizes the importance of constructing tissue-specific interactomes

and their constitutive pathways for understanding mechanisms that
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differentiate cell types and make them uniquely susceptible to tissue-

specific disorders. Prior attempts at reconstructing human

tissue-specific interactomes rely on a set of ‘expressed genes’ in each

tissue, and use this set as the baseline of transcriptional activity. The

node removal (NR) method (Bossi and Lehner, 2009) constructs

tissue-specific interactomes by identifying the induced subgraph of the

expressed genes. Magger et al. (2012) propose a method called ‘Edge

ReWeighting (ERW)’, which extends the NR method to weighted

graphs. This method penalizes an edge once, if one of its endpoints is

not expressed, and twice, if both endpoints are missing from the ex-

pressed gene set.

While these methods have been used to study tissue-specific

interactions, their underlying construction relies only on the imme-

diate endpoints of each interaction to infer tissue-specificity.

Furthermore, they threshold expression values, often using ad hoc

choices of thresholds to classify genes as either expressed or not.

Finally, it is hard to integrate expression datasets from multiple plat-

forms, or from multiple laboratories, into a single framework. These

constraints are primarily dictated by limitations of high-throughput

technologies for assaying gene expression. In these technologies, one

can easily compare expression of the same gene across different sam-

ples to perform differential analysis; however, expression of differ-

ent genes in the same sample are not directly comparable due to

technical biases, differences in baseline expression, and G/C

(genome-wide association studies) content of genes. A recently pro-

posed method, Universal exPression Code (UPC; Piccolo et al.,

2013), addresses many of these issues by removing platform-specific

biases and converting raw expressions to a unified transcriptional

activity score. These scores are properly normalized and can be com-

pared across different genes and platforms.

Leveraging the UPC method, we propose a novel approach that

uses the topological context of an interaction to infer its specificity

score. Our approach formulates the inference problem as a suitably

regularized convex optimization problem. The objective function of

the optimization problem has two terms—the first term corresponds

to a diffusion kernel that propagates activity of genes through inter-

actions (network links). The second term is a regularizer that penal-

izes differences between transcriptional and functional activity

scores. We use these functional activity scores to compute tissue-

specificity for each edge in the global interactome, which we show,

through a number of validation tests, are significantly better than

prior methods. Our method is widely applicable and can be applied

directly to single-channel, double-channel and RNA-Seq expression

datasets processed using UPC/SCAN. Furthermore, it can be easily

adapted to cases where expression profiles are only available in pre-

processed form.

The rest of the article is organized as follows: in Section 2.1, we

provide details of the datasets used in our study. Next, we intro-

duce our method, called Activity Propagation (ActPro), and pro-

vide a consistent notation to formalize previous methods. We

evaluate the effectiveness of UPC transcriptional activity scores to

predict tissue-specific genes in Section 3.1. Details of procedure for

constructing tissue-specific networks and their parameter choices

are discussed in Section 3.2. Section 3.3 provides qualitative assess-

ment of our tissue-specific networks, whereas Sections 3.4–3.6 pre-

sent validation studies for tissue-specific interactions using known

pathway edges, co-annotation of proteins, and genome-wide asso-

ciation studies (GWAS) disease genes. Finally, in Section 3.7, we

use the brain-specific interactome constructed using our method to

identify novel disease-related pathways and use them to identify

candidate targets for neurodegenerative disorders.

2 Materials and methods

2.1 Datasets
We downloaded the RNA-Seq dataset version 4.0 (dbGaP accession

phs000424.v4.p1) from the Genotype-Tissue Expression (GTEx)

project (Ardlie et al., 2015; Mele et al., 2015). This dataset contains

2916 samples from 30 different tissues/cell types, the summary of

which is presented in Figure 1. We processed each sample using the

UPC method (Piccolo et al., 2013), a novel platform-independent

normalization technique that corrects for platform-specific technical

variations and estimates the probability of transcriptional activity

for each gene in a given sample. The benefit of this method is that

activation probability scores are highly consistent across different

technologies, and more importantly, they are comparable across dif-

ferent genes in a given sample. For each gene, we recorded the tran-

script with the highest activation probability in the sample. Finally,

we averaged replicate samples within each group to construct a

unique transcription signature vector for each tissue/cell type. The

final dataset contains the expression value of 23 243 genes across 30

different tissues/cell types.

In addition, we extracted human protein–protein interactions

from the iRefIndex database (Razick et al., 2008), which consoli-

dates protein interactions from different databases. Edges in this

dataset are weighted using an MI (MINT-Inspired) score, which

measures the confidence of each interaction based on three different

evidence types, namely (i) the interaction types (binary/complex)

and experimental method used for detection, (ii) the total number of

unique PubMed publications reporting the interaction and (iii) the

cumulative evidence of interlogous interactions from other species.

Finally, we map transcription data to the human interactome by

converting all gene IDs to Entrez Gene IDs and only retaining genes

that both have a corresponding node in the interactome and have

been profiled by the GTEx project. This yields a global interactome

with 147 444 edges, corresponding to protein–protein interactions,

between 14 658 nodes, representing gene products.

2.2 Constructing human tissue-specific interactome
The global human interactome is a superset of all possible physical

interactions that can take place in the cell. It does not provide any

information as to which interactions actually occur in a given con-

text. There are a variety of factors, including co-expression of genes

corresponding to a pair of proteins, their co-localization, and post-

translational modification, that mediate protein interactions at the

right time and place. Quantifiable expression of both proteins

involved in an interaction is one of the most important factors that

determine the existence of an interaction. Different methods have

been proposed in literature to utilize this source of information to
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Fig. 1. Summary of GTEx sample numbers per tissue
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construct human tissue-specific interactomes. Here, we briefly re-

view existing methods, their drawbacks, and propose a new method,

called ActPro, which addresses noted shortcomings.

2.2.1 Prior methods

Let us denote the adjacency matrix of the global interactome by A,

where element aij is the weight (confidence) of the edge connecting

vertices vi and vj. Let z encode expression of genes in a tissue and z

be the binarized version of z for a fixed threshold. Finally, let diag

operator applied to a given vector be the diagonal matrix with the

vector on the main diagonal. Our aim is to compute a matrix bA,

which is the adjacency matrix of the tissue-specific interactome for a

given expression profile. Using this notation, we can summarize

prior methods for constructing tissue-specific interactomes as

follows.

NR: This method computes the induced subgraph of the ‘ex-

pressed’ gene products (Bossi and Lehner, 2009).

bA ¼ diagðzÞ � A � diagðzÞ (1)

ERW: This method penalizes edges according to the expression

state (active/inactive) of its end points (Magger et al., 2012). Given a

penalty parameter 0 � rw � 1, ERW penalizes each edge by rw

once, if only one of its endpoints is active, and twice, if both incident

vertices are inactive. Formally:

bA ¼ diag rw e�zð Þ
� �

� A � diag rw e�zð Þ
� �

; (2)

where e is the vector of all ones.

2.2.2 Proposed method

The main assumption of ERW and NR methods is that transcrip-

tional activity of a gene is a reliable proxy for its functional activity.

While this holds in a majority of cases, there are situations in which

these scores differ significantly. First, the basis for transcriptional ac-

tivity estimation is that genes with higher expression levels have

higher chance of being functionally active in a given context. While

this is generally true, there are genes that only need a low expression

level to perform their function, i.e. their functionally active concen-

tration is much lower than the rest of genes. Second, there is noise

associated with measurement of gene expression, and converting

measured expression values to UPC scores can over/under-estimate

transcriptional activity. Finally, we note that there are genes whose

down-regulation corresponds to their functional activity (as opposed

to the other way around).

Based on these observations, we propose a novel framework,

called ActPro to identify the most functionally active subnetwork of

a given interactome. Our method incorporates global network top-

ology to propagate activity scores, while simultaneously minimizing

the number of changes to the gene activity scores. To this end, we

first define a smoothed functional activity score defined by the fol-

lowing optimization problem:

x� ¼ arg min
x
f a
jEj xLxþ ð1� aÞ

jVj k x� zk1g

Subject to :
1Tx ¼ 1

0 � x

8<:
(3)

In this problem, L is the Laplacian matrix, defined as A� D,

where element dii of D is the weighted degree of i-th vertex in the

global interactome. The Laplacian operator L acts on a given func-

tion defined over vertices of a graph, such as x, and computes the

smoothness of x over adjacent vertices. More specifically, we can ex-

pand the first term in Equation 5 as
P

i;j wi;jðxi � xjÞ2, which is the

accumulated difference of values between adjacent nodes scaled by

the weight of the edge connecting them. This term defines a diffu-

sion kernel that propagates activity of genes through network links.

The second term is a regularizer, which penalizes changes by enforc-

ing sparsity over the vector of differences between transcriptional

and functional activities. This minimizes deviation from original

transcriptome. It should be noted here that use of norm-1 is critical,

since norm-2 regularization blends the transcriptional activity scores

and significantly reduces their discriminating power. This negative

aspect of norm-2 minimization is confirmed by our experiments.

Finally, constraint 1Tx ¼ 1 is known as the fixed budget. It ensures

that vector x is normalized and bounded. Parameter a determines

the relative importance of regularization versus loss. We can equiva-

lently define a penalization parameter k ¼ 1�a
a , which is the standard

notation in optimization framework. This problem is a classical con-

vex optimization problem and we can solve it using efficient solvers

to identify its global optimum.

After solving Equation 5, we first scale x* by jVj. These scores

are centered around 1, which allows us to perform minimal changes

to the weight of interactions in the global interactome. Using these

smoothed activity scores, we can reweight the global human interac-

tome as follows:

bA ¼ diagðx�Þ � A � diagðx�Þ (4)

We can also derive an alternative formulation for ActPro which,

instead of using transcriptional activity scores computed by UPC,

uses expression values computed through more common methods

such as RMA or MAS5.0 (Lim et al., 2007). We call this method

penalty propagation, or PenPro for short. In this framework, com-

puted expression values are not directly comparable and we need to

threshold them to classify genes as either expressed or not. Using the

same notation defined previously, we can define functional activity

scores by solving the following problem:

x� ¼ arg min
x

a
jEj xLxþ ð1� aÞ

jVj k x� zk1

� �

Subject to :
1Tx ¼ 1

0 � x

8<:
(5)

The only difference here is that, instead of transcriptional activ-

ity vector z, we use the binarized expression vector z. We observe

similar performance for ActPro and PenPro, with ActPro being mar-

ginally superior in all cases, and thus we will only present results for

ActPro.

2.3 Implementation details
All codes used in our experiments have been implemented in

MATLAB. To solve the convex problem in Equation 5, we used

CVX, a package for specifying and solving convex programs (Grant

and Boyd, 2008). We used Mosek together with CVX, which is a

high-performance solver for large-scale linear and quadratic pro-

grams (MOSEK-ApS, 2015).

3 Results and discussion

3.1 Transcriptional activity scores predict tissue-

specificity of genes
To validate the quality of UPC normalized expression values, we

first analyze the distribution of gene expressions across all tissues.
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Figure 2(a) shows the distribution of transcriptional activities, aver-

aged over all samples. The overall distribution exhibits a bimodal

characteristic that has a clear separation point that distinguishes ex-

pressed genes from others. We set a global threshold of 0.75 for

identifying genes that are expressed in each tissue. These genes are

used in evaluating NR and ERW methods. It should be noted that

the distribution of UPC values varies across cell types, as shown in

Figure 2(b); however, the separation point is robust.

Expression value of genes across tissues can be classified as spe-

cific, selective or HK. HK genes are ubiquitously expressed across

all tissues to perform core cellular functions. On the other hand, tis-

sue specific/ tissue-selective genes are uniquely expressed in a given

tissue context to perform tissue-specific functions. These genes typ-

ically reside in the periphery of the network, are enriched among sig-

naling and cell surface receptors and are highly associated with the

onset of tissue-specific disorders(Yeger-Lotem and Sharan, 2015).

Figure 3(a) shows the total number of genes identified in each tissue

as preferentially expressed (either specific or selective). Testis tissue

exhibits the largest number of preferentially expressed genes (we

refer to these as markers), with more than 1, 400 genes, while blood

samples have the fewest markers with only �250 marker genes. In

order to assess whether the sets of preferentially expressed genes can

predict tissue-specific functions, we performed Gene Ontology (GO)

enrichment analysis over different sets of tissue-specific markers

using GOsummaries package in R/Bioconductor (Kolde, 2014).

This package uses g:Profiler (Reimand et al., 2011) as backend for

enrichment analysis and provides a simple visualization of the re-

sults as a word cloud. The coverage of available annotations for dif-

ferent tissues is not uniform, that is, some tissues are better

annotated for specific terms than the others. We chose six well-

annotated tissues with high, mid and low number of identified

markers for further study. We limited terms to the ones with at least

20 and at most 500 genes to avoid overly generic/specific terms.

Finally, we used a strong hierarchical filtering to remove duplicate

GO terms and thresholded terms at P-value of 0.05. Figure 3(b)

shows the enrichment word cloud for each tissue. It can be seen that

all terms identified here are highly tissue-specific and representative

of main functions for each tissue, which supports the validity of

computed transcriptional activity scores from UPC.

3.2 Constructing tissue-specific interactomes
NR and ERW methods need a predefined set of expressed genes in

each tissue to construct tissue-specific interactomes (or a given lower

bound to threshold expression values). We use the set of all genes

with transcriptional activity greater than or equal to 0.75 as the set

of expressed genes for these methods. We chose this threshold based

on the averaged distribution of gene expressions, as well as further

manual curation of genes at different thresholds.

NR method is known to disintegrate the network with stringent

expression values (Magger et al., 2012). To evaluate the performance

of NR over different expression thresholds and assess its sensitivity to

the choice of threshold, we computed the size of largest connected

components, while varying the value of expression threshold. Figure 4

shows stable behavior up to threshold value of 0.75, after which the

size of largest component exhibit a rapid shift and the network starts

to disintegrate. This suggests that the expression value of 0.75 is also

the optimal topological choice for NR method.
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For the ActPro algorithm, we evaluated the results over three dif-

ferent values of a in set f0:15;0:5;0:85g and reported the result for

each case.

3.3 Qualitative characterization of tissue-specific

interactomes
A key feature of tissue specific networks is their ability to discrimin-

ate positive edges that manifest in each tissue from the entire set of

potential interactions in the global interactome. In case of NR and

ERW methods, it is easy to distinguish positive and negative edges:

every edge for which at least one of the endpoints is not expressed

can be classified as a negative edge. The latter method updates edge

weights, to account for expression of their endpoints, whereas the

former method sets a hard threshold to either include an edge or

not. In the case of ActPro, we first notice that the distribution of

edge weights is very different between ActPro and previous methods.

Whereas NR and ERW methods never increase the weight of an

edge, in ActPro edge weights can increase or decrease. This behav-

ior, however, is biased towards the positive end. To decompose each

network into its HK, positive, and negative subspaces, we use the

following strategy: for each tissue-specific network constructed by a

given method, we first compute the relative weight change between

the global interactome and the tissue-specific network. We then nor-

malize these changes using Z-score normalization and define posi-

tive and negative subspaces according to the sign of normalized

relative changes. We further define and separate HK edges as the

subset of positive edges that are positive in at least half of the tissues.

Figure 5 summarizes the average statistics for constructed networks

using different methods. As a general observation, ActPro classifies

fewer interactions as HK and provides more specific positive and

negative edges. Furthermore, as we increase the a parameter, repre-

senting the diffusion depth, we observe that these edges are more

evenly distributed across vertices. To give a concrete example, we

constructed the brain-specific network using ERW and ActPro

methods. Figure 6 illustrates the final statistics of the constructed

networks. Consistent with the average statistics, we observe much

smaller positive/negative nodes/edges in ERW.

3.4 Tissue-specific interactome predicts context-

sensitive interactions in known functional pathways
To evaluate the power of tissue-specific interactions in capturing

context-sensitive physical interactions in known pathways, we first

use Edge Set Enrichment Analysis (ESEA) to rank pathway edges ac-

cording to their gain/loss of mutual information in each tissue context

(Han et al., 2015). ESEA aggregates pathways from seven different

sources (KEGG; Reactome; Biocarta, NCI/Nature Pathway

Interaction Database; SPIKE; HumanCyc; and Panther) and repre-

sents them as a graph with edges corresponding to biological relation-

ships, resulting in over 2300 pathways spanning 130 926 aggregated

edges. It then uses an information-theoretic measure to quantify

dependencies between genes based on gene expression data and ranks

edges, accordingly. Formally, for each pathway edge, ESEA computes

the differential correlation score (EdgeScore) as follows:

EdgeScore ¼MIallði; jÞ �MIcontrolði; jÞ (6)

where MIall is the mutual information of the gene expression profiles

for genes i and j across all cell types. Here, MIcontrol measures the

mutual information only in the given tissue context. Each edge can

be classified as either a gain of correlation (GoC), loss of correlation

(LoC) or no change (NC) depending on the value of EdgeScore. We

use GoC edges, that is, a pair of genes with positive gain of mutual

information in the tissue context, as true positive edges in each tis-

sue. Similarly, we use all positive edges in all tissues but the tissue of

interest as true negatives.

To assess agreement between ESEA scores over known pathway

edges and computed tissue-specific interactions, we rank all edges ac-

cording to the difference of their weights in the human tissue-specific

interactome compared with the global interactome and evaluate the

enrichment of true positive pathway edges among top-ranked edges.

We compute the receiver operating characteristic (ROC) curve for

each tissue and average the area under the curve (AUC) gain, com-

pared with random baseline, over all tissues. Figure 7 presents the

relative performance of each method. All three configurations of the
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ActPro algorithm are ranked at the top of the list—demonstrating the

superior performance of our proposed method.

To further investigate tissue-specific details for the top-ranked

method, ActPro with a ¼ 0:15, we sorted AUC gain for each tissue,

shown in Figure 8. This plot exhibits high level of heterogeneity,

and surprisingly, four of the tissues had worse than random per-

formance. This was consistent across all of the methods. To further

understand this, we investigated the ranked list of edges and identi-

fied a high enrichment of edges with LoC among top-ranked edges.

We performed enrichment analysis over these negative edges and

identified significant tissue-specific functions among them, which

suggests that the poor observed performance for these tissues is

attributed to their misclassification as negative edges.

At the other end of the spectrum, Fallopian Tube, Vagina and

Cervix Uteri had consistently high AUC gain across different meth-

ods. Figure 9 shows the ROC curve for these tissues.

3.5 Tissue-specific interactions are enriched among

proteins with shared tissue-specific annotations
We hypothesize that tissue-specific edges are enriched with proteins

that participate in similar tissue-specific functions. To evaluate our

hypothesis, we collected a set of manually curated tissue-specific

GO annotations from a recent study (Greene et al., 2015). We

mapped tissues to GTEx tissues and identified tissue-specific GO an-

notations for genes in each tissue-specific interactome. We excluded

tissues with less than 100 edges with known annotations. This re-

sulted in 10 tissues, Adipose Tissue, Blood Vessel, Blood, Brain,

Breast, Heart, Kidney, Lung and Muscle, for which we had enough

annotations. We use the same strategy employed in previous section

to identify the mean gain of AUC for each method, which is illus-

trated in Figure 10. It should be noted that the gain of AUC is much

smaller here than the case with ESEA edges, which can be attributed

to the sparsity of tissue-specific GO annotations. Unlike ESEA,

ActPro with a ¼ 0:5 outperforms the case with a ¼ 0:15.

Among the 10 tissues, Adipose and Muscle tissues performed

marginally better than the others with AUC of 0.59 and 0.58, re-

spectively. On the other hand, Lung tissue had the worst perform-

ance with lower than random AUC of 0.47.

3.6 Tissue-specific interactions densely connect genes

corresponding to tissue-specific disorders
Disease genes are densely connected to each other in the interac-

tome, which provides the basis for a number of methods for

network-based disease gene prioritization (Köhler et al., 2008).

Tissue-specific interactomes have been shown to have higher accur-

acy in predicting disease-related genes using the random-walk

method (Magger et al., 2012). More recently, Cornish et al. (2015)

used the concept of ‘geneset compactness’, and showed that the

average distance among nodes corresponding to a given disorder is

significantly smaller in tissue-specific networks, compared with an

ensemble of random graphs.

Here, we adopt this concept to measure how closely tissue-

specific genes related to human disorders are positioned in networks

constructed using different methods. First, we use a symmetric diffu-

sion process instead of Random Walk with Restart (RWR), which is

a better measure of distance. Second, we use an alternative random

model in which we hypothesize that genes corresponding to tissue-

specific disorders are strongly connected to each other, compared

with random genesets of the same size.

To validate our hypothesis, we gather genes corresponding to

tissue-specific disorders from a recent study (Himmelstein and

Baranzini, 2015). These genes are extracted from the GWAS

Catalog by mapping known associations to disease-specific loci.

Among a total of 99 disorders, we focused on the gold standard set

of 29 diseases with at least 10 high-quality primary targets. We suc-

cessfully mapped 27 of these diseases to GTEx tissues, which are

used for the rest of our study. Consistent with previous studies

(Magger et al., 2012), we observed a small subset of disease genes

not to be expressed in the tissue in which they cause pathology.

Among all disease genes, we only retained genes that are connected

in the global interactome and are expressed above 0.1 UPC score.

For a given tissue-specific interactome represented by its adja-

cency matrix, AT , we define a stochastic matrix S ¼ D�
1
2ATD�

1
2,

where D is the diagonal matrix, with entries dii being the degree of

Fig. 6. Decomposition of global interactome into brain-specific network using

ERW and ActPro (a ¼ 0:5) methods
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specific interactions
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node i in the human tissue-specific interactome. Using this matrix,

we can compute degree-weighted random-walk scores among gene

pairs as:

P ¼ ð1� aÞðI� aSÞ�1 (7)

We define the random-walk distance as dij ¼ �log10ðpijÞ, after

replacing zero elements of P with � ¼ 2�52. Given a disease geneset

C, we measure its compactness as the normalized average of dis-

tances for all pairs of nodes in the geneset:

jC ¼

X
i 6¼j2Cdij

jCj

2

 ! (8)

Finally, we sampled without replacement, 100K vertex samples

of size jCj from the tissue-specific interactome and computed the

compactness for each of the samples, individually. We defined an

empirical P-value as the fraction of random instances with higher

compactness (lower j) compared with C. We removed disorders for

which none of the methods yield significant P-value given a thresh-

old of 0.05. The final dataset consists of 15 diseases with signifi-

cantly compact interactions. To combine the P-values for different

disorders, we use the Edgington method (Edgington, 1972). This

method gathers a statistic S ¼
Xk

i¼1
pi for a set of k given P-values,

and computes the meta P-value by assigning significance to S as:

XbSc
j¼0

�1j
k

j

 !
ðS � jÞk

k!
(9)

The list of all individual and combined P-values is shown in

Table 1. In these experiments, ActPro (a ¼ 0:85) had the most sig-

nificant results, closely followed by ActPro (a ¼ 0:5). This suggests

that propagating information using diffusion kernel in ActPro en-

hances its prediction power for tissue-specific pathologies.

Furthermore, there are four diseases for which the global interac-

tome had more significant predictions compared with tissue-specific

networks, among which primary biliary cirrhosis and psoriasis had

the highest difference. This difference may be attributed to misclassi-

fication of disease/tissue in Himmelstein and Baranzini (2015), or

existence of cross tissue mechanisms of action for the disease.

3.7 Tissue-specific interactome identifies novel

disease-related pathways—case study in neurodege-

nerative disorders
We now investigate whether tissue-specific interactomes can help in

predicting novel pathways that are involved in the progression of

neurodegenerative disorders. We perform a case study of

Alzheimer’s and Parkinson’s diseases, both of which were among

disorders with high compactness in brain tissue. We use Prize-

Collecting Steiner Tree (PCST) algorithm to identify the underlying

pathway among disease-genes identified by GWAS studies.

Formally, PCST problem can be formulated as:

arg min
< v;e>2T

X
e

ce � k
X

v

bv

( )
; (10)

where T is an induced tree of the given graph, v and e are the set of ver-

tices and edges in T, respectively, ce is the cost of choosing edge e, and

bv is the reward/prize of collecting node v. Similar methods have been

proposed previously to connect upstream signaling elements to down-

stream transcriptional effector genes (Tuncbag et al., 2012, 2013).

To identify disease-related pathways, we first prune non-specific

interactions in the network by removing vertices that have more

than 500 interactions. We transform edge confidence values (con-

ductances) to edge penalties (resistances) by inverting each edge

weight. Node prizes are defined as the ratio of their incident edges

that fall within disease-related genes to the total degree of a node.

We assigned a node prize of 1000 to disease genes to ensure that

they are selected as terminal nodes. Finally, we use a recent message

passing algorithm (Bailly-Bechet et al., 2011) to identify PCST

rooted at each disease-related gene and choose the best tree as the

backbone of the disease-related pathway. Over each node, we use a

maximum depth of 4 and k¼1 as parameters to the message passing

algorithm. Figure 11 shows final tissue-specific pathways for

Alzheimer’s and Parkinson’s diseases.

Alzheimer’s disease (AD) network contains two distinct subnet-

works, one centered around CLTC and the other centered around

ABL1. PICALM, CLU, APOE and SORL1 are all known genes

involved in AD, which are also involved negative regulation of amyl-

oid precursor protein catabolic process. All four of these genes
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Fig. 9. Tissues with the highest gain of AUC for predicting tissue-specific pathway edges

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Act
Pro

_0
.50

Act
Pro

_0
.15

Act
Pro

_0
.85

ERW NR

G
ai

n
 o

f 
A

re
a 

U
n

d
er

 t
h

e 
C

u
rv

e 
(A

U
C

)

Fig. 10. Mean gain of AUC for predicting proteins co-annotated with tissue-

specific functions

Activity Propagation (ActPro) i249

Deleted Text: to
Deleted Text: <italic>p</italic>
Deleted Text: to
Deleted Text:  &hx2013; 
Deleted Text: ,
Deleted Text: ,


converge on CLCT gene, but through different paths. PICALM gene

is known to play a central role in clathrin-related endocytosis. This

protein directly binds to CLTC and recruits clathrin and adaptor

protein 2 (AP-2) to the plasma membrane (Carter, 2011). On the

other hand, CLU, APOE and SORL1 are linked to the CLTC

through novel linker genes XRCC6, MAPT/BIN1 and GG2A/HGS,

respectively. Gamma-adaptin gene, GGA2, binds to clathrins and

regulates protein traffic between the Golgi network and the lyso-

some. This network is postulated to be an important player in AD

(Carter, 2011). HGS gene is a risk factor age-related macular degen-

eration (AMD) and has been hypothesized to be a shared factor for

AD (Logue et al., 2014). Interestingly, MAPT, a novel marker iden-

tified in this study, is a risk factor for Parkinson’s disease and very

recently shown to also be linked to AD (Desikan et al., 2015). A se-

cond component in AD network is centered around ABL1 gene,

which, together with CBL, INPPL1, CD2AP and MAPT, shares the

SH3 domain binding function. INPPL1 gene, a metabolic syndrome

risk factor, has been hypothesized to link AD with the recently

posed term ‘type 3 diabetes’ (Accardi et al., 2012). Finally, we note

that MAPT gene is one of the central genes that link these two main

components, the role of which warrants further investigation.

Parkinson’s disease (PD) network, on the other hand, contains

one densely connected core centered around MAPT gene. There are

two main branches converging on MAPT. On the left, WNT3,

FZD1 and GSK3B constitute upstream elements of the WNT signal-

ing pathway, which is known to play an important role in PD neuro-

degeneration (Berwick and Harvey, 2012). GSK3 gene product is

postulated to directly interact with MAPT (s) and LRKK2, while

implicitly regulating SNCA (a-Syn) in a b-cat dependent manner.

However, we observed direct interaction between GSK3B and

SNCA, and parallel pathways connecting it to LRRK2 via SNCA

and MAPT. Both SNCA and MAPT also take part in the right

branch, together with CAV1 and RHOA, which is enriched in react-

ive oxygen species (ROS) metabolic process. Accumulation of ROS

contributes to mitochondrial dysfunction and protein misfolding,

both of which are linked to progression of PD. RIT2 enzyme is iden-

tified independently and confirmed as PD susceptibility factor

(Pankratz et al., 2012). Pankratz et al. also suggested CALM1 as the

Table 1. Compactness of tissue specific disease genes in their tissue-specific interactome

Global ActPro_0.15 ActPro_0.50 ActPro_0.85 ERW NR

Alzheimer’s disease 4.12E-3 6.96E-3 5.98E-3 5.44E-3 5.32E-3 9.60E-2

Breast carcinoma 1.83E-3 1.11E-3 8.40E-4 8.30E-4 4.09E-3 8.15E-2

Chronic lymphocytic leukemia 8.20E-4 7.40E-4 4.80E-4 5.10E-4 8.50E-4 2.94E-2

Coronary artery disease 3.95E-1 1.58E-1 1.09E-1 1.03E-1 1.33E-1 1.93E-2

Crohn’s disease 2.56E-2 1.93E-2 1.50E-2 1.44E-2 8.54E-2 4.14E-1

Metabolic syndrome X 1.11E-2 1.09E-2 1.07E-2 1.12E-2 1.02E-1 7.39E-1

Parkinson’s disease 1.59E-2 1.25E-2 9.89E-3 9.50E-3 1.34E-2 9.62E-2

Primary biliary cirrhosis 7.20E-4 1.32E-3 3.16E-3 3.40E-3 2.80E-2 6.86E-1

Psoriasis 2.10E-4 1.10E-3 1.16E-3 9.50E-4 4.67E-3 3.24E-1

Rheumatoid arthritis 1.70E-2 9.28E-3 1.06E-2 1.10E-2 6.39E-2 3.61E-1

Systemic lupus erythematosus 4.98E-2 1.19E-2 7.56E-3 7.22E-3 2.55E-3 1.60E-4

Type 1 diabetes mellitus 2.64E-2 3.01E-2 2.38E-2 2.40E-2 2.64E-1 9.39E-1

Type 2 diabetes mellitus 1.57E-3 2.90E-4 2.40E-4 1.80E-4 5.60E-4 7.90E-3

Vitiligo 1.17E-3 2.13E-3 3.04E-3 3.54E-3 1.84E-2 5.69E-1

Schizophrenia 3.47E-1 2.13E-1 1.93E-1 1.84E-1 1.40E-1 4.10E-2

Combined 1.53E-13 1.24E-17 6.62E-19 3.70E-19 9.03E-14 2.43E-03

Marked entry in each row corresponds to method with the most significant P-value

(a) (b)

Alzheimer’s Disease Parkinson’s Disease

Fig. 11. Tissue-specific pathways in human neurodegenerative disorders. Nodes are colored according to their tissue-specific expressions, with novel identified

genes marked in red, accordingly. The thickness of edges represents their confidence with tree edges marked as blue
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bridge linking RIT2 with MAPT and SNCA, which confirms our

findings. Cyclin G-associated kinase (GAK) is a known risk factor

for PD. We identified HSPA8 as a key link between GAK, WNT sig-

naling pathway, and CSNK1E with central PD genes, MAPT, SNCA

and LRRK2. HSPA8 gene has been proposed as a biomarker for

diagnosis of PD (Lauterbach, 2013). Finally, myelin basic protein

(MBP) interacts closely with CALM1 and LRRK2. This gene has

been previously shown to be differentially expressed in PD and pro-

posed as potential biomarker for PD (Kim et al., 2006).

In summary, we show that the brain-specific interactome derived

from our method helps in uncovering tissue-specific pathways that

are involved in neurodegenerative diseases. Similar analysis of other

human tissues can potentially contribute to identification of new

therapeutic targets for other human disorders.

4 Conclusion

In this article, we present a novel method for computing tissue-

specific interactomes from organism-specific interactomes and ex-

pression profiles of genes in various tissues. Our method casts the

problem as a convex optimization problem that diffuses functional

activity of genes over the organism-specific interactome, while sim-

ultaneously minimizing perturbation of transcriptional activity. We

show, using a number of validation studies, that the tissue-specific

interactomes computed by our method are superior to those com-

puted using existing methods. Finally, we show, using a case study

of brain-specific interactome for Alzheimer’s and Parkinson’s dis-

eases, that our method is capable of constructing highly resolved

disease-specific pathways, providing potential targets for novel

drugs.
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