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Abstract
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and

reaction of molecules, within growing tissues. Mathematical models of these processes

often involve reaction–diffusion equations on growing domains that have been primarily

studied using approximate numerical solutions. Recently, we have shown how to obtain an

exact solution to a single, uncoupled, linear reaction–diffusion equation on a growing

domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of

our previous study, and we illustrate how to solve a system of coupled reaction–diffusion

equations on a growing domain. This system of equations can be used to study the spatial

and temporal distributions of different generations of cells within a population that diffuses

and proliferates within a growing tissue. The exact solution is obtained by applying an

uncoupling transformation, and the uncoupled equations are solved separately before

applying the inverse uncoupling transformation to give the coupled solution. We present

several example calculations to illustrate different types of behaviour. The first example cal-

culation corresponds to a situation where the initially–confined population diffuses suffi-

ciently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the

second example calculation corresponds to a situation where the initially–confined popula-

tion is able to overcome the domain growth and reach the moving boundary at x = L(t). In its

basic format, the uncoupling transformation at first appears to be restricted to deal only with

the case where each generation of cells has a distinct proliferation rate. However, we also

demonstrate how the uncoupling transformation can be used when each generation has the

same proliferation rate by evaluating the exact solutions as an appropriate limit.

Introduction
Several processes during embryonic development are associated with the migration and prolif-
eration of cells within growing tissues. A canonical example of such a process is the
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development of the enteric nervous system (ENS) [1–5]. This involves a population of precur-
sor cells that is initially confined towards the oral end of the developing gut tissue. Cells within
the population undergo individual migration and proliferation events, leading to a population–
level front of cells that moves toward the anal end of the gut [6]. The spatial distribution of the
population of cells is also affected by the growth of the underlying gut tissue [7, 8]. Normal
development of the ENS requires that the moving front reaches the anal end of the developing
tissue. Conversely, abnormal ENS development is thought to be associated with situations
where the front of cells fails to reach the anal end of the tissue [6, 7].

Previous mathematical models of ENS development involve reaction–diffusion equations
on a growing domain [6, 9]. These partial differential equation models have been solved
numerically, and the numerical solutions used to investigate the interaction between the rates
of cell migration, cell proliferation and tissue growth. The interaction between these processes
is of interest as it has been shown that altering the relative rates of cell migration, cell prolifera-
tion and tissue growth has an important impact on whether the moving cell front can over-
come the effects of tissue growth and completely colonize the growing tissue [6, 9]. Previous
analysis of these types of models has shown that successful colonization requires that: (i) there
is a sufficiently large number of cells present at t = 0; (ii) the migration rate of cells is suffi-
ciently large; (iii) the proliferation rate of cells is sufficiently large; and (iv) the rate of growth of
the underlying tissue is sufficiently small [6, 9].

All initial studies examining the solution of reaction–diffusion equations on growing
domains focused on interpreting numerical solutions of the governing equations [6, 9–19].
More recently, we have shown how to obtain an exact analytical solution of a single species,
uncoupled, linear reaction–diffusion equation on a growing domain [20, 21]. The aim of the
present study is to extend our previous analysis by presenting a framework that can be used to
construct the exact solution of a system of coupled, multispecies, linear reaction–diffusion
equations on a growing domain. This means that in the present study we consider a system of
coupled partial differential equations on a growing domain, and our approach is relevant to an
arbitrary number of coupled partial differential equations. The model we analyze can be used
to study the spatial and temporal distributions of different generation of cells within a motile
and proliferative cell population on a growing domain. To motivate our model, Fig 1(a) illus-
trates a cell lineage tree for a birth process in which the different generations are identified.
Traditional applications of reaction–diffusion models make no distinction between cells of dif-
ferent generations [22–25] whereas more recent analysis has sought to make a distinction
between different generations on a nongrowing domain [26]. The recent work by Cheeseman
et al. [26] is novel because it involves re–formulating a standard reaction–diffusion model of
cell migration and cell proliferation with the aim of studying the spatial and temporal distribu-
tion of different generations of cells on a nongrowing domain. In the present study we use a
system of coupled linear reaction–diffusion equations to model the spatial and temporal distri-
bution of each generation on a growing domain. We denote the cell density of the ith generation
as Ci(x, t) for i = 1, 2, 3, . . ., and our aim is to find exact solutions of the coupled model. This
work is novel since exact solutions of coupled multispecies linear reaction–diffusion equations
on a growing domain have not been presented previously.

This manuscript is organized in the following way. First, we outline the mathematical
model and the solution strategy. Using the proposed solution method we solve an example
problem and present graphical results illustrating some key features of the model, and we
always compare the exact solutions with numerical approximations. Although our solution
strategy is naturally suited to the most general case where the rate of proliferation of each gen-
eration is distinct, we also demonstrate how our approach applies to some special cases in
which some of the generations have identical proliferation rates. Additional results relating to
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(b) Cell lineage tree depicting differentiation.
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the choice of truncation are also presented. Finally, we conclude by summarizing the key find-
ings of our work, and we discuss some other applications for which our analysis is relevant.

Analysis
We begin by presenting a mathematical model describing the diffusion of a population of cells
on a growing domain, where the cells undergo a proliferation process that is depicted schemati-
cally in Fig 1(a). This proliferation process means cells in the ith generation proliferate to form
twice the number of cells in the (i + 1)st generation. Assuming that each generation undergoes
diffusive movement on a growing domain, we describe the spatial and temporal evolution of
the cell density profiles, for each generation, using the following system of coupled linear par-
tial differential equations,

@C1

@t
¼ D

@2C1

@x2
� @ðvC1Þ

@x
� k1C1; ð1Þ

@Ci

@t
¼ D

@2Ci

@x2
� @ðvCiÞ

@x
þ 2ki�1Ci�1 � kiCi; 8i ¼ 2; 3; 4; . . . ; ð2Þ

on 0< x< L(t). Here, D is the cell diffusivity, v is the advection velocity associated with
domain growth, and ki is the rate at which cells from the ith generation proliferate to produce
cells in the next, (i + 1)st, generation. Note that the factor of two in the production term for gen-
eration i� 2 reflects the fact that cells from the ith generation proliferate to produce twice the
number of cells in the (i + 1)st generation, as depicted in Fig 1(a).

Our strategy for solving Eqs (1)–(2) is valid for a range of initial conditions and boundary
conditions. Regardless of the choice of boundary conditions and initial conditions, to solve
Eqs (1)–(2) we apply Sun and Clement’s uncoupling transformation [27–33], which can be
written as

ai ¼ Ci þ
Xi�1

j¼1

Yi�1

l¼j

2kl
kl � ki

" #
Cj 8i ¼ 2; 3; 4; . . . ; ð3Þ

where, for the moment, we require that we have distinct proliferation rates to avoid any singu-
larity in the definition of ai(x, t). Later we will explain how to relax this assumption. Applying
the Sun and Clement transformation to Eqs (1)–(2) leads to a system of uncoupled partial dif-
ferential equations,

@ai
@t

¼ D
@2ai
@x2

� @ðvaiÞ
@x

� kiai; 8i ¼ 1; 2; 3; . . . ; ð4Þ

on 0< x< L(t), which, at this point, can be solved by using the methods outlined in our previ-
ous work for single uncoupled reaction–diffusion equations on growing domains [20, 21]. We
note that the solution of Eq (4) can be unbounded when ki< 0. While we do not outline the
entire details of the solution strategy, we will briefly recall the salient features of how to solve
Eq (4).

Fig 1. Schematic illustration of two different lineage trees. (a) Lineage tree for a cell proliferation process where each cell gives rise to two daughter cells
in the following generation. (b) Lineage tree for a cell differentiation process where each cell undergoes a differentiation process to produce a single cell of a
different type.

doi:10.1371/journal.pone.0138894.g001
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Domain growth
Domain growth is associated with a velocity field which causes a point at location x to move to
x + v(x, t)τ during a small time interval duration τ. We can relate v(x, t) and L(t) by considering
the expansion of an element of initial width Δx [6],

dLðtÞ
dt

¼
Z LðtÞ

0

@v
@x

dx: ð5Þ

We consider uniform growth conditions where @v/@x is independent of position, but could
depend on time, so that we have @v/@x = σ(t) [6, 9–16]. Combining this with Eq (5) gives:

@v
@x

¼ sðtÞ

¼ 1

LðtÞ
dLðtÞ
dt

:

ð6Þ

Like previous studies [6, 9, 14], we assume that the domain elongates in the positive x–direction
with the origin fixed, giving v(0, t) = 0. Integrating Eq (6) gives

vðx; tÞ ¼ x
LðtÞ

dLðtÞ
dt

: ð7Þ

This framework allows us to specify L(t), for example, by using experimental observations [8],
and to use Eq (7) to find the velocity, v(x, t). For example, exponential growth, L(t) = L(0)eαt,
corresponds to σ(t) = α and v(x, t) = αx. Alternatively, linear growth, L(t) = L(0) + βt, corre-
sponds to σ(t) = β/(L(0) + βt) and v(x, t) = xβ/(L(0) + βt) [20, 21].

Solution strategy
To solve Eq (4) we use a Lagrangian mapping, which in this context is also known as a bound-
ary fixing transformation, ξ = x/L(t), giving

@ai
@t

¼ D
L2ðtÞ

@2ai
@x2 � 1

LðtÞ
@ðvaiÞ
@x

� kiai þ
x

LðtÞ
dLðtÞ
dt

@ai
@x

; 8i ¼ 1; 2; 3; . . . ; ð8Þ

on the fixed domain 0< ξ< 1. Since v = ξdL(t)/dt, we have

@ai
@t

¼ D
L2ðtÞ

@2ai
@x2

� ðki þ sðtÞÞai; 8i ¼ 1; 2; 3; . . . : ð9Þ

The net reaction term in Eq (9) is the sum of two terms that represent two distinct processes.
The first reaction term, −ki ai, is a sink term that is proportional to the rate at which the ith gen-
eration proliferates to form the (i + 1)st generation. The second reaction term, −σ(t)ai, is pro-
portional to @v/@x, and since @v/@x> 0 this is a sink term that represents a dilution effect

caused by the domain growth. To simplify Eq (9) we re–scale the time variable, TðtÞ ¼R t

0
D=L2ðsÞ ds [20], so that the coefficient of the diffusive term is constant. This gives

@ai
@T

¼ @2ai
@x2

þ f ðTÞai; 8i ¼ 1; 2; 3; . . . ; ð10Þ

where f(T) = −L2(T)(ki + σ(T))/D. Eq (10) can be solved using separation of variables. With
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zero diffusive flux conditions at both boundaries we have

aiðx;TÞ ¼
X1
n¼0

Ci;n cos ðnpxÞe�ðnpÞ2TðtÞe
R T

0
f ðT�Þ dT�

; 8i ¼ 1; 2; 3 . . . ; ð11Þ

where we choose the Fourier coefficients,Ci, n, so that ai(ξ, T) matches the appropriate initial
condition for each component, i = 1,2,3, . . .. Once the Fourier coefficients have been defined,
the exact solution for each uncoupled component can be rewritten in terms of the physical
coordinate system, ai(x, t), and then re–expressed in terms of the original coupled variables to
give Ci(x, t) for i = 1,2,3, . . ..

At this point it is worthwhile pointing out how different boundary conditions and initial
conditions can be applied. Different initial conditions can be implemented simply by choosing
different Fourier coefficients [34]. Applying homogeneous or nonhomogeneous Dirichlet
boundary conditions can be implemented by choosing appropriate eigenfunctions in Eq (11)
so that the solution satisfies those boundary conditions [21]. The specific examples that we
present here in the Results section illustrate how homogeneous Neumann (zero flux) boundary
conditions are applied. We choose to focus our examples on using homogeneous Neumann
boundary conditions because previous studies have also used similar boundary conditions [6,
20]. We note, however, that greater care is required when applying nonhomogeneous Neu-
mann (non–zero flux) boundary conditions (S1 Supporting Information).

Results

Distinct reaction rates
Our approach for solving coupled linear reaction–diffusion equations on uniformly growing
domains is sufficiently general that it applies to: (i) various types of domain growth functions,
L(t) [20, 21]; (ii) an arbitrary number of generations in the lineage tree [27, 28]; and (iii) arbi-
trary initial conditions. To demonstrate how our approach applies to a particular problem we
will present a suite of results focusing on exponential domain growth, L(t) = L(0)eαt with α>

0, and, for simplicity, we keep track of the first four generations only by solving

@C1

@t
¼ D

@2C1

@x2
� @ðvC1Þ

@x
� k1C1; ð12Þ

@C2

@t
¼ D

@2C2

@x2
� @ðvC2Þ

@x
þ 2k1C1 � k2C2; ð13Þ

@C3

@t
¼ D

@2C3

@x2
� @ðvC3Þ

@x
þ 2k2C2 � k3C3; ð14Þ

@C4

@t
¼ D

@2C4

@x2
� @ðvC4Þ

@x
þ 2k3C3 � k4C4; ð15Þ

on 0< x< L(t). Although all the main results in this work are presented for four generations
only, our solution strategy can be adapted to deal with more generations by extending this
example in an obvious way. Setting k4 > 0 in this example implies that C4(x, t) will always
decay to zero in the long time limit since we have truncated the number of generations to four
and we do not explicitly consider the role of the fifth generation. One way of dealing with this
is to set k4 = 0 in the example calculations so that the fourth generation do not proliferate.
Another way of dealing with this is to increase the number of generations by including partial
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differential equation models for C5(x, t), C6(x, t), and so on. However, since this is the first time
that these results have been presented we chose to truncate the system after just four genera-
tions since we wish to present the results as clearly as possible by working with a modest num-
ber of generations. Motivated by Landman’s previous numerical study of ENS development
[6], we consider the initial condition

C1ðx; 0Þ ¼ Cð1� Hðx � gÞÞ; ð16Þ

C2ðx; 0Þ ¼ 0; ð17Þ

C3ðx; 0Þ ¼ 0; ð18Þ

C4ðx; 0Þ ¼ 0; ð19Þ

whereH is the Heaviside function. This initial conditions states that we have some region of
the domain, 0< x< γ, initially uniformly occupied by the first generation at density C. The
remaining portion of the domain, γ< x< L(0), is free from cells of the first generation. All
other generations are absent at t = 0. We apply the Sun and Clement transformation [27, 28],
which in this case, can be written as

a1 ¼ C1; ð20Þ

a2 ¼ C2 þ C1

2k1
k1 � k2

� �
; ð21Þ

a3 ¼ C3 þ C2

2k2
k2 � k3

� �
þ C1

2k1
k1 � k3

2k2
k2 � k3

� �
; ð22Þ

a4 ¼ C4 þ C3

2k3
k3 � k4

� �
þ C2

2k2
k2 � k4

2k3
k3 � k4

� �
þ C1

2k1
k1 � k4

2k2
k2 � k4

2k3
k3 � k4

� �
; ð23Þ

to give four uncoupled partial differential equations. Assuming we have zero diffusive flux
boundary conditions at both boundaries, the solutions of the uncoupled partial differential
equations can be written as

aiðx; tÞ ¼
X1
n¼0

Ci;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�tðaþkiÞ; 8i ¼ 1; 2; 3; 4; ð24Þ

where L(t) = L(0)eαt and T(t) = D(1 − e−2αt)/(2αL2(0)) [20, 21]. To ensure that ai(x,0) matches
the appropriate initial condition, we require

C1;0 ¼
Cg
Lð0Þ; ð25Þ

C1;n ¼
C2
np

sin
npg
Lð0Þ

� �
; ð26Þ

C2;0 ¼ C1;0

2k1
k1 � k2

� �
; ð27Þ
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C2;n ¼ C1;n

2k1
k1 � k2

� �
; ð28Þ

C3;0 ¼ C1;0

2k1
k1 � k3

2k2
k2 � k3

� �
; ð29Þ

C3;n ¼ C1;n

2k1
k1 � k3

2k2
k2 � k3

� �
; ð30Þ

C4;0 ¼ C1;0

2k1
k1 � k4

2k2
k2 � k4

2k3
k3 � k4

� �
; ð31Þ

C4;n ¼ C1;n

2k1
k1 � k4

2k2
k2 � k4

2k3
k3 � k4

� �
; ð32Þ

where n 2 N
+. Given the solutions in the uncoupled format, ai(x, t), i = 1,2,3,4, we then obtain

the coupled solutions, Ci(x, t), i = 1,2,3,4, using Eqs (20)–(23).
Results in Fig 2 show the solutions of Eqs (12)–(15) in the case where we have distinct prolif-

eration rates, k1 6¼ k2 6¼ k3 6¼ k4. The first row shows the initial condition, given by Eqs (16)–(19),
while the second and third rows show the spatial distribution of each generation and the total

density, Sðx; tÞ ¼ P4

i¼1 Ciðx; tÞ, at t = 10 and t = 20, respectively. Each subfigure contains a plot
of the exact solution, truncated after 1000 terms, superimposed on a plot of the numerical

C1

x0 2 4 6 8 10
0

1

t=0     L(0) = 1

(a)

C2
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0

1

t=0     L(0) = 1
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(c)
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1
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S
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Fig 2. Comparison of exact and numerical solutions of Eqs (12)–(15) with distinct reaction rates where colonization fails to occur by t = 20. Profiles
in (a)–(e), (f)–(j) and (k)–(o) showC1(x, t), C2(x, t), C3(x, t), C4(x, t) and S(x, t) at t = 0,10, and 20, respectively. Each subfigure shows the exact solution (solid
red) superimposed on the numerical solution (dashed blue). This example corresponds to exponential domain growth with L(0) = 1, L(10) = e� 2.78 and L
(20) = e2� 7.39, as indicated in each subfigure. The exact solutions are obtained by truncating the infinite series after 1000 terms and the numerical solutions
(S1 Supporting Information) correspond to δξ = δt = 1 × 10−3. Other parameters are L(0) = 1, α = 0.1, C = 1, γ = 0.2, D = 1 × 10−5, k1 = 0.1, k2 = 0.2, k3 = 0.3 and
k4 = 0.

doi:10.1371/journal.pone.0138894.g002
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solution (S1 Supporting Information), and we see that the numerical and exact solutions are visu-
ally indistinguishable. Comparing the solutions in Fig 2(a), 2(f) and 2(k) indicates that the initial
condition is entirely composed of the first generation, whereas by t = 20 the first generation is
almost absent due to proliferation. In contrast, comparing the results in Fig 2(d), 2(i) and 2(n)
shows that, initially, the fourth generation is absent and that by t = 20 there is a significant popu-
lation of the fourth generation present on the growing domain. The temporal evolution of the
total density, shown in Fig 2(e), 2(j) and 2(o), confirms that the spreading cell density profile fails
to reach the moving boundary by t = 20 [20]. In particular, our exact results indicate that we have
S(L(20),20) = 0.0000 (correct to four decimal places). Furthermore, if we evaluate the solutions
for larger values of t we observe that, for this combination of parameters, domain growth domi-
nates and, in effect, the spreading density profile never reaches the moving boundary at x = L(t),
and we have S(L(t), t)� 0 [20]. Previous numerical studies of ENS development have pointed
out that this kind of result, where the spreading cell density profile fails to reach the end of the
growing domain, is consistent with abnormal ENS development [6].

We also present a second set of results, in Fig 3, that are the same as those in Fig 2 with the
exception that the diffusivity is increased. Similar to the results in Fig 2 we see that the numeri-
cal and exact solutions are visually indistinguishable, and that the density profile of the first
generation is present at t = 0 and t = 10, but is almost absent by t = 20. Similarly, the density
profile of the fourth generation is identically zero at t = 0 but the effects of proliferation mean
that the fourth generation is present, and dominates the total population, by t = 20. If we com-
pare the evolution of the total density profile, shown in Fig 3(e), 3(j) and 3(o), with the evolu-
tion of the total density profile in the previous example with smaller D, shown in Fig 2(e), 2(j)
and 2(o), we see that the effect of increasing the diffusivity is that the spreading cell density
profile is able to overcome domain growth and colonize the domain. In particular, the exact
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Fig 3. Comparison of exact and numerical solutions of Eqs (12)–(15) with distinct reaction rates where colonization occurs occur by t = 20. Profiles
in (a)–(e), (f)–(j) and (k)–(o) showC1(x, t), C2(x, t), C3(x, t), C4(x, t) and S(x, t) at t = 0,10, and 20, respectively. Each subfigure shows the exact solution (solid
red) superimposed on the numerical solution (dashed blue). This example corresponds to exponential domain growth with L(0) = 1, L(10) = e� 2.78 and L
(20) = e2� 7.39, as indicated in each subfigure. The exact solutions are obtained by truncating the infinite series after 1000 terms and the numerical solutions
(S1 Supporting Information) correspond to δξ = δt = 1 × 10−3. Here we have L(0) = 1, α = 0.1, C = 1, γ = 0.2, D = 1 × 10−2, k1 = 0.1, k2 = 0.2, k3 = 0.3 and k4 = 0.

doi:10.1371/journal.pone.0138894.g003
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solutions give S(L(20),20) = 0.0085 (correct to four decimal places), which could be interpreted
as indicating that the spreading cell density profile has reached the moving boundary at x = L
(t) by t = 20 [20]. Previous numerical studies of ENS development have pointed out that this
kind of result, where the spreading cell population reaches the end of the growing domain, is
consistent with normal ENS development [6].

All exact solutions presented in Figs 2 and 3 are generated using Maple worksheets (S2 and
S3 Supporting Informations). For all results presented we conservatively truncate the infinite
series by retaining the first 1000 terms. Using this approach we find that the computational
time required to generate the exact solutions is just a few seconds on a single desktop processor.
The numerical solutions of the systems of coupled partial differential equations are generated
using code written in FORTRAN 77 [35], and we find that the numerical solutions also
requires just a few seconds of computational time on a single desktop processor. Therefore, in
summary, there is no particular advantage in terms of computational time requirements to
evaluate either the exact or numerical solutions for these problems.

Repeated reaction rates
As we pointed out in the Introduction, an apparent limitation of the Sun and Clement transfor-
mation is that it appears to require distinct proliferation rates to avoid any singularities [27,
28]. We will now show, by example, that it is straightforward to deal with this apparent compli-
cation. In particular, we will explain how to obtain exact solutions to Eqs (12)–(15) with identi-
cal proliferation rates, k1 = k2 = k3 = k4. The potential issue in solving Eqs (12)–(15) with equal
proliferation rates is illustrated by visually inspecting the exact solution for C2,

C2 ¼
2k1

k1 � k2

X1
n¼0

C1;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�at e�k2t � e�k1t

� �
; ð33Þ

which is indeterminate when k1 = k2. This issue can be resolved by evaluating C2 in the limit as
k2 ! k1 using L’Hopital’s rule, which gives

C2 ¼ 2k1t
X1
n¼0

C1;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�ate�k1t: ð34Þ

Applying the same approach to the solution of Eqs (12)–(15) with k1 = k2 = k3 = k4 gives,

C1 ¼
X1
n¼0

C1;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�ate�k1t; ð35Þ

C2 ¼ 2k1tC1; ð36Þ

C3 ¼
ð2k1tÞ2

2
C1; ð37Þ

C4 ¼
ð2k1tÞ3

6
C1: ð38Þ

Results in Fig 4 show the solutions of Eqs (12)–(15) with k1 = k2 = k3 = k4. We acknowledge
that setting k1 = k2 = k3 = k4 > 0 in Eqs (12)–(15) is not biologically realistic since it implies
that limt ! 1 S(x, t)� 0. However, this exercise of comparing exact and numerical solutions of
Eqs (12)–(15) with k1 = k2 = k3 = k4 is mathematically insightful since we wish to illustrate that
our general framework for solving the coupled systems of reaction–diffusion equations on a
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growing domain also applies when we have repeated proliferation rates. The results in Fig 4 are
presented in exactly the same format as those in Figs 2 and 3 except that the proliferation rates
are equal. As in Figs 2 and 3, the results in Fig 4 indicate that the numerical and exact solutions
are visually indistinguishable.

The example presented in Fig 4 is relevant for the special case where all proliferation rates
are identical, with k1 = k2 = k3 = k4. A similar procedure can be used to obtain the exact solu-
tions in cases where some of the proliferation rates are repeated and others are distinct. For
example, the solution of Eqs (12)–(15), with k1 = k2 = k3 6¼ k4, can be written as

C1 ¼
X1
n¼0

C1;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�ate�k1t; ð39Þ

C2 ¼ 2k1tC1; ð40Þ

C3 ¼
ð2k1tÞ2

2
C1; ð41Þ

C4 ¼ 2k1
k1 � k4

� �3X1
n¼0

C1;n cos
npx
LðtÞ

� �
e�ðnpÞ2TðtÞe�at½e�k4t � e�k1t�

�2k1t
2k1

k1 � k4

� �2

C1 �
ð2k1tÞ2

2

2k1
k1 � k4

� �
C1:

ð42Þ

We also compared plots of the numerical solution of Eqs (12)–(15), for k1 = k2 = k3 6¼ k4, with
the exact solution, given by Eqs (39)–(42), and we observed an excellent match between the
exact and numerical solutions (results not shown).
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Fig 4. Comparison of exact and numerical solutions of Eqs (12)–(15) with equal reaction rates. Profiles in (a)–(e), (f)–(j) and (k)–(o) showC1(x, t), C2(x,
t), C3(x, t), C4(x, t) and S(x, t) at t = 0,10, and 20, respectively. Each subfigure shows the exact solution (solid red) superimposed on the numerical solution
(dashed blue). This example corresponds to exponential domain growth with L(0) = 1, L(10) = e� 2.78 and L(20) = e2� 7.39, as indicated in each subfigure.
The exact solutions are obtained by truncating the infinite series after 1000 terms and the numerical solutions (S1 Supporting Information) correspond to δξ =
δt = 1 × 10−3. Here we have L(0) = 1, α = 0.1, C = 1, γ = 0.2, D = 1 × 10−2, k1 = k2 = k3 = k4 = 0.1.

doi:10.1371/journal.pone.0138894.g004
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Choice of truncation
All applications of the solution strategy presented in this work require the infinite series to be
truncated after a finite number of terms. For simplicity we always truncate the series very con-
servatively by retaining the first 1000 terms. The Maple worksheets used to calculate these
exact solutions are provided as Supporting Information and these worksheets can be very easily
manipulated to explore the effect of varying the level of truncation (S2 and S3 Supporting

Informations). To demonstrate this, we present additional results in Fig 5(a) showing Sðx; tÞ ¼P4

i¼1 Ciðx; tÞ for the same problem considered previously in Fig 3. The profiles in Fig 5(a) com-
pare the exact solution truncated after 1, 2, 5 and 1000 terms. Visual inspection of the profiles
indicate that the profile corresponding to 1000 terms is indistinguishable from the profile cor-
responding to 5 terms. In contrast, the profiles corresponding to 1 and 2 terms in the truncated
series are visually distinct. To quantify these trends we plot, in Fig 5(b), jSexact(x, t)−Struncated(x,
t)j, at x = 0 and t = 20, where we suppose that the exact solution is given by retaining 1000
terms in the truncated series. Results in Fig 5(b) indicate that truncating after 1000 terms
greatly exceeds what is required to ensure that the truncation error is below machine precision
since we are unable to distinguish, beyond machine precision, any difference between retaining
10 terms, 100 terms or 1000 terms in the truncated solution. This implies that the truncation
error present in Figs 2, 3 and 4, where we have evaluated the exact solution very conservatively
by retaining 1000 terms in the truncated series, is less than machine precision.

Instead of making any prescriptive recommendations about truncating the series, we sug-
gest that any particular application of the solution should involve evaluating the exact solution
for the problem of interest iteratively. In each iteration, additional terms in the series should be
retained, and the results compared between successive iterations. This process will demonstrate
how many terms are required to achieve a desired accuracy. Implementing the exact solution
in this way is both straightforward and fast when using the supplied Maple worksheets (S2 and
S3 Supporting Informations).
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Fig 5. Demonstration of truncation error. Profiles in (a) correspond to the solution of Eqs (12)–(15), written in terms of S(x, t), where Sðx; tÞ ¼ P4

i¼1 Ciðx; tÞ.
Parameters include L(0) = 1, α = 0.1, C = 1, γ = 0.2, D = 1 × 10−2, k1 = 0.1, k2 = 0.2, k3 = 0.3 and k4 = 0. Results in (a) illustrate the influence of varying the level
of truncation in the infinite series by superimposing generated with 1000 terms (solid blue), 5 terms (dashed green), 2 terms (dotted red) and 1 term (solid
cyan). Results in (b) show the truncation error, jSexact(x, t)−Struncated(x, t)j, at x = 0 and t = 20, where the exact solution is taken to be the solution generated by
truncating after 1000 terms.

doi:10.1371/journal.pone.0138894.g005
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Discussion
In this work we have presented a framework that can be used to calculate the exact solution of
a system of coupled linear reaction–diffusion equations on a growing domain. Our work has
been motivated by previous numerical studies of ENS development which have used numerical
methods to examine the interplay between cell diffusion, cell proliferation and tissue growth in
determining whether a cell population, initially confined towards one end of the growing tissue
at x = 0, can overcome domain growth and reach the other end of the growing tissue at x = L(t)
[6, 9]. Most standard models of collective cell spreading make no distinction between different
generations of cells [22–25]. In contrast, Cheeseman et al. [26] recently re–formulated a typical
reaction–diffusion model of cell migration and cell proliferation so that they could study the
spatial and temporal distribution of different generations of cells on a nongrowing domain.
Here we use a linear model to make a distinction between different generations of cells in the
spreading cell profile and we obtain an exact solution to corresponding system of coupled lin-
ear reaction–diffusion equations on a growing domain. Our approach is sufficiently general
that it applies to an arbitrary number of generations, an arbitrary initial condition and many
choices of the domain growth function, L(t). This work is novel since we are unaware of any
previous work that has presented exact solutions of systems of reaction–diffusion equations on
growing domains. However, our approach is limited to dealing with coupled linear reaction–
diffusion equations on a one–dimensional growing domain and we suggest that numerical
approaches are more appropriate for solving reaction–diffusion equations on two– and three–
dimensional growing domains.

While we have motivated our mathematical model by considering a proliferative cell popu-
lation, our framework can also be adapted to deal with other coupled biological processes on
growing domains. For example, the cell lineage tree in Fig 1(b) depicts a cell differentiation
process where cells of a particular type differentiate into cells of another type. This kind of cell
differentiation process has been incorporated into previous nonlinear coupled multispecies
reaction–diffusion models for different types of applications including models of latter stages
of ENS development [36, 37] and models of aerosolised skin grafts [38, 39]. If we are interested
in applying our technique to solve a linear mathematical model describing cell migration and
cell differentiation on a growing domain, we could study a coupled system of linear partial dif-
ferential equations of the form,

@C1

@t
¼ D

@2C1

@x2
� @ðvC1Þ

@x
� k1C1; ð43Þ

@Ci

@t
¼ D

@2Ci

@x2
� @ðvCiÞ

@x
þ ki�1Ci�1 � kiCi; 8i ¼ 2; 3; 4; . . . ; ð44Þ

on 0< x< L(t). The key difference between Eqs (1)–(2) and Eqs (43)–(44) is the factor of two in
the source terms for i� 2. This difference reflects the fact that in the proliferation model cells of
each generation proliferate to form twice the number of cells in the next generation whereas cells
in the differentiation model differentiate to produce the same number of cells of the next cell type
in the cell lineage tree. Applying the Sun and Clement [27, 28] transformation to Eqs (43)–(44)
proceeds by using a modified version of Eq (4) without the factor of two in the numerator.

The key contribution of our work is to describe a new set of exact mathematical solutions of
coupled reaction–diffusion equations on growing domains that have not been presented previ-
ously. This contribution is both mathematically and practically relevant because the new exact
solutions are motivated by certain problems, such as describing the spatial and temporal distri-
butions of different generations of cells on a growing domain, that cannot be modelled using
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previous exact solutions [20, 21]. Furthermore, our work is significant because it is the first
time, as far as we are aware, that the Sun and Clement transformation [27, 28] has been applied
to a problem outside of the porous media literature. Therefore, part of the motivation of this
work is to illustrate how the Sun and Clement transformation [27, 28] is relevant to the mathe-
matical biology literature.

Although our comparison of the exact and numerical solutions of Eqs (1)–(2) in Figs 2, 3
and 4 is excellent, our analysis is limited to the study of linear reaction–diffusion equations
since we rely on separation of variables and superposition. While many studies of collective cell
migration and cell proliferation involve nonlinear partial differential equations [22–25], it is
relevant for us consider studying linear partial differential equation models, since they can be
viewed as an approximation of nonlinear partial differential equation models. For example,
Swanson [40] studied a linearized version of the Fisher-Kolmogorov equation to produce exact
analytical solutions that provide insight into the dynamics of tumor spreading. Such linearised
models match the solution of the corresponding nonlinear models in the low density limit of
the solution which means that the linear model provides a good approximation to the position
of the leading edge of the spreading cell population (S1 Supporting Information). The fact that
the solution of the linear model matches the solution of the nonlinear model at the low density
leading edge is both mathematically convenient as well as being of practical interest since many
experimental observations of collective cell spreading report results in terms of the position of
the low density leading edge of the spreading cell profile [41–43]. We note that similar approxi-
mations, which amount to studying nonlinear processes using linearised models, are routinely
invoked in many other areas of science and engineering. For example, many nonlinear prob-
lems in fluid mechanics [44, 45], civil engineering [46, 47] and chemical engineering [48] are
studied, in an approximate sense, by analyzing linearised models. The rationale for studying
such linearised models is that they can be solved exactly, thereby providing more general
insight than knowledge gathered from repeated numerical simulations.

Supporting Information
S1 Supporting Information. Additional results and discussion.
(PDF)

S2 Supporting Information. Maple worksheets to calculate exact solution with distinct pro-
liferation rates.
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proliferation rates.
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