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ABSTRACT

Objectives: The objectives of this study are to construct the high definition phenotype (HDP), a novel time-

series data structure composed of both primary and derived parameters, using heterogeneous clinical sources

and to determine whether different predictive models can utilize the HDP in the neonatal intensive care unit

(NICU) to improve neonatal mortality prediction in clinical settings.

Materials and Methods: A total of 49 primary data parameters were collected from July 2018 to May 2020 from

eight level-III NICUs. From a total of 1546 patients, 757 patients were found to contain sufficient fixed, intermit-

tent, and continuous data to create HDPs. Two different predictive models utilizing the HDP, one a logistic re-

gression model (LRM) and the other a deep learning long–short-term memory (LSTM) model, were constructed

to predict neonatal mortality at multiple time points during the patient hospitalization. The results were com-

pared with previous illness severity scores, including SNAPPE, SNAPPE-II, CRIB, and CRIB-II.

Results: A HDP matrix, including 12 221 536 minutes of patient stay in NICU, was constructed. The LRM model

and the LSTM model performed better than existing neonatal illness severity scores in predicting mortality us-

ing the area under the receiver operating characteristic curve (AUC) metric. An ablation study showed that utiliz-

ing continuous parameters alone results in an AUC score of >80% for both LRM and LSTM, but combining

fixed, intermittent, and continuous parameters in the HDP results in scores >85%. The probability of mortality

predictive score has recall and precision of 0.88 and 0.77 for the LRM and 0.97 and 0.85 for the LSTM.

Conclusions and Relevance: The HDP data structure supports multiple analytic techniques, including the statis-

tical LRM approach and the machine learning LSTM approach used in this study. LRM and LSTM predictive

models of neonatal mortality utilizing the HDP performed better than existing neonatal illness severity scores.

VC The Author(s) 2021. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Further research is necessary to create HDP–based clinical decision tools to detect the early onset of neonatal

morbidities.

Key words: machine learning, mortality prediction, neonatal intensive care unit, long–short-term memory, high definition pheno-

type

INTRODUCTION

The most vulnerable patients with life-threatening conditions who

require comprehensive care and constant monitoring are admitted

to hospital intensive care units (ICUs). Depending on the patient’s

age and medical condition, the patient could be admitted to special-

ized ICUs such as a neonatal intensive care unit (NICU),1 a pediatric

intensive care unit,2 or a neurointensive care unit.3 The mortality in

an adult ICU can range from 10% to 29%, depending on age, illness

severity, and morbidities.4 The average mortality rate in very low

birth weight (VLBW) and critically sick neonates in NICUs can be

even higher, ranging from 6.5% to 46%.5–9

Several risk assessment scores have been developed to calculate

hospital mortality rates, supporting decision-making by providing

early predictions about the onset of severe acute disease states in

high-risk patients.10 They sometimes help clinicians prioritize pa-

tient care in extreme cases, thereby helping to manage ICU resour-

ces. This can decrease the financial burden on the family and health

system as it can improve the clinical outcomes of the health care unit

overall.11,12

In the past two decades, various neonatal risk assessment scores

have incorporated physiological vital signs, along with antenatal,

perinatal, and laboratory data.13,14 Some studies have focused on

patterns of variations in body temperature (BT) and cardiorespira-

tory signals such as heart rate (HR), respiratory rate (RR), periph-

eral oxygen saturation (SpO2), and blood pressure (BP).15 Previous

studies have found that variabilities in HR, such as the heart rate

characteristic (HRC) or heart rate variability (HRV) and its cross-

correlation with other vital signs (HR-SpO2), are early markers for

sepsis, necrotizing enterocolitis (NEC), and bronchopulmonary dys-

plasia (BPD).16 Other studies have shown that hypotension and the

number of apnea events can predict the severity of intraventricular

hemorrhage (IVH), retinopathy of prematurity (ROP), and BPD.17

Various data-driven models such as PhysiScore,18 PISA,13 and

PROMPT19 have used machine learning techniques to explore time

series ICU data for generating risk assessment scores.

Enormous quantities of data are collected for each patient in an

ICU, including time-series data updated every second (such as moni-

tored physiological data), vital signs, diagnosis records, medication

and nutrition data, laboratory reports, imaging results, medical staff

notes, and more. This vast data production has resulted in the gener-

ation of some multimodal temporal databases that encapsulate the

integrated big data of an ICU such as MIMIC I, II, and III.20,21

This study highlights the importance of understanding the enor-

mous amounts of data in areas such as critical care and use that to

improve patient outcomes. We capture time-series NICU data into

an original structure referred to as the high definition phenotype

(HDP). The data are categorized using a series of fixed, intermittent,

and continuous data to form a HDP. This is used to create a predic-

tion model for neonatal mortality. The developed model uses both

the logistic regression model (LRM) and the long–short-term mem-

ory (LSTM) models and helps to validate the HDP’s functionality in

supporting time series predictive analyses. This provides real-time

bedside probability of mortality utilizing different parameters across

the length of stay in the NICU. We present case studies for death

and discharge cases to illustrate how predictive models might be

used as a decision-making tool in clinical settings.

METHODS

Clinical settings
This study was conducted at eight level III NICUs of a corporate

hospital group across India. All the units have at least 15 beds and

similar infrastructure and patient care facilities and are largely repre-

sentative of other major level III NICUs in the country. None of the

study NICUs support ECMO. There are various data sources in the

NICU, like the electronic medical record (EMR), laboratory infor-

mation management system (LIMS), and biomedical equipment

such as patient monitors, ventilators, and blood gas machines. The

Institutional Review Board of the study NICUs approved the collec-

tion of data from all these sources with a waiver of informed con-

sent. All electronic health records were deidentified in accordance

with the United States Health Insurance Portability and Account-

ability Act (HIPAA), and all the research was performed according

to local institutional guidelines.

HDP data
The HDP divides data into two broad categories: primary and de-

rived. Data are considered primary if its clinical interpretation is

well defined, that is, birth weight, HR, temperature, SpO2, and urine

output. Derived parameters are extracted from the primary data and

represent additional information such as trends or variability. Both

primary and derived parameters are further classified into three cate-

gories: fixed (F), intermittent (I), and continuous (C). The fixed

parameters consist of values that do not change over the course of

the patient’s hospitalization, such as some antenatal and perinatal

data (eg, gestational age, birth weight, sex, etc.) The intermittent

parameters contain clinical information collected periodically during

the hospital stay, such as daily weight, BP (although BP monitoring

using an arterial line is considered a continuous parameter since few

study infants had invasive BP monitoring, BP was analyzed as an in-

termittent parameter), blood pH, lab values, and medication infor-

mation. Continuous parameters are fine-grained consecutive data

such as time-stamped vital signs collected from physiological moni-

tors, for example, HR, RR, and SpO2. Some of these monitors used

in NICUs (such as GE B40VR patient monitor, GE Healthcare, and

the SureSignsVR VM6 patient monitor, Philips Medical Systems) can

only provide data at a minute resolution. Based on the literature re-

view, we utilized 49 commonly collected data parameters evaluated

in previously identified studies (Supplementary Table S1) to instanti-

ate the HDP.

As stated previously, derived parameters are abstracted from pri-

mary data and represent additional information. Examples of de-

rived information include data regularity, stationarity, frequency

components of primary data, or the cross-correlation between two
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parameters such as HR and SpO2. Various studies have utilized

these derived parameters in building prediction models for the early

onset of disease or mortality. Moorman and colleagues have used

sample entropy in HRV as an early marker of disease such as neona-

tal sepsis.22,23 Other studies have used stationarity of time-series

temperature data using augmented Dickey–Fuller statistics to predict

infant mortality. The stationarity of time-series laboratory reports

has been used to forecast viral respiratory illness in PICU.24 The cen-

tral tendency and spread of HRV have been used amongst patients

with severe sepsis and septic shock to predict discontinuance of va-

sopressor medications after ICU admission.25 Additionally, studies

have utilized topic models in longitudinal EMR data to discover fea-

tures used to predict disease severity in the ICU.26

The above studies have validated complex relationships be-

tween diverse physiological parameters and the onset of diseases,

thus signifying the importance of both primary and derived data.

This study similarly used a collection of acquired data and then

augmented it with derived data to create the HDP of a patient. The

HDP was fed into two different models, one based on a LRM and

the other on a LSTM deep learning system to create prediction

programs (Figure 1).

Deep learning models are successful in utilizing high-resolution

time-series medical data in intensive care units.27 In this study, we

chose an LSTM approach28 to deep learning because LSTMs have

been used successfully to model complicated dependencies in time-

series data.29 LSTMs have achieved state-of-the-art results in many

different medical applications.30–32 They are well-suited to describe

a medical dataset where the patient’s clinical state is spread over sev-

eral minutes, hours, and days. On the other hand, the statistical ap-

proach using the LRM is a recognized technique for analyzing large

data sets and can be used to elucidate how certain features of the

data set are associated with the outcomes. Studying both the LRM

and the LSTM models helps validate the HDP’s functionality in sup-

porting time-series predictive analyses.

Study design
Initial clinical data of 1546 patients were collected using a NEO

data aggregator device that collects physiological data from medical

devices like bedside monitors and ventilators in a vendor-agnostic

manner.33 Patients in a study NICU from July 2018 to May 2020

who stayed in the NICU for >24 hours and were sick enough to

Figure 1. Architectural overview of data source, types of data, preparation of HDP data structure and its analysis (F: Fixed, I: Intermittent, C: Continuous parame-

ters).
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have continuous parameters recorded were included in the study. All

the congenital anomalies, readmission, discharge on request, left

against medical advice, and transfer cases were excluded from the

study, leaving a total of 757 cases (742 discharge and 15 deaths) for

study analysis. The reported incidence of congenital anomalies is

1%–4%;34 the neonates with congenital anomalies represent a

group with the risk of mortality. However, for this feasibility study,

keeping in mind the sample size, the neonates with congenital anom-

alies were excluded.

Data preparation and processing
For this study, data were collected through the iNICU EMR plat-

form35 which implements a neonatal data dictionary36 capturing the

complete workflow of the NICU. The data collected in the NICU

were segregated into fixed, intermittent, and continuous fields to

build the HDP time-series data structure. Data visualization was

performed by presenting every attribute against time to compare

and observe the correlation between the variables (Figure 2).

To prepare the data set of the study for the predictive model, all

the death and discharge cases were considered and balanced based

on the length of the stay in NICU. Data contain a total of 757 cases

(742 discharge and 15 deaths). To balance the dataset in the LSTM

model, we analyzed all 15 death and 15 randomly selected discharge

cases. The cases in both the group were matched for their length of

stay. This ensured the equal number of minute wise HDP values

were present for both the groups.

This study focuses on two combinations: (1) discharge and death

patients with similar gestation and birth weight profile and (2) dis-

charge and death patients with different gestation and birth weight

profiles. Since gestation and birth weight are well-known markers of

predicting neonatal mortality, it was important to highlight the role

of the HDP in both combinations. The data were balanced with an

equal number of cases of both outcomes (death and discharge). The

death cases consist of various gestations, and the majority of them

were under 32 weeks of gestation. Whereas the discharge cases had

an average gestation was above 34 weeks. Once the dataset is big,

these variations can be accounted for by machine learning plat-

forms. However, for smaller datasets, this difference in gestation dis-

tribution of death and discharge sample may contribute to bias in

the classification of death cases based on gestation and birth weight.

To circumvent this possible bias, we ran the model on randomly se-

lected discharge cases and received similar results. The data set was

normalized; every column of the data frame is leveled to between 0

to 1 using:

zi ¼ xi�minðxÞ=maxðxÞ �minðxÞ

Data imputation was carried out for missing data for each fixed,

intermittent, and continuous data types. Imputation and detailed

data curation steps are discussed in Supplementary Method S1.

The data set was split into a training and testing set in a 70:30

ratio. The results discussed in this study are from running the LRM

and LSTM predictive models on the testing set. None of the cases in

the testing set were used to train either predictive model.

The computational analysis was carried out on two custom con-

figurations. The first configuration consists of the Hadoop HD In-

sight cluster (Hadoop 3.2.1 on Azure cloud platform) with 200

Figure 2. Data visualization of HDP parameters with respect to time.
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Cores in Japan region with 12 nodes consisting of 1 master (2 nodes)

and 10 worker nodes of D14 configuration each [v2, 16 cores, 112

GB random-access memory (RAM)]. The second configuration con-

sists of the D-Series Azure Virtual machine, which features 2.3 GHz

Intel XEONVR E5-2673 v4 (Broadwell) processors. The virtual ma-

chine of the second configuration consists of 32 CPU cores and 128

GiB of RAM. The mapper, reducer, and the HDP–based machine

learning algorithms were implemented using Python 3.5. The Py-

thon libraries used were pandas, numpy, psycopg2, sklearn,

imblearn, seaborn, math, random, statsmodels, nolds, entropy,

matplotlib, scipy, tensorflow, keras, prettytable, itertools, os, sys,

linecache, pylab, and datetime.

HDP matrix preparation
Based on the 49 parameters selected for the study, 1546 patients had

baseline data available. Out of these, 1188 patients had intermittent

data, and 788 patients had continuous data during hospitalization.

The reason for the difference in intermittent and continuous data

were twofold (1) some patients were not connected with NEO devi-

ces for real-time data capturing, causing loss of continuous data and

(2) nutrition and medication entries were not made for patients who

were either discharged next day or sent back to mother as they were

not ill enough to be kept in NICU. The intersection of patients con-

taining all three fixed, intermittent, and continuous data was 757

patients. During the NICU stay, the patients are occasionally re-

moved from devices for procedures, or the probes get disconnected

due to routine movements. This results in missing data, which needs

prior management. The distribution of data imputation for various

fields is presented in Supplementary Table S7.

Development of the models
A leave-one-out cross-validation strategy37 was used in both LRM

and LSTM models during the model development.

LRM model

Logistic regression with l2 regularization38 was used as the LRM. In

order to compensate for the skewed distribution of samples (death

vs discharge) in this study, we have used an oversampling technique

called synthetic minority oversampling technique (SMOTE) to bal-

ance the training set.39 During the training phase analysis, the

SMOTE boosting runs in conjunction with logistic regression

(Figure 3).

LSTM model

In this study, a two-layer LSTM model28 was implemented, with the

first layer being a bidirectional LSTM with 512 connections and the

second layer with an LSTM with 256-dimensional cell state and no

dropouts (detailed features are discussed in Supplementary Method

S2).40 Both the layers use tanh activations for the cell states of the

LSTM, while the output layer has a sigmoid activation, as is typical

for binary classification problems (death vs discharge). Though,

ReLU activations have been very successful in deep feed-forward

networks (eg, CNNs); however, for LSTMs, ReLU–based activation

Figure 3. Detailed flow chart of data preparation, imputation and analysis, LOS: Length of Stay, Pn: Patient number LR: Logistic Regression, SMOTE: Synthetic Mi-

nority Oversampling Technique, LSTM: Long Short Term Memory.

JAMIA Open, 2021, Vol. 00, No. 0 5



requires careful initialization in order to avoid exploding gra-

dients.41 Therefore, in our LSTM–based model, tanh activation has

been used. The tanh activation is also used successfully with LSTM

model in the previous studies on ICU data (MIMIC III).40 The

LSTM validation was done with a random split of data into 10-fold

cross-validation.

Model performance testing
The HDP data were processed with LRM and LSTM–based techni-

ques at different time points of the patient stay (1 hour, 6 hours, 12

hours, 48 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, and the total

length of stay) to generate a prediction model. The mortality predic-

tion performance of the LRM and LSTM models were compared

with other severity scores such as the clinical risk index for babies

(CRIB), CRIB-II, the score for neonatal acute physiology II (SNAP-

II), and the SNAP-perinatal extensions II (SNAPPE-II) used in NICU

settings (based on parameters presented in Table 1). Model perfor-

mance was assessed based on the area under the receiver operating

characteristic curve (AUC-ROC), and the sensitivity, specificity, and

accuracy were also evaluated.

Data deidentification
Data collection was based on Fast Healthcare Interoperability

Resources (FHIR) protocols. Data collected for the study were dei-

Table 1. List of parameters of CRIB, CRIB-II, SNAP-II, SNAPPE-II, and LRM and LSTM scores

CRIB

(n¼ 244)

CRIB-II

(n¼ 1166)

SNAP-II

(n¼ 1546)

SNAPPE-II

(n¼ 1546)

LRM

(n¼ 1546)

LSTM

(n¼ 1546)

Number of parameters 6 4 6 9 49 49

Qualifying criteria

Birth weight (g) <1500 All All All All All

Gestation (weeks) �32 �32 All All All All

Valid until hour 12 1 12 12 LOS LOS

Parameters

Birth weight � � � � �

Gestation � � � � �

Maximum base excess � �

Congenital malformation �

FiO2 � � �

Gender � � �

Temp at admission �

Mean BP � � � �

Lowest temp � �

pH � � � �

PO2/FiO2 ratio � �

Multiple seizures � �

Urine � � � �

APGAR � � �

Systolic BP � �

Diastolic BP � �

Body weight � �

Temp � �

Heart rate � �

Respiratory rate � �

In/out born � �

Mode of delivery � �

Baby type (single/multiple) � �

Conception type � �

Random blood sugar � �

Length � �

Birth head circumference � �

Mother’s age � �

Medication type � �

Medication dose � �

Nutrition � �

Cross-correlation HR-SpO2 �

Cross-correlation HR-RR �

Cross-correlation RR-SpO2 �

Sample entropy �

Variance �

Detrended fluctuation analysis �

Mean �

Augmented Dickey–Fuller �

BP, blood pressure; CRIB: clinical risk index for babies; HR: heart rate; LRM: logistic regression model; LSTM: long–short-term memory; LOS: length of stay;

RR: respiratory rate; SpO2: peripheral oxygen saturation SNAP-II: score for neonatal acute physiology II; SNAPPE-II: SNAP-perinatal extensions II.
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dentified, and the patient database adheres to HIPAA standards.

Patients’ names, unique id, and other identifiable demographic in-

formation, including date of birth and date of admission were re-

moved before analysis.

RESULTS

Baseline data
The baseline dataset included 1546 patients (877 males and 669

females) comprising 25 death and 1521 discharged cases (Table 2).

80% of non–surviving cases have gestation <32 weeks and birth

weight <1500 g. The study shows several other parameters, includ-

ing gestational age, birth weight, 1-minute APGAR, 5-minute AP-

GAR, respiratory distress, and sepsis, vary significantly between the

discharged vs death cases. Two-sided Welch’s test is used for two

populations (death and discharge) having unequal sample distribu-

tion variance.

Ablation experiments
The ablation experiments for fixed, intermittent, continuous param-

eters, and their combinations to estimate the weights of these param-

eters for the LRM and LSTM models are shown in Table 3. When

considered alone, continuous parameters in both models have the

best predictive performance (0.83 and 0.88 AUC, respectively). The

combination of fixed, continuous, and intermittent parameters im-

proved the AUC to 0.86 for LRM and 0.95 for LSTM (Table 3). It

was observed that SpO2, a continuous parameter, has a significant

contribution with the AUC-ROC score of 0.81 (Supplementary

Table S8). Various combinations of pulse rate (PR), SpO2, and RR

have more than 0.80 AUC scores (Supplementary Table S9). While

in the case of intermittent parameters, urine output has a maximum

contribution with the AUC score of 0.88 (Supplementary Table

S10). These AUCs reported are from a validation dataset.

Model performance
The performance of the model to predict mortality was assessed at

different time periods: 1 hour, 6 hours, 12 hours, 48 hours, 1 week,

2 weeks, 3 weeks, and 4 weeks. The best performance of LRM was

achieved at the 4th week, while the best performance of the LSTM is

at the 48th hour (Table 4). The cutpoint used for computing the dif-

ferent evaluation metrics was the default value of 0.5, typically used

with binary classifiers like logistic regression. The ROC curve or the

precision-recall curve can be further analyzed to pick an appropriate

operating point (or cutoff threshold), as is typically done before de-

ployment. The emphasis of this experiment was to demonstrate the

models’ general capability to process the input data and predict mor-

tality, as opposed to achieve the best performance on this specific

dataset. To evaluate the performance of the developed model, the

most fragile and at risk infants group was used to predict the mortal-

ity (Supplementary Method S3).

Comparison with existing models
The CRIB, CRIB-II, SNAP-II, SNAPPE-II, LRM, and LSTM scores

were compared for predicting death and discharge at the respective

time points where each score is applicable. The performance of the

LSTM model was compared with other severity scores using the val-

idation dataset. A comparison of sensitivity, specificity, and accu-

racy is shown for each model in Figure 4. ROC curves are

represented in Figure 5 and Supplementary Table S6.

Case studies
This section shows two case studies, one for death and another for a

discharged patient, to demonstrate how the prediction model varies

over time during the hospital course. Using the LSTM prediction

model, we have developed a real-time probability of death across

the entire length of stay in the NICU. We used a probability thresh-

old of 0.5 to predict death based on the standard convention fol-

lowed for a balanced dataset.42 The probability variation at any

given time point based on the underlying health condition is repre-

sented as red and green dots. Any probability above 0.5 predicts

death, and probabilities under 0.5 predict survival to discharge (Fig-

ure 6). The cut-off point (of 0.5) could be adjusted by analyzing the

ROC curve for higher accuracy or precision required at specific

NICU deployment.

Table 2. Baseline characteristics of the population

Parameters Death (n¼ 25) Discharge (n¼ 1521) P values

Gestationa 29.7 (4.7) 34.9(3.1) <.001

Mother’s agea 31.9 (3.9) 32.1 (5.5) .838

Conception type (IVF)b 14 (56.0%) 407 (26.7%) .001

Antenatal steroidsb 12 (48.0%) 443 (29.1%) .04

Mode of delivery (LSCS)b 17 (68.0%) 910 (59.8%) .408

Out bornb 4 (16.0%) 315 (20.7%) .564

Baby type (multiple)b 18 (72.0%) 712 (46.81%) <.001

Gender (male)b 14 (56.0%) 863 (56.74%) .941

APGARa

One minute 6.2 (1.2) 7.8 (0.8) <.001

Five minutes 7.4 (0.9) 8.8 (0.5) <.001

Ten minutes 8.5 (0.8) 9.3 (0.6) .057

Birth weighta 1342.2 (844.3) 2338.6 (705.8) <.001

Birth head circumferencea 28.5 (4.8) 32.4 (2.8) .103

Jaundice with phototherapy 11 (44.0%) 648 (42.6%) .889

Sepsis 16 (64.0%) 168 (11.05%) <.001

Respiratory distress syndrome 19 (76.0%) 62 (4.1%) <.001

APGAR: appearance, pulse, grimace, activity, and respiration; IVF: in vitro fertilization; LOS: length of stay; LSCS: lower segment cesarean section.
aMean (standard deviation).
bCount (percentage within that class).
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The two case studies illustrate the possibility of how real-time

prediction might be used at the bedside. Although the models in this

study are trained specifically to predict mortality, one perspective is

that a higher probability of death directly implies a higher severity

of illness. Therefore, a real-time mortality predictor is functionally

similar to a real-time severity of illness score.

Even though the current LSTM model is not explicitly trained

for specific morbidities or their course of treatments, its prediction

seems well synchronized with assessments and events in a patient

stay during NICU. Interestingly, physiological deviations detected

by the models (marked as Mn in Figure 6) predict and correlate with

Table 3. Ablation experiments for the contribution of fixed, intermittent, and continuous during mortality prediction

LSTM LRM

Subcomponents AUC-ROCa F1-score AUPRC AUC-ROCa F1-score AUPRC

Fixed 0.47 6 0.11 0.51 0.52 0.68 6 0.04 0.62 0.46

Intermittent 0.87 6 0.13 0.72 0.68 0.77 6 0.05 0.70 0.49

Continuous 0.88 6 0.13 0.77 0.71 0.83 6 0.04 0.79 0.68

Fixed þ intermittent 0.75 6 0.19 0.66 0.60 0.75 6 0.04 0.71 0.57

Fixed þ continuous 0.69 6 0.51 0.69 0.67 0.80 6 0.03 0.77 0.65

Intermittent þ continuous 0.91 6 0.05 0.83 0.79 0.81 6 0.03 0.78 0.75

Fixed þ intermittent þ continuous 0.95 6 0.12 0.88 0.90 0.86 6 0.04 0.80 0.79

AUC-ROC: area under the receiver operating characteristic curve; LRM: logistic regression model; LSTM: long–short-term memory.
aAUC-ROC 6 confidence intervals (95%).

Table 4. Summary of LRM and LSTM mortality detection performance at different time points

Time of Prediction AUC-ROC (LRM) PPV (LRM) NPV (LRM) AUC-ROC (LSTM) PPV (LSTM) NPV (LSTM)

1 hour 0.59 6 0.02 0.75 6 0.09 0.62 6 0.08 0.88 6 0.02 .0.96 6 0.02 0.71 6 0.06

6 hours 0.72 6 0.03 0.85 6 0.03 0.75 6 0.02 0.89 6 0.03 0.73 6 0.05 0.81 6 0.03

12 hours 0.75 6 0.01 0.85 6 0.05 0.80 6 0.03 0.93 6 0.01 0.92 6 0.02 0.84 6 0.02

48 hours 0.73 6 0.03 0.82 6 0.04 0.85 6 0.04 0.95 6 0.01 0.97 6 0.01 0.85 6 0.01

1 week 0.71 6 0.01 0.79 6 0.03 0.70 6 0.02 0.91 6 0.02 0.85 6 0.04 0.92 6 0.02

2 weeks 0.79 6 0.02 0.86 6 0.01 0.75 6 0.04 0.90 6 0.03 0.79 6 0.06 0.90 6 0.02

3 weeks 0.72 6 0.02 0.80 6 0.07 0.71 6 0.03 0.91 6 0.01 0.82 6 0.02 0.93 6 0.01

4 weeks 0.82 6 0.01 0.88 6 0.02 0.77 6 0.06 0.90 6 0.02 0.88 6 0.03 0.79 6 0.03

Total length of stay 0.81 6 0.02 0.89 6 0.02 0.80 6 0.02 0.96 6 0.01 0.80 6 0.03 1.0 6 0.01

AUC-ROC: area under the curve receiver operating characteristic curve; CI: class interval; LRM: logistic regression model; LSTM: long–short-term memory;

NPV: negative predictive value; PPV: positive predictive value.

Figure 4. Comparison of CRIB (at 12 hours), CRIB-II (at 1 hour), SNAP-II (at 12 hours), SNAPPE-II (at 12 hours), and probability (at 48 hours) for predicting death

and discharge.
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clinical morbid conditions observed by the doctor (marked as Dn in

Figure 6).

In the following tables describing the case studies, time of assess-

ment/clinical detection of the event means the time at which the doc-

tor has observed an anomaly in the patient’s condition. The

assessment itself is the name of a predefined ICD9 medical state

picked up by the doctor clinically. The deviation detected by the

model is defined as the absolute percentage change in the value of

probability between two consecutive time points. In this current fea-

sibility study, a threshold of 10% and a patience of 4 is used. The

patience value signifies that the difference from the last value is

maintained for 4 consecutive 15-minute intervals. The deviation

time represents the time when the model detects an anomaly in the

patient condition.

The convergence of the probability of death and discharge of

<32 and >32 gestational age is represented in Supplementary Figure

S1 with the normalized length of stay. The probability of mortality

for each death patient is represented in Supplementary Figure S2.

Figure 5. Receiver Operating Characteristic Curve of the CRIB, CRIB-II, SNAP-II SNAPPE-II, LRM and LSTM.

Figure 6. (a) Death case, (b) Discharge case (purple diamond represents the prediction of severe risk by the model, the black circle represents the severity sus-

pected by the doctor), Mn: Anomaly detected by model, Dn: Time of assessment by the doctor.
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Death case
In Figure 6 (a) and Table 5, we illustrate an example of changes in

the clinical state of a deceased patient and the consequent real-time

prediction of outcome (mortality) during the hospitalization. The

main clinical events are described below (detail in Supplementary

Method S3):

1. The patient was admitted with respiratory distress and was put

on non–invasive mechanical ventilation (D1). The model detected

a deviation at the same time represented as M1.

2. At day of life (DOL) 1, after 3 hours of admission, the doctor

detected apnea (D2), predicted by the model at the time of admis-

sion (M2).

3. At DOL 4, the patient developed jaundice (D3) and was treated

with phototherapy, predicted by the model (M3).

4. At DOL 8, the clinician observed absent pulses in the lower limbs

of the patient and diagnosed the patient with coarctation of the

aorta (COA) (D4).

5. At DOL 13, the probability of mortality was �54% as the model

detected deviation (M5) �68%. Later the same day, the patient

was suspected of having sepsis (D5) and was started on antibiot-

ics.

6. At DOL 15, the probability of mortality increased to �74%,

which was captured as deviation (M6), whereas the probability of

mortality at a later time coincident with a physician assessment

worsened to �90% (D6).

7. The patient died on DOL 19.

Discharge case
In Figure 6 (b) and Table 6, we illustrate an example of changes in

the clinical state of a discharged patient and the consequent real-

time outcome predictions (detailed clinical events are discussed in

Supplementary Method S3):

1. The patient was admitted with respiratory distress syndrome

(RDS). The model detected a deviation (M1) approximately an

hour prior to clinician documentation of RDS at the third hour of

life (D1).

2. The model was able to detect a deviation at 18 hours (D2), while

the patient was noted to have jaundice at the age of 51 hours

(M2).

3. The patients’ condition remained stable and was discharged on

DOL24.

DISCUSSION

In this study, we have developed and validated the HDP time-series

data model and constructed two bedside mortality prediction mod-

els based on the HDP. The mortality prediction models in this cur-

rent study utilize statistical and deep learning approaches to

illustrate the broad range of analyses that the HDP supports. There

is no theoretical constraint, however, on the type of analytic

approaches that can utilize the HDP, and other predictive techniques

may be explored in future studies. Frequently used traditional scores

such as the CRIB, CRIB-II, SNAP-II, and SNAPPE-II use limited

information from the NICU (often first 24 hours following

admission).43–45

Recent studies have reported prediction models based on time se-

ries data18,46,47 can detect the change in physiological parameters

due to acute deterioration of health conditions before clinical suspi-

cion. For instance, the Pediatric Risk of Mortality Prediction Tool

(PROMPT), a real-time prediction score used in PICU, identifies the

deteriorating health of patients.19 Similarly, the DeepSOFA frame-

work predicts illness severity in ICU settings by leveraging deep

learning with Sequential Organ Failure Assessment (SOFA). The

DeepSOFA framework utilizes an individual’s physiological patterns

and specific respiratory, cardiovascular, and hematology data from

electronic health record data to calculate hourly predicted SOFA

score.48 These studies show a continuous improvement in risk as-

sessment scores with machine learning, artificial intelligence techni-

ques, and data archiving hardware, facilitating the discovery of

data-driven characteristics and patterns of diseases.49–51 The physio-

logical data are continuously influenced by clinical interventions

such as medication, oxygen supplementation given to the patient to

maintain the steady-state.52

In this study, we have chosen to analyze 49 common parameters

(fixed, intermittent, and continuous) recorded during the neonatal

period based on our prestudy literature review. We recognize that

other parameters may be potentially important variables, which can

be considered in future studies. Our study builds upon this knowl-

edge to leverage integrated ICU data built by combining real-time

Table 5. List of events detected by the doctor and the LSTM, LRM model, and interventions carried out for death case

DOL (days)

Time of assess-

ment/clinical de-

tection of event Name of event

Action taken/

interventions

When the model

has detected the

deviation (time)

(LSTM, LRM)

probability at

clinical assessment

(LSTM, LRM)

probability

at deviation

1 At birth RDS (1st episode) NIMV At admission (0.044, 0.001) (0.044, 0.001)

1 3 hours Apnea NIMV, caffeine At admission (0.464, 0.011) (0.044, 0.001)

1 4 hours Jaundice Phototherapy 17 hours (0.50, 0.001) (0.41, 0.144)

6 96 hours Jaundice (2nd epi-

sode)

Phototherapy 82 hours (0.47, 0.002) (0.52, 0.002)

8 192 hours No pulses in lower

limbs

ECHO for COA,

prostaglandin

147 hours (0.57, 0.014) (0.50, 0.014)

12 306 hours RDS (2nd episode) CPAP 299 hours (0.53, 0.012) (0.68, 0.002

13 310 hours Sepsis Amikacin, Mero-

penem

299 hours (0.54, 0.011) (0.68, 0.002)

14 353 hours Worsen RDS HFO 341 hours (0.94, 0.02) (0.74, 0.017)

Note: Time of assessment: time at which the doctor has observed an anomaly in the patient condition.

The deviation: time when the model/device detects an anomaly in the patient condition.

COA: coarctation of aorta; ECHO: echocardiogram; HFO: high frequency oscillator; LRM: logistic regression model; LSTM: long–short-term memory;

NIMV: non–invasive mechanical ventilation; RDS: respiratory distress syndrome.
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physiological data, laboratory results, and an EMR integrated plat-

form. The iNICU35 EMR plugin fetches the clinical data from differ-

ent EHR systems like Epic, Cerner, and Allscripts.53 It uses

RedoxEngine54 to communicate with different EMR and

communicate via HL7 message. Certain examples of these messages

include admission-discharge details (ADT), observation record units

(ORU-R01: Laboratory results data), and digital imaging and com-

munications in medicine (DICOM)55 based data transfer to collate

the data on a single interface. The solution is implemented as a plu-

gin to EMR, which shows data on a web-interface in the tablet at

the bed-side (Supplementary Figure S26). The entire record for a sin-

gle patient is augmented with temporal information and derived

data and referred to as the HDP. Incorporating continuously

updated physiological data in the HDP allows the model to provide

timely warnings of health deterioration. The LSTM–based model

utilizes 15-minute data (configurable) chunks and predicts the prob-

ability of death or discharge or patient deterioration based on com-

bined HDP data structure prior to clinician observation. However,

the model does not provide the specific parameters or correlation be-

tween the parameters causing the deterioration. Moreover, this is a

feasibility study where we have shown that this model provides a

reasonable risk for the occurrence of an event. However, whether

this early alert results in prompt action by the clinician and can sub-

vert the occurrence or severity of an event needs to be evaluated in

further clinical trials.

In the current study, the LSTM output was compared with exist-

ing severity scores along with traditionally used LRM. In the LSTM

model, the complete data at per minute resolution are inserted as an

input (consisting of independent variables). Even though the LSTM

is performing better than other models, the current technology land-

scape of LSTM does not have explainability of prediction with re-

spect to which all variables contribute significantly to the outcome

variable. Even though the prediction by the LRM is slightly less

compared to the LSTM model, it has the advantage of explainability

regarding the contribution of the individual input variable. It was

anticipated that as the system will be deployed at the bedside, it will

be determined whether having both model outputs are useful.

This study has certain limitations. The study is based on retro-

spective data, and to validate the use in bedside clinical care, a pro-

spective study needs to be done. In the current study, hospital

readmission was an exclusion factor. The fixed factors, such as ad-

mission parameters in infants, who have readmissions, may not have

the same predictive value for primary admissions. Since readmission

may be considered a complication associated with morbidities or

even mortality, future studies should include readmissions. A com-

mon and unavoidable property of real clinical data is missing data,

which needs to be handled by imputation strategies. Various impu-

tation strategies such as replacing missing values by (1) �999, (2)

mean of remaining data, (3) previously known value of the parame-

ter, and (4) building models from existing data to predict the missing

values have been used in the literature. However, the type of imputa-

tion strategy used to handle missing data can affect the outcome of

the deep learning models. Besides, the dataset included in the study

includes only one year from eight sites, so the number of death cases

were limited. Model performance can likely be further improved

with a larger dataset, with validation testing on another external

dataset. Whereas many current ICU physiological monitors can out-

put waveform data, this study only utilizes per minute data for de-

veloping the prediction model due to device limitations at the

current study sites. The current implementation of the model was

done, utilizing only LRM and LSTM models. In the future, more

machine learning algorithms could be utilized that may be even

more suitable for managing time-series clinical data.

A vast amount of temporal patient information is stored in the

HDP data structure at a regular interval. The current deep learning

and regression models focus on hidden inter-relationships (repre-

sented in the derived data) in the HDP to predict an individual

patient’s mortality. In the current study, the individual graphs for all

death cases were studied, and it was observed that the line for each

of the patients varies depending on the clinical severity and associ-

ated metabolic abnormalities. With a limited dataset, specific dis-

ease trends are difficult to the group due to a lack of data with

respect to gestational age and birth weight. In future studies, we aim

to identify disease-specific patterns for different gestational ages and

birth weight categories and predict specific morbidities such as sep-

sis, NEC, and ROP by creating specific disease models. To achieve

this, knowledge–based disease definition by capturing relevant fea-

tures (collected from literature studies) could be curated. We aim to

use higher fidelity (resolution) data in future studies, as more granu-

lar data can increase the sensitivity of the HDP–based model. Big

data validation of prediction models in different settings could help

lower the burden of caregivers by reliably identifying the most criti-

cal patients and supporting the development of intervention plans

according to the available care resources.

Table 6. List of events detected by the doctor and the (LSTM, LRM) model and interventions carried out for discharge case

DOL (days)

Time of assessment/

clinical detection

of event

Name

of event

Action taken/

interventions

When the model has

detected the

deviation (time)

(LSTM, LRM)

probability at

clinical assessment

(LSTM, LRM)

probability at

deviation

1 3 hours RDS CPAP 1 hour (0.13, 0.013) (0.18, 0.014)

1 3 hours Apnea CPAP to NIMV af-

ter 1 hour,

piperacillin

tazobactam, inj.

amikacin, inj.

caffeine (load-

ing)

1 hour (0.13, 0.013) (0.18, 0.014)

2 51 hours Jaundice Phototherapy 18 hours (0.10, 0.035) (0.12, 0.098)

Note: Time of assessment: time at which the doctor has observed an anomaly in the patient condition.

The deviation: time when the model/device detects an anomaly in the patient condition.

CPAP: continuous positive air pressure; Inj.: injection; LRM: logistic regression model; LSTM: long–short-term memory; NIMV: non–invasive mechanical ven-

tilation; RDS: respiratory distress syndrome.
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Code availability
The code that underpins the prediction of mortality using the HDP

dataset is openly available. The drive containing the code used to

generate the descriptive statistics and tables included in this article

are available at: https://github.com/HDP-predictions/Development-

and-Validation-of-High-Definition-Phenotype-HDP-based-mortal-

ity-prediction-in-critical. README.md file has all the scripts-

related comments and other steps for executing the code.
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