
Total Synthesis of Natural Terpenoids
Enabled by Cobalt Catalysis
Shu Xiao, Likun Ai, Qichang Liu, Baihui Yang, Jian Huang, Wei Xue* and Yang Chen*

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural
Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, China

Transition metal catalysis plays an essential role in the total synthesis of natural products.
Cobalt-mediated asymmetric catalysis has successfully been used as a primary or a
secondary step in the total synthesis of natural products, especially terpenoids.
Terpenoids represent one of the most prominent families among various categories of
natural products, attracting immense attention due to their promising physiological
activities. This review summarizes the recent advances toward the total synthesis of
terpenoids by cobalt-mediated asymmetric catalysis, which may shed some light on their
future synthetic efforts toward natural pesticides such as celanguline, azadirachtin, etc.
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INTRODUCTION

Cobalt is a transitionmetal widely distributed on the earth. It has been used for organic synthesis in catalytic
reactions for almost a century. Roelen (1938) achieved the hydroformylation alkene under Co2(CO)8-
catalyzed conditions, which was a seminal work highlighting the impact of organometallic cobalt catalysts
on selective organic transformations. It is worth mentioning that terpenoids are integral parts of natural
products, widely distributed in plants, microbes, marine life, and some insects. The semi-synthesis and total
synthesis of terpenoids gradually became one of the essential hotspots in the 20th century due to their
various chemical structures and significant biological activities. In the following decades, great efforts have
been made to explore novel strategies to synthesize the critical intermediates of terpenoids by catalyzing
cobalt. Various studies have shown that cobalt catalysts expand the scope and range of organic methods,
particularly in synthesizing small rings and enantioselective reactions. In this context, recent reviews
summarized the enantioselective cobalt-catalyzed transformations (Pellissier and Clavier, 2014), catalytic
activation of olefins using cobalt complex (Shigehisa, 2018), and metal-hydride hydrogen atom transfer
(MHAT) reactions in natural product synthesis (Wu andMa, 2021).However, there is a lack of a systematic
and comprehensive summary of the application of cobalt catalysis in the total synthesis of terpenoids. Given
the continuous progress in this research field, this review summarizes the total synthesis of terpenoids by
asymmetric cobalt catalysis over the past few decades. It introduces aspects of hydration, hydrovinylation,
hydroperoxidation, isomerization, and cycloaddition by cobalt-catalyzed. Partial functional group
manipulation steps in the synthetic routes are omitted due to space limitations.

THE TOTAL SYNTHESIS OF TERPENOID ENABLED BY
COBALT-CATALYZED

Hydration
Asymmetric hydration represents a powerful tool for converting alkenes into valuable and chiral building
blocks for organic synthesis. It is a fundamental challenge for all hydration reactions to control the
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stereoselectivity of the alkene. We will systematically introduce
applications of olefins hydration triggered through cobalt
catalysis. One of the most widely employed cobalt radical
reactions is the Mukaiyama hydration, a mild method to
construct the C-O bonds across double bonds. Many reports
show that cobalt-mediated Mukaiyama hydration of olefins has
numerous applications due to its high regio- and chemoselectivity.

Shibasaki and Kanai (Kuramochi et al., 2005) achieved the first
total synthesis of garsubellin A (5) using a cobalt-catalyzed
Mukaiyama hydration. As shown in Figure 1A-I, isopropenyl
ketone 2 was provided from commercially available
cyclohexanone 1 in four steps. To complete the construction
of the A-B rings in the later stage, the authors firstly protected the
prenyl group under the conditions (Co(acac)2, PhSiH3, and O2) to
obtain tertiary alcohol 3, followed by treatment of 3 with
MOMCl; a second prenyl group was introduced to C-4 at the
axial position to give coupling compound 4. Later, (±)-
garsubellin A (5) was prepared via a sixteen-step conversion
from 4.

Metz (Zahel and Metz, 2013) finished the synthesis of
(−)-oxyphyllol (9) by a regio- and diastereoselective Co

(II)-catalyzed hydration of olefin. As shown in Figure 1A-
II, the total syntheses started from (−)-photocitral A (6). By a
six-step conversion, the intermediate 7 was prepared. Under
Co-catalyzed Mukaiyama hydration, a diastereomeric
mixture of alcohol 8a and 8b was furnished with an 82%
overall yield. (−)-Oxyphyllol (9) was then synthesized from
8a in three steps.

Liu (Song et al., 2015) applied Mukaiyama hydration in the
total synthesis of atisane-type diterpenoids. As shown in Figure
1A-III, their synthesis started with 12, which could be accessed by
coupling epoxy geranyl bromide 10 and 1,2-dimethoxy-3-
methylbenzene 11. Afterward, a seven-step conversion
furnished tetracyclic 13, followed by Mukaiyama hydration
reaction with Co(acac)2 as the catalyst to afford triol 14 in
65% yield. After five steps, the total synthesis of rac-crotovarin
(15) was accomplished.

Sarpong (Pfaffenbach et al., 2019) synthesized indole
sesquiterpenoids xiamycins A, C, F, H and oridamycin A. As
shown in Figure 1A-IV, aldehyde 17 was prepared from (R)-
carvone (16) after twelve steps as a common late-stage
intermediate applied to synthesize several xiamycin congeners.

FIGURE 1 | Cobalt-catalyzed Hydration, Hydrovinylation, and Hydroperoxidation.
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Mukaiyama hydration of 17 with Co(acac)2 as the catalyst
followed by Pinnick oxidation obtained a pair of diastereomers
xiamycin C (18) and 19-epi-xiamycin C (d.r. = 1.5:1) in 64% yield
over two steps, and xiamycin F (19) in 15% yield.

Trauner (Liu and Trauner, 2017) reported the synthesis of the
antiviral diterpene, wickerol A (24). As shown in Figure 1A-V,
with enone 20 and diene 21 as start material, tricylic enol silyl
ether 22 was constructed via Diels–Alder cycloaddition.
Whereafter, tetracyclic compond 23 was obtained from 22 in
nineteen steps. The authors finished the total synthesis of
wickerol A (24) at the last step of the Mukaiyama hydration
of olefin via CpCo(CO)2 catalyst with a 31% yield.

Shenvi (Ohtawa et al., 2017) prepared neurotrophic
sesquiterpenes, 11-O-debenzoyltashironin (29). As shown in
Figure 1A-VI, The synthesis commenced with the
construction of tetracycle 27, which was accessed through a
cycloaddition between cyclopentanobutenolide 25 and
butenolide 26. The seven-membered lactone 28 could be
constructed in five steps containing a Dieckmann-type
condensation from 27. The authors suspected that the
stereochemistry of hydration products might be affected by
steric shielding by the C10 alcohol. Thus, the authors applied
Mukaiyama hydration via Co(acac)2 catalyst in the last stage
toward the total synthesis of 11-O-debenzoyltashironin (29),
followed by hemiacetalization with p-TsOH·H2O to transform
the trans-hydrindane skeleton with tertiary alcocyclic in
72% yield.

Maimone (Hung et al., 2019) explored a terpene feed stock-
based oxidative synthetic approach to synthesize the Illicium
sesquiterpenes. As shown in Figure 1A-VII, the alkene 31 was
prepared from (+)-cedrol (30) in ten steps. Under the presence of
Co(acac)2, PhSiH3, and O2, 31 could be converted to 3-deoxy-
pseudoanisatin (32) and its epimer 33 in a 1:1.7 ratio with a 50%
yield via a radical hydration reaction.

As shown in Figure 1A-VIII, Shenvi (Crossley et al., 2020)
accomplished the total synthesis of (−)-picrotoxinin (35) from
dimethyl-(R)-carvone 34 in 12 steps. Under Mukaiyama
hydration conditions, Co(acac)2 and PhSiH3 in i-PrOH under
O2, (−)-picrotin (36) was isolated in one step and 84% yield.

Dethe (Dethe and Nirpal, 2021) described the enantiospecific
total synthesis of japonicol C (41). The allyl alcohol 38 could be
advanced to (R)-(+)-limonene (37) in six steps. As shown in
Figure 1A-IX, treatment of 38 with Co(acac)2, PhSiH3, O2, and
THF, generated the stereospecific product 39 in 68% yield.
Although it was an unsuccessful synthesis of japonicol C (41),
it provided (+)-iso-japonicol C (40) after deacetylation of 39 in
63% yield. The authors speculated that the stereochemical
outcome of the Mukaiyama reaction could be due to the Co-H
hydride approaching from a less hindered side. To overcome the
obstacle, they took advantage of Pd(OH)2/C-catalyzed
isomerization/hydrogenation to furnish (−)-japonicol C (41)
from allyl alcohol 38.

As shown in Figure 1A-X, a divergent total synthesis of
cephalotane-type nor-diterpenoids cephanolides A-D (46–49)
was reported by Sarpong (Haider et al., 2021). Their synthesis
commenced from the commercially available 7-hydroxy-4-
methylindanone 42, which could be converted to bridge

lactone 43 via a four-step sequence with intramolecular
Diels–Alder cycloaddition as a critical step. The common
intermediates 45 and 45a containing the A/B/C/D/E rings of
cephanolides A-D were synthesized by Mukaiyama hydration
under Co(thd)2, O2, Et3SiH, and TBHP from 43. In addition, it is
necessary to form 44 to use NfF and excess DBU, following
converting ketone to an olefine 45 with Ti(Oi-Pr)2Cl2 and
Nystedt reagents, followed by Pd catalytic hydrogenation
reduction to get common intermediate B (45a). In a word, the
cephanolide A (46) was successfully constructed using 42 as the
starting material and 45 as common intermediate in overall 14
steps; cephanolide B (47, 10 steps), cephanolide C (48, 8 steps),
and cephanolide D (49, 14 steps) were accessed through late-stage
oxygenation from a commercially available indanone (42) and 45
as a comm intermediate A.

Carreira (Wolleb and Carreira, 2017) reported the
asymmetric total synthesis of (+)-dendrowardol C (53). As
shown in Figure 1A-XI, the fused tetracyclic carbon skeleton
of 51 was prepared from known ester 50 in eleven steps. They
initially tried to construct the primary alcohol 53 through
hydroboration-oxidation reaction with the desired
configuration. However, they always gave the 1:1 mixture of
diastereomers. Towards this end, treatment of 51 with chiral
CoI (52) and HBpin, followed by oxidative and global
deprotection, afforded the natural product
(+)-dendrowardol C (53) in a diastereomeric ratio of 4:1
with 60% yield.

Hydrovinylation
Cobalt-catalyzed asymmetric hydrovinylation has the potential to
control the R/S stereocentres of C–C bond formations. Moreover,
the choice of the Co-catalyst enables diverse products. The
method has been applied in the total synthesis of terpenoids.
Co reacted as radical metal hydrides or hydrogen atom transfer
(HAT) reagents, which prefer to add hydrogen to the less
sterically hindered olefin position to form the most stable radical.

Schmalz (Movahhed et al., 2021) developed a new method of
enantioselective cobalt-catalyzed hydrovinylation to introduce
chiral olefins. As shown in Figures 1B, taking advantage of
the novel method as the chirogenic step the asymmetric
hydrovinylation of vinyl-arenes 54a/54b was performed
utilizing Co(L*)Cl2 as a catalyst under the atmosphere of
ethylene and Et2AlCl, providing vinyl-arenes 55a/55b with
remarkable efficiency and excellent enantioselectivity. The total
synthesis of (+)-erogorgiaene (56) was achieved in only seven
steps with a 46% overall yield from 4-methyl-styrene 54a.
Moreover, the iso-pseudopterosin A (57) was prepared in 12
steps with a 30% overall yield from 54b, which proved to be
equally anti-inflammatory as a mixture of natural
pseudopterosins.

Hydroperoxidation
As shown in Figure 1C, Maimone (Hu et al., 2019) reported
the synthesis of complex guaianolide sesquiterpenes. For
sinodielide A (62), treatment of (−)-linalool (58) with
NaHMDS and 59 was converted into ester 60, followed by
underwent smooth Pauson-Khand reaction using dicobalt
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octacarbonyl (Co2(CO)8) gave bicyclic lactone 61. An
additional nine steps gave 62, Wieland-Miescher Ketone
analogue 64 was obtained by Robinson annulation starting
with (+)-carvone (63). Then 64 was converted to triol 66 by a
tandem cobalt-catalyzed hydroperoxidation via bis-peroxide
intermediate 65, followed by Zinc powder reduction in a
respectable 50% isolated yield. At the last step, boariol (67)
was prepared using a stereoselective reduction with LiAlH4

and etherification. With the same procedure and conversion,
the total synthesis of notrilobolide (72) was achieved in the
overall 14 steps from (+)-carvone (63) as starting material via
trien 69 and triol 71 as critical intermediates. Notably, the total
syntheses of slovanolide (76) and montanolide (79) via cobalt-
catalyzed Mukaiyama-type hydration individually from
common intermediate 73.

Isomerization of Olefins
The isomerization of double bonds has attracted attention during
the last decade due to the growing importance of selectively
shifting this synthetically essential functionality within a
molecule. Cobalt complexes have also been utilized for the

migration transposition of double bonds along a carbon chain.
Hilt (Puenner et al., 2012) realized a transposition of a terminal
alkene towards an internal alkene by cobalt catalyzed, and it was
applied in a particular total synthesis of terpenoids later. As
shown in Figure 2D-I, Metz (Wang et al., 2017) accomplished
the first total synthesis of 3β-hydroxy-7β-kemp-8 (9)-en-6-one
(87), which was isolated from the soldier defense secretion of the
higher termites Nasutitermes octopolis. The Wieland-Miescher
ketone 80 could be advanced to β-oriented alcohol 81 in multi-
step transformation, giving rise to the requisite tetracyclic
dienol 82 via Ru catalyzed domino metathesis. Following five
steps of 82 generated the β, γ-unsaturated ketone 83. Later,
desilylation and olefin isomerization with HF led to conjugated
enone 84, which could be converted into the natural product in
late continuous three steps. However, the byproduct of exocyclic
olefin isomer 85 made the synthetic route more inefficient.
Thus, they explored a cobalt-catalyzed isomerization strategy
to install the β, γ-unsaturated ketone moiety from this
tetracyclic compound 85 by hydrogen atom transfer with 86
as catalysis, provided the 3β-hydroxy-7β-kemp-8 (9)-en-6-one
(87) in good yield.

FIGURE 2 | Cobalt-catalyzed Isomerization of olefins, and Cycloaddition.
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Last year, Puno and Li (Yan et al., 2021) synthesized
immunosuppressive meroditerpenoid, (−)-isoscopariusin A
(91). As shown in Figure 2D-II, the synthesis commenced
with the construction of mixed olefins 89 and 90 (d.r. = 1.8:1),
which was accessed from (+)-sclareolide (88) via reduction,
elimination and bromination. Inspired by Shenvi’s protocol
(Crossley et al., 2014) for olefin isomerization through
Co(Salent-Bu,t-Bu)Br catalyzed, the exocyclic olefin 89 was
converted to cycloolefin 90. Eventually, a following eight-step
conversion achieved the total synthesis of (−)-isoscopariusin A
(91) on a gram scale.

Cycloaddition
Cobalt catalyzed cycloaddition reaction has been used to
construct polycyclic skeleton in total synthesis of terpenoids
showed some case studies, such as [2+2+1] and [2+2+2]
cycloaddition. The Pauson–Khand reaction is a metal-
mediated [2+2+1] cycloaddition of an alkene, an alkyne, with
carbon monoxide to construct an α, β-cyclopentenone skeleton.

Magnus (Exon and Magnus, 1983) employed intramolecular
alkene-alkyne dicobaltocta-carbonyl mediated cyclopentenone
cyclization to synthesize the antitumor sesquiterpene coriolin
(95). The dicobalt octacarbonyl strategy for the stereoselective
synthesis of hydroxylated bicyclo [3.3.0] enones provides a direct
method of making many other natural and unnatural
cyclopentanoid products. The unique ability of the [2+2+2]
cycloaddition to form several new bonds within one step and
thereby assemble smaller synthons to a bigger core structure
predestinates this reaction to be applied to synthesize natural
products. As shown in Figure 2E-I, Vollhardt (Germanas et al.,
1991) employed a novel application of the cobalt-catalyzed
cycloaddition to synthesize corioline (95) and stemarin (99). In
the total synthesis of corioline (95), the cobalt-catalyzed
Pauson–Khand reaction was used to construct the key
intermediate 94. Moreover, cobalt mediated [2+2+2]
cycloaddition reaction with CpCo(CO)2 played an essential role
in the total synthesis of stemarin (99), in which intermediates 98
were constructed with high efficiency and stereoselectivity.

Rubriflordilactones A and B from Schisandra rubriflora have
attracted increasing attention because of their intriguing
structures and promising anti-HIV activity. As shown in
Figure 2E-II, Anderson (Goh et al., 2015) (Chaubet et al.,
2017) completed the total synthesis of rubriflordilactone A
(100) via a cobalt-catalyzed [2+2+2] cycloaddition as a pivotal
step to close the key aromatic C-ring. This total synthesis takes 5-
OPMB-pentanoic acid 100 as the starting material; Diyne 101 was
prepared after a eleven-step sequence. Meanwhile, the cyclized
precursor 104 was assembled with great facility via fragment
coupling by 101 and bicyclic lactone alkyne 103, which was
prepared from commercially available propargyl silicon
102 via fourteen steps. With an efficient cobalt-catalyzed
[2+2+2] cycloaddition, the aromatic C-ring of intermediate
105 with pentacyclic core skeleton was constructed and
followed a six-step transformation toward the total synthesis
of rubriflordilactone A (106).

As shown in Figure 2E-III, in the total synthesis of andrastin
and terretonin meroterpenes in 2017, Maimone and Newhouse

(Xu et al., 2017) employed a strategy of purely radical-based
homoallyl-type rearrangement/HAT to forge protoaustinoid
bicyclo [3.3.1] nonane nucleus. Cycloaddition substrate 109
could be conveniently prepared by PCC oxidation from
tetracyclic block 108, which was obtained from commercially
available farnesyl bromide 107 in twelve steps. As a common
intermediate, 109 was converted to hydroxymethyl ether
cyclopentenone 110 and iso-cyclopentenone 112 by cobalt-
catalyzed intramolecular cycloaddition reaction under the
action of 5% mol catalyst and 10% mol catalyst, respectively.
After cyclopentenone isomerization, the total synthesis of
(±)-andrastin D (111) was accomplished. On the other hand,
(±)-preterrenoid (113), (±)-terrenoid (114), and (±)-terretonin L
(115) were prepared by severe simple conversion processes.

As shown in Figure 2E-IV, Yang and Gong (Zhang et al.,
2017) explored an approach of tandem Pauson–Khand and 6π-
electrocyclization toward the total syntheses of 4-epi-
presilphiperfolan-8β-ol (119) and 7-epi-presilphiperfolan-1β-ol
(120). The preparation of cyclization precursor (117) was
achieved from commercially available ketone (116) in a two-
step. Under the condition of a catalytic amount of Co2(CO)8 and
TMTU by the Pauson–Khand reaction, tricycle ketone 118 was
obtained in excellent yield (94%). As a common intermediate,
ketone 118 was transformed to 4-epi-presilphiperfolan-8β-ol
(119) and 7-epi-presilphiperfolan-1β-ol (120) in a few steps
reaction. Next year, Yang and Gong (Zhang et al., 2019)
continued their previous work by the Co-TMTU-catalyzed
tandem Pauson-Khand and 6π-electrocyclizationreactions, the
total syntheses of three botryane sesquiterpenoids:
dehydrobotrydienal (122), dehydrobotrydienol (124) and 10-
oxodehydrodihydrobotrydial (125) were delivered from the
common intermediate 118.

As shown in Figure 2E-V, in the synthetic studies towards
astellatol (130), Xu (Zhao et al., 2018) used a cobalt-catalyzed
Pauson-Khand cycloaddition to install the right-hand side
scaffold of the sesterterpenoid. The cycloaddition precursor
128 could be advanced from chiral synthon 126 and the
homoallylic iodide 127 as start materials in teen steps.
Following [2+2+1], cycloaddition was carried out successfully
with Co2(CO)8 in the toluene under the heating condition to give
cyclopentenone 129. Finally, the authors accomplished the first
and enantiospecific total synthesis of the rare sesterterpenoid,
astellatol (130) in 25 steps (0.63% overall yield) from 126.

As shown in Figure 2E-VI, Kerr et al. (2018) accomplished the
total synthesis of 2-epi-α-cedrene-3-one (134) via a cobalt-
catalyzed Pauson-Khand reaction, which was isolated from the
essential oil of Juniperus thurifera. Because the reaction required
higher activation energy, the cycloaddition precursor 132
transformed to cyclopentenone 133 via a microwave-assisted,
cobalt catalytic, Pauson-Khand reaction, which is used to
construct the intriguing tricyclic core of the target molecule
134 following nine steps conversion.

As shown in Figure 2E-VII, Vanderwal (Vrubliauskas et al.,
2021) systematically studied that Co-catalyzed MHAT-initiated
(metal-catalyzed hydrogen atom transfer, MHAT) radical
bicyclization was uniquely effective in synthesizing polycyclic
terpenoids from polyene. The authors researched the utility of
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these reactions in synthesizing three aromatic abietane diterpenoids.
A known epoxide 135 as the starting material was transformed to
phosphonate 136 with different cyanophosphonate reagents in three
steps. Then the cyclization precursor 138 was prepared by HWE
olefination with aldehyde 137. By a Co(II)-catalyzed tandem polyene
cyclization, delivered 139 with excellent stereochemical control in
75% yield. The common intermediate 140 was prepared by
continuous reduction and deprotection in three steps, following
severe transformations prepared (+)-2-O-deacetyl plebedipene A
(141), (±)-plebedipene B (143), (+)-2-O-deacetyl plebedipene
C (144) and plebedipene A (142).

As shown in Figure 2E-VIII, Luo (Fang et al., 2022) described
the total synthesis of (−)-triptonide (148) based on a Co(TPP)-
catalyzed hydrogen atom transfer (MHAT)-initiated radical
cyclization. Starting from (R)-(−)-Taniguchi lactone (145),
fragment coupling was achieved through two-step reaction to
obtain conjugated alkenal (146). By Cobalt-catalyzed in the
presence of the photoredox catalyst and visible light, 146 was
carried out to afford cycloadduct 147 smoothly. After the
subsequent four steps transformation, (−)-triptonide (148) was
produced.

CONCLUSION AND OUTLOOK

Cobalt-mediated asymmetric catalysis is a powerful method to
functionalize olefins. The application of cobalt catalysts in
[2+2+2] cycloaddition reactions of alkynes, alkenes, and
nitriles to afford substituted benzenes, cyclohexadienes, and
an extensive array of derivatives has been an active field of
research over the last centuries. During the last decade, the
heavier group congeners also significantly impacted this
research field; especially cobalt catalysis is often the first
choice when planning to include a cyclotrimerisation
reaction in a synthetic sequence. Many reports have shown
that cobalt-catalyzed could form C-C or C-X bonds. However,

many of the already explored synthetic methods still represent
an unsolved challenge for isolated natural products, as they
remain inaccessible by the reported strategies. Such studies
will benefit the detailed investigations of the mechanism of
cobalt catalyzed and the application potential of natural
products. The review may shed some light on future
synthetic efforts on the cobalt-mediated total synthesis of
terpenoids toward natural pesticides, such as celanguline,
and azadirachtin.
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