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The ever-expanding availability and evolution of microscopy tools has enabled ground-
breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type
density and distribution. Widespread implementation of many of the elegant image
processing tools available continues to be impeded by the lack of complete workflows
that span from experimental design, labeling techniques, and analysis workflows, to
statistical methods and data presentation. Additionally, it is important to consider open
science principles (e.g., open-source software and tools, user-friendliness, simplicity,
and accessibility). In the present methodological article, we provide a compendium
of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification
of cell density in mouse brain samples using semi-automated open-science-based
methods. Our proposed framework spans from principles and best practices of
experimental design, histological and immunofluorescence staining, and microscopy
imaging to recommendations for statistical analysis and data presentation. To validate
our approach, we quantified neuronal density in the mouse barrel cortex using
antibodies against pan-neuronal and interneuron markers. This framework is intended
to be simple and yet flexible, such that it can be adapted to suit distinct project needs.
The guidelines, tips, and proposed methodology outlined here, will support researchers
of wide-ranging experience levels and areas of focus in neuroscience research.

Keywords: open science, fluorescence microscopy, image analysis, mouse brain, reproducibility, experimental
design, neuroscience

INTRODUCTION

Historically, neuroscientists have used microscopes to identify different cell types and determine
their distribution in the nervous system. Analysis of cell types provides important information
on neurodevelopmental processes and neurological disease states. There is a narrow range
of acceptable variance in cell type density and distribution, outside of which is associated
with neurological and neuropsychiatric disorders (Stoner et al., 2014; Bernard et al., 2017;
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DeTure and Dickson, 2019; Briscoe and Marín, 2020). Studies of
this kind stemmed from the influential work of neuroscientists
such as Ramon y Cajal, Golgi, del Rio-Hortega, and others,
who provided the initial morphological descriptions of neurons
and glial cells (Glickstein, 2006; Garcia-Lopez et al., 2010;
Sierra et al., 2016). Since its inception, microscopic examination
of the brain has evolved markedly. Transformative advances
in immunostaining techniques, in situ omics technologies,
cell-type specific transgenic reporter models, and microscope
capabilities (Wilt et al., 2009; Daigle et al., 2018; Yuste et al.,
2020) have not only expanded our understanding of the
cellular composition of the brain in health and disease, but
have also promoted the creation of highly diverse tools and
approaches to analyze these types of data. As a result, there
is significant variability in the processes used to generate data
(e.g., density and distribution) on cell types in the brain,
leading to significant challenges when it comes to integrating,
interpreting, and reproducing published data (Martone et al.,
2004; Geschwind and Konopka, 2009; discussed in Akil et al.,
2011). To help mitigate these challenges, various groups have
encouraged the adoption of open science frameworks rooted
in the Findable, Accessible, Interoperable and Re-usable (FAIR)
Data Principles (Wilkinson et al., 2016). Platforms and initiatives
supporting open science dataset production and analysis, such as,
WholeBrain, BrainGlobe, and Atlas Based Analysis (Niedworok
et al., 2016; Fürth et al., 2018; Bourgeois et al., 2021; Tyson et al.,
2021), have tremendous potential, yet are still somewhat lacking
in accessibility (computing equipment and required expertise).
With the on-going push from the neuroscience community to
standardize the design, interpretation, and analysis of research
studies, there is an unmet need for open science frameworks
for experimental design and analysis of fluorescence microscopy
images (Bernard, 2019; Picciotto, 2020).

To this end, we provide a framework for neuroscientists of
varying expertise and area of research focus rooted in open-
science principles and user-friendly resources. We highlight the
standard steps and consideration of a research study investigating
cell-types in mouse brain, including: statistical power and sample
size estimation (Button et al., 2013; Picciotto, 2020), selection
of control groups (Tye, 2018; discussed in Picciotto, 2019), sex
and genetic background (Kiselycznyk and Holmes, 2011; Vanden
Berghe et al., 2015; McCarthy et al., 2017; Luo et al., 2020), image
acquisition and processing (Aaron and Chew, 2021; Heddleston
et al., 2021), and data visualization and statistical analysis (Calin-
Jageman and Cumming, 2019) (Figure 1). Moreover, we provide
a step-by-step FIJI-ImageJ image analysis workflow to quantify
cell density in the mouse brain sections. Altogether, this work
aims to serve as a ‘starter guide’ for facilitating systematic
and programmatic analysis approaches and promoting the
benefits of open science frameworks in neuroanatomical cell type
quantification in mouse brain.

METHODS AND RESULTS

In the following section and subsections, we will outline
and discuss important aspects that aid in systematic and

open-science-based design, execution, and reporting of
quantification of cell types in mouse brain sections. Within
this, we include a FIJI-ImageJ-based workflow to register
brain section images, segment region of interest and quantify
cell types in them.

Experimental Design
A critical, often overlooked, first step in a study aimed at
quantification of cell-types in the mouse brain, is detailed
experimental design development. Experimental design is not
only the planning of experimental procedures, but also the
consideration of study design (e.g., groups to compare, selection
of control groups, and determination and balanced allocation of
experimental units), sample size determination (e.g., number of
experimental units per group, a priori sample size calculations),
strategies to mitigate bias (e.g., objective inclusion/exclusion
criteria, randomization, identity concealment), details about
experimental animals (e.g., species, strains, and substrains, sex,
age or developmental stage), experimental procedures (e.g.,
description of the intervention, timing, location, and rationale),
and the statistical analysis plan, expected outcomes, and delivery
of results (e.g., presentation of summary and descriptive statistics,
measurements of variability, and effect size with confidence
intervals when applicable). The steps mentioned above are
included in the “Essential 10” item list developed as part of the
Animal Research: Reporting of in vivo Experiments (ARRIVE)
guidelines (du Sert et al., 2020a,b). These guidelines were
designed to help researchers identify key reporting information
for animal research, with the aim of increasing reproducibility.
Moreover, a well-designed experimental animal study can reduce
the number of animals required, and refining experimental
procedures can minimize their adverse effects (Festing and
Altman, 2002). Studies on mouse brain cell-type densities should
include balanced experimental groups with adequate numbers
to detect differences between such groups, whilst acknowledging
and accounting for strain issues, and sex differences.

In terms of the calculations involved in determining
animal numbers within experimental groups, we support the
recommendations given in recent editorials in The Journal of
Neuroscience and eNeuro (Bernard, 2019; Picciotto, 2019, 2020),
for the integration of pilot experiments and power analysis to
calculate sample sizes, with the goal of increasing statistical
power (defined as 1 – β, where β is the probability of a type
II error or, in other words, the probability of accepting a null
hypothesis that is actually false – i.e., the false-negative rate–)
and consequently increasing the reliability of observed results
(Picciotto, 2020). Fortunately, estimating sample size by power
analysis is possible with openly available online tools1,2 or free
statistical software (e.g., R and the package “pwr”) but require
researchers to determine the effect size via pilot studies or
previous reports. An alternative can be found in the “resource
equation” (Equation 1). The resource equation is based on the
notion that a good estimate of error requires at least 10 degrees
of freedom (defined as experimental units – 1) (Mead, 1988;

1https://www.stat.ubc.ca/~rollin/stats/ssize/n2.html
2http://powerandsamplesize.com/Calculators/
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FIGURE 1 | Steps and limiting factors involved in planning and executing a research study on cell-type quantification in brain sections. Research studies for the
quantification of cell-types in the mouse brain are sequential multi-step processes (A–E), each with their own limiting factors. By formulating this type of studies within
a systematic framework, researchers can mitigate such limiting factors and, consequently, increase the reliability, reproducibility, and usability of study outcomes.

Mead et al., 2012; Festing, 2018) and becomes particularly useful
when an effect size cannot be determined through pilot studies or
approximated from previous literature.
E = total number of experimental units− total number of treatment groups (or genotypes)

where the value of E should be between 10 and 20. (1)

Using this approach and considering the relationship between
sample size, power, and effect size (Ellis, 2010; Festing, 2018),
researchers can obtain a predicted effect size for a given
provisional sample size. From here, given that statistical power
increases with size and effect size, the sample size can be adjusted
until reaching an effect size that is reasonably acceptable or
detectable (Supplementary Figure 1) (Ellis, 2010; see Table 1
in Festing, 2018). For example, if researchers plan to detect the
differences of a given cell-population between two genotypes (i.e.,
2 groups), they will require between 12 and 22 total animals (i.e.,
6–11 animals per genotype). The same researcher could use a
plot (Supplementary Figure 1) or table showing the relationship
between sample size and standardized effect size to learn the
statistical power in the example above.

In terms of proper consideration of the impact of mouse
strain (and substrain) genetics and sex, it is important to
recognize and mitigate the genetic and phenotypic variation
present across and within mouse strains, as reviewed by Chen
and Flint (2021) and Shansky and Murphy (2021). For example,
it is well-established that C57BL/6, an inbred strain of mice
frequently used as wildtype controls, is phenotypically distinct
between substrains (e.g., C57BL/6J, C57BL/6N, C57BL/6NTac,
and C57BL/6NCrl), highlighting the need to carefully check
the mouse transgenic strains (and substrains) in experimental
group allocation (Crawley et al., 1997; Beck et al., 2000;
Matsuo et al., 2010; Kiselycznyk and Holmes, 2011; Zurita
et al., 2011; Kang et al., 2015). These groups must be balanced
(i.e., equal numbers of experimental animals per group) and
include both sexes whenever possible (Beery and Zucker, 2011;
McCarthy et al., 2017; Mamlouk et al., 2020; Woitowich
et al., 2020; Shansky and Murphy, 2021). We recommend that
researchers refer to the Mouse Genome Informatics website3

3http://www.informatics.jax.org/

for precise information (e.g., nomenclature, strain-specific
single nucleotide polymorphism, phenotypes, gene expression,
and Cre-recombinase activity), especially “Me-PaMuFind-It”4

to identify potential 129S-derived mouse strain passenger
mutations (particularly if the strain has not been backcrossed
substantially). Consistent use of these resources is critical to
prevent and mitigate possible confounds secondary to germline
recombination (Luo et al., 2020) and passenger mutations
(Vanden Berghe et al., 2015).

With respect to statistical analysis, we support the call
for a shift from hypothesis-testing-based statistics toward
the more widespread adoption of estimation statistics
(Bernard, 2019; Calin-Jageman and Cumming, 2019). Null
hypothesis significance testing has been the main framework
used by researchers to make predictions of a population
from observations of representative sample (McDonald,
2014). Within this framework, observations are measured,
summarized, and a p-value is estimated to declare whether
there are “statistically significant” differences based on a
p-value threshold established, somewhat arbitrarily by RA
Fisher (1956), at 0.05 (Gelman and Stern, 2006). On the
other hand, estimation statistics emphasizes effect sizes and
measures of uncertainty, providing a quantitative assessment
of observed differences (and their variability) rather than a
binary outcome (i.e., statistically significant vs. not statistically
significant) (Calin-Jageman and Cumming, 2019; Wasserstein
et al., 2019). While biomedical animal research has heavily
relied on null hypothesis significance testing (Gigerenzer,
2018), strong cases have been made that estimation statistics
approaches improve interpretation of results (by presenting
effect sizes, confidence intervals, and data distribution), tackling
overconfident interpretations based on a p-value threshold,
and consequently, improving statistical inference (Calin-
Jageman and Cumming, 2019; Bernard, 2021). Moreover,
establishing a statistical plan before data is collected and that is
complemented by the use of estimation statistics can contribute
to prevent malpractices such as “harking” or “p-hacking,”
which refer to hypothesizing after the data is known, and

4http://bioit2.irc.ugent.be/prx/me-pamufind-it/
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selecting statistical tests according to the outcome of a study,
resulting in ill-bias and interpretation errors when reporting the
outcomes of a study (Kerr, 1998; Head et al., 2015; Picciotto,
2018, 2020; Bernard, 2019). Another editorial called for the
adoption of analyses using estimation statistics with the goal
of improving the interpretation of results (by presenting
effect sizes, confidence intervals, and data distribution),
tackling overconfident interpretations based on a p-value
threshold, and consequently, improving statistical inference
(Bernard, 2019, 2021; Calin-Jageman and Cumming, 2019).

Tissue Processing, Sectioning, and
Staining
Accurate quantification of cell types in mouse brain sections
requires consistent and optimal tissue preparation. Preserving
the integrity of the cellular and extracellular components is often
accomplished by perfusing an animal with a buffered solution
followed by a fixative solution (Gage et al., 2012). Fixatives
are typically diluted in a buffered physiological solution (for
example, 4% paraformaldehyde diluted in phosphate buffered
saline) and the selection of a specific fixative should be tailored
to subsequent histological processing and intended applications
(Gage et al., 2012; Zhang and Xiong, 2014). Similarly, controlling
the flow (by using a peristaltic pump or a simple gravity feed)
and temperature of a fixative and assigning tissue extraction
and dissection to trained personnel are important aspects that
contribute to consistency across samples (Paul et al., 2008).
For example, delayed perfusion of fixative (∼5–8 min delay
between the initial cut of the diaphragm and the time of visible
clear paraformaldehyde outflow) can alter the distribution and
detectability of proteins, resulting in inaccurate quantification
when compared to fully perfusing an animal within 100 s from
cutting the diaphragm (Tao-Cheng et al., 2007). Likewise, whole
body perfusion using 4% paraformaldehyde without perfusing
first a buffered solution can lead to aberrant vacuolation of
neuronal somas (Leonard et al., 2016). The type of fixative used,
and its concentration depend on downstream applications. For
example, synaptic proteins are sensitive to paraformaldehyde
perfusion (Wallrafen et al., 2019), lipophilic dyes required lower
concentrations of paraformaldehyde (1.5% or 2%) (Li et al., 2008;
Rasia-Filho et al., 2010; Staffend and Meisel, 2011). Glyoxal
is known to nicely preserve cellular structures such as
actin filaments and microtubules (Jones, 1969). Glutaraldehyde
produces higher autofluorescence and irreversible cross-links of
proteins (whereas paraformaldehyde does not), acrolein cross-
links at higher rate than paraformaldehyde and rapidly penetrates
tissues (Jones, 1969), while methanol leads to a fast fixation with
loss of organelles (Spector and Goldman, 2006; Richter et al.,
2018; Celikkan et al., 2019; Yao et al., 2021). Furthermore, certain
paradigms use drop fixation in place of perfusion (limited to
1 mm/per hour of penetration) which causes differences in glial
cell morphology (Cǎtǎlin et al., 2017). Because the effects of
the above sample preparation profoundly impact downstream
analyses (Pereira et al., 2019), we recommend researchers to
adopt a quality control checklist. In Supplementary Table 1
(“Tissue processing”), we present an example of such list and

provide recommendations. Needlessly to say, the information
within the checklist also serves as a useful record of important
items to include when reporting a study.

Similarly, it is important to provide details of procedural steps
related to sectioning, such as equipment type (e.g., vibratome,
cryostat, or freezing microtome), orientation and thickness
of sections, embedding medium, use of cryoprotective and
preservative reagents, and if sections have been air-dried,
all which can impact the quality of immunohistochemistry
labeling and morphological metrics (Bacallao et al., 2006;
Spector and Goldman, 2006; Estrada et al., 2017). Additionally,
details of immunohistochemistry procedures such as use of
permeabilization, blocking, labeling, and mounting agents,
and their respective incubation/application time should
all be included within the “Methods And Results” section.
Researchers should use research identifiers (RRID5) for all
reagents, particularly dyes and antibodies, and note subsequent
manipulations (e.g., adding glycerol to antibodies, diluting
dyes in methanol, sonication, etc.) in their Methods. Lastly,
the researchers are recommended to include information
on immunolabeling controls, such as antigen positive
and negative controls, background controls, and reagent
controls (Spector and Goldman, 2006; Lee and Kitaoka, 2018;
Jonkman et al., 2020).

Image Acquisition: Brief Overview of
Foundations and Best Practices
A solid theoretical and practical foundation in light microscopy
is vital to carry on reproducible and replicable microscopy-based
studies (Thorn, 2016; Lee and Kitaoka, 2018). Numerous factors,
if poorly understood or not properly considered, can result in
inadequate image quality and variability in measurable outcomes
(Aaron and Chew, 2021; Heddleston et al., 2021). For example,
limited understanding of the diffraction limit in optical systems
and the relationship between an objective numerical aperture
(NA = n ∗ sin θ, where n is the refraction index of the medium,
θ is the half-angle of the cone of light which can be collected by
the objective lens, and NA is numerical aperture) and resolution
(resolution = 1.22λ

2 NA ) can result in acquisition of poorly resolved
images. This issue can be solved by optimizing image acquisition
to follow the Nyquist sampling principle, in which (for an optical
system) the pixel size should be at least two to three times smaller
than the resolvable element to capture at the full resolution
of the objective (Pawley, 2006; Thorn, 2016; Jonkman et al.,
2020). Free online resources such as iBiology Microscopy Series
which hosts lectures, virtual laboratories, and self-assessments
offer a comprehensive review of the fundamentals of optics
and microscopy6, facilitating learning and providing a reference
resource to junior and senior researchers. For example, a factor
such as brain section thickness plays a critical role in selecting
the appropriate type of microscope for a given study: widefield
microscopes perform best with sample thickness of 20 µm or less,
while spinning-disk and confocal laser-scanning microscopes
perform well with a sample thickness between 30 and 50 µm and

5https://scicrunch.org/resources
6https://www.ibiology.org/online-biology-courses/microscopy-series/
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up to 200 µm, respectively, thanks to their improved resolution
in the z-axis (depth) (Thorn, 2016). Likewise, recent advances in
technology, such as light-sheet microscopy and tissue clearing,
can offer excellent performance to quickly image large volumes
(Keller and Ahrens, 2015; Susaki and Ueda, 2016; Thorn, 2016);
while this technology is not yet widely available and requires
intricate sample preparation protocols, it holds terrific potential
as engineering and optic development continue to improve its
resolution and usability by non-optic specialists (Mano et al.,
2018; Albert-Smet et al., 2019; Lu et al., 2019).

Robust microscopy imaging acquisition incorporates
mitigation of confirmation bias, through, for example, sample
anonymization, allocation concealment, and use of controls.
Imaging acquisition parameters should be established using a
positive control (e.g., a sample in which the protein of interest
is known to be expressed) and be tested on a negative control
sample (e.g., a sample from tissue that does not express the
protein of interest, or a sample that was not incubated with the
labeling reagent). The parameters should allow the researcher
to perform image acquisition using as much of the dynamic
range of the detector as possible (North, 2006). Imaging
parameters should be optimized to prevent oversaturation or
undersaturation, as both of these represent loss of information,
and therefore data (however, note that it is critical to extract the
background before conducting any quantitative image analysis)
(Brown, 2007). Fortunately, many modern-day microscopes and
their software suites offer options to visualize, in real time, the
intensity distribution of a given image using histograms and
high/low or range finder look-up table (LUT), but even when
using systems that do not offer these options [for example,
do-it-yourself microscope systems for research and education
(Gibbs et al., 2018; Grier et al., 2018; Flores and Marzullo, 2021)],
open source tools such as FIJI/ImageJ can be used to assess these
parameters (Schindelin et al., 2012). Once the parameters have
been established, these should be kept constant throughout an
experiment (North, 2006). Lastly, acquisition parameters should
aim to maximize the signal-to-noise ratio, the relationship
between actual signal and background signal. While acquisition
parameters can significantly influence signal-to-noise ratio,
additional aspects such as the sample preparation, selection
of high quantum yield labels, type of sensors and their gain,
selection of objectives, and environment (e.g., temperature and
vibration) can have an effect (Ogama, 2020). Note that increasing
the gain of a sensor does not improve signal-to-noise ratio, as it
increases the detection of both the actual signal and background.
To increase signal-to-noise ratio with a properly prepared
sample using optimized fluorescence labels, one can increase the
exposure time or use stronger excitation (higher laser power);
however, both of these strategies result in increased phototoxicity
and photobleaching (Ogama, 2020). Table 1 summarizes some of
the factors that influence signal-to-noise ratio.

Lastly, a key area for improvement in published microscopy-
based studies is the reporting of imaging methods. A recent
analysis of 240 original research articles published in 8 different
journals revealed that imaging methods were only included in
approximately 5% (range 2.3–10.2%) of biomedical research
papers. Moreover, less than one-fifth of the studies provided

sufficient details on imaging methods (Marqués et al., 2020),
such as imaging acquisition parameters and the collection
of metadata (Linkert et al., 2010; Huisman et al., 2021).
Fortunately, various resources exist in the form of reviews
that provide great recommendations on how to improve rigor
in acquiring, reporting, and analyzing (discussed in following
sections) microscopy data (Lee and Kitaoka, 2018; Aaron and
Chew, 2021; Heddleston et al., 2021). Table 2 includes a set of
recommended image acquisition parameters to be reported to
promote reproducibility and replicability.

Framework for Image Processing and
Cell Density Quantification in Brain
Sections
To increase data reproducibility, various institutions (e.g.,
funding body, journal requirements, and international
collaboration consortiums) have promoted an increased
use of quantification in fluorescence microscopy studies (Aaron
and Chew, 2021). Earlier neuro-morphometric studies relied on
stereology as a method to mitigate variability and inconsistencies
(Haug, 1986; Zhao and van Praag, 2020) within small regions;
however, newer advances and initiatives permit the quantification
of cell density across large regions and even the whole brain at
an unprecedented speed. In this regard, neuroscience-specific
initiatives, such as the Brain Initiative’s functional connectome
project, the Allen Brain Institute Reference Atlas, WholeBrain,
and BrainGlobe provide excellent resources and tools (Fürth
et al., 2018; Anderson et al., 2021; Claudi et al., 2021). However,
barriers such as user-friendliness, proficiency in programming
languages, and other inherent restrictions – for example, the
requirement for large whole brain section images – still limit the
wide application of many of these tools. While image analysis
tools continue to evolve and become flexible to a wider range
of researchers’ experimental needs and resources, FIJI-ImageJ
continues to be the most commonly used image analysis suite,
including for the analysis of cell population quantification in
brain sections (Schindelin et al., 2012; Bourgeois et al., 2021).
For example, Bourgeois et al. (2021) recently proposed a FIJI-
ImageJ-based semi-automated atlas-based workflow to obtain
cell counts from mouse brain sections using the Paxinos and
Watson rat brain atlas for anatomical reference (Paxinos and
Watson, 2006), resulting in decreased inter-observer variability
and a faster generation of data. However, this workflow is limited
by the use of the adult rat brain anatomical reference to register
mouse anterior–posterior coordinates and relies on manual
tracing to outline regions of interests within cortical (i.e., cortical
layers) and subcortical regions, which is prone to technical
and human error. With the above in mind, we have developed
a simple, adaptable, semi-automated framework prioritizing
ease of use, metadata and data management, image quality
control, registration to a unified mouse atlas, expandability, and
implementation of a machine-learning tool for feature extraction
and segmentation (“StarDist”). In the following sections we
will describe the steps necessary to use our FIJI-ImageJ based
framework to quantify cell density in mouse brain sections.
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TABLE 1 | Overview of factors that affect the signal-to-noise ratio (SNR) in fluorescence imaging.

Factor Examples Use Signal-to-noise Mitigation References

Mouse model

Model-specific
considerations, e.g.,
aging,
neurodegeneration
models

Aged mice. Experimentation. Lipofuscin pigment increases
with age and autofluoresces.

Photo-bleaching. Sun and Chakrabartty,
2016; Alegro et al.,
2017; Jenvey and
Stabel, 2017; Gao
et al., 2019

Neurodegenerative
disease transgenic
mouse models.

Amyloid deposits autofluoresce. Adjustment of laser power and
detection wavelength.

Dickey et al., 2003;
Gao et al., 2019

Tissue preparation

Perfusion/fixation Examples of perfusion
methods include
brain-targeted, and
dual perfusion.

Blood removal and
tissue preservation.

Blood pigments autofluoresce,
and this becomes pronounced
with prolonged fixation.

Select fixative and perfusion
method best suited for
experiment and ensure.
Steady perfusion flow rate.

Jenvey and Stabel,
2017; Whittington and
Wray, 2017;
Belhadjhamida et al.,
2020

Dissection and
sectioning

Manual
macrodissection,
manual
microdissection, and
laser microdissection.
Brain sections.

Isolation of high-quality
samples from a given
region of interest.

Tissue damage during
dissection can lead to
exaggerated cell
death/apoptosis, leading to
autofluorescence.
Section thickness affects
antibody penetration. Thicker
sections exhibit reduced
labeling and increased light
scattering.

Establish quality control checks
and standardized operating
procedures.
Match tissue section thickness
with the resolvable power of a
microscope system.

Spanswick et al., 2009

Immunohistochemistry

Blocking Normal serum,
species-specific serum,
bovine serum albumin,
gelatin, casein, non-fat
dry milk, or biotin.

Used to reduce
non-specific antibody
binding and labeling.

Use of a blocking agent from
the same species in which the
primary antibody was raised
can lead to reduced secondary
antibody binding.

Include a blocking incubation
step when using indirect
immune fluorescence

Jenvey and Stabel,
2017; Im et al., 2019

Primary antibody Methods include direct
(one-step incubation
process) and indirect
(two-step incubation
process)
immunofluorescence.

Binds to a
protein/biomolecule of
interest to the research
project.

Primary antibody
cross-reactivity, specificity,
affinity and concentration.

Select thoroughly tested
primary antibodies with high
antibody specificity (tested in
knock out tissues) and affinity.
Optimize antibody
concentration.

Burry, 2011; Im et al.,
2019

Secondary antibody Used for indirect
(two-step incubation
process)
immunofluorescence.

Binds to the primary
antibody.

Use of secondary antibodies to
the same host species as the
sample can result in
cross-reactivity with
endogenous immunoglobulins.
Fluorophore bleaching.

Include secondary antibody
controls in your experiments.
Select a secondary antibody
against the host species of the
primary antibody.
Optimize antibody
concentration.

Burry, 2011; Im et al.,
2019

Microscopy

Laser excitation Varies by manufacturer. Illuminate (excite)
sample.

Increase laser power appropriately, factoring in photobleaching
and phototoxicity.

Brown, 2007; Ogama,
2020

Detection Filter sets and beam
splitters.
Detectors.

Separate illumination
(incident light) from
detection (emitted
light).

Select appropriate filter sets to mitigate or eliminate crosstalk.
Select filter sets that match the emission wavelength of the
fluorescence label applied to a sample.
Acquire images sequentially to mitigate crosstalk in exchange of
acquisition speed.
Increases in detection gain increase both the specific and the
non-specific “background” signals simultaneously.
With laser-scanning, line/frame averaging helps to average
noise whilst accumulating signal.

Objectives Varies by manufacturer. Gather reflected light to
form images.

Use high NA objectives and match immersion medium and
sample mounting medium, when possible.

Environment Temperature and
humidity.
Environment light
contamination.
Vibration.

NA. Across replicates, samples should be exposed to consistent
ambient light levels, temperature, and humidity during image
acquisition. Imaging should (ideally) be performed in a dark
room.
Test the environment background signal acquired by the
detector in the absence of sample.
Mount microscope systems on anti-vibration tables.
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TABLE 2 | Methodological image acquisition parameters to report in scientific
publications*.

Microscope
component/
acquisition property

Parameter

Microscope Manufacturer.
Upright or inverted.
Microscope operating software (version and maker).

Light source (Lasers) Source type (gas, semiconductor, and crystal).
Manufacturer and model.
Wavelength.
Power.

Optics and stage Dichroic mirror or beam splitter information (wavelength
and manufacturer).
Excitation/emission filters (manufacturer and
wavelength).
For confocal microscopes: pinhole size.
Stage motor, incubation chamber, and custom
hardware.

Objectives Manufacturer.
Magnification.
Numerical aperture (NA).
Type of optical aberration correction (Achromat, Plan
Achromat, Fluorite, Plan Fluorite, and Plan
Apochromat).
Medium and refractive index.

Detection Detector type and manufacturer.
Exposure/pixel dwell time.
Gain.
Offset.
Binning (if applicable).
Line/frame averaging, accumulation (for laser-scanning
confocal microscopes).

Image size and
acquisition

x-, y-pixel size, z step size, and t interval for time-lapse
experiments.
Total image size (metric and pixels).
If using a multi-channel compatible system, report
whether channels were acquired simultaneously or
sequentially (in line, in frame, in stack).
Bit depth (8, 12, or 16 bits).

Image processing Signal enhancement: details about background
subtraction (kernel size and shape), denoising (kernel
size and shape, noise sigma and smoothing value),
filtering (frequency cut-off values), deconvolution
(estimated PSF, number of itierations).
If using intensity threshold, report automated method or
used values. Note that manual selection of values is
prone to user-bias.
Segmentation process, including binary operations, size
exclusion, shape parameters.

*From session to session it is recommended to maintain consistent focus, tissue
depth, light intensity, and detection settings (Lee and Kitaoka, 2018; Aaron and
Chew, 2021; Heddleston et al., 2021).

Loading Image Data
To begin using our image processing and analysis workflow
the user first runs a file management script (step 17) and
loads their image files into FIJI-ImageJ. This script takes image
series stored in a proprietary file format (e.g., “.lif,” “.czi,” and
“.oir,” for Leica Microsystems, Zeis Microscopy, and Olympus
Microscopy, respectively) and exports these image series in

7https://github.com/SwayneLab/PFIA/blob/main/pfia_step_1_file_mgmt.ijm

a “.tif ” (a file format that complies to FAIR specifications,
(Wilkinson et al., 2016; Swedlow et al., 2021). Files are organized
into an “output” folder, comprising subdirectories for each
image series and subsequent associated files. Multi-channel image
series containing z-sections are automatically split into individual
channels along with the generation of their maximum intensity
projections, including a channel-merged image file. For each
image channel, a pixel intensity frequency table is generated
and stored (as a “.csv” file) within its respective image series
subdirectory. This pixel intensity frequency table can help users
assess the distribution of pixels within the image and detect
images with over-representation of over-saturated or very dark
pixels that might not be fully suitable for further image processing
(Brown, 2007). Moreover, this table can be further analyzed using
online tools such as “ggPlotteR”8 or “PlotsofData” (Postma and
Goedhart, 2019). Lastly, the macro also calls a function to extract
and store metadata for each opened image data series as “.csv”
files (Linkert et al., 2010; Huisman et al., 2021).

Registering Brain Sections
The mouse brain section registration in our proposed semi-
automated image analysis framework is based on a freely available
enhanced and unified atlas generated by Dr. Yongsoo Kim’s
laboratory at Penn State University9 (Chon et al., 2019), which
merges the coordinates and labels from the mouse stereotactic
atlas by Franklin and Paxinos (2008) with those from the
Common Coordinate Framework developed with the Allen Brain
Institute Mouse Reference Atlas (Sunkin et al., 2012; Kuan et al.,
2015). This unified atlas was refined using magnetic resonance
imaging in male and female Ai14 reporter mice at 2–3 months
old. Using a unified atlas for image registration is expected to
facilitate data integration and cross-analysis of datasets with
other open-science data resources (e.g., transcriptomic and
electrophysiologic data) generated by institutions (e.g., the Allen
Brian Institute) and researchers, while preserving the familiarity
of the Franklin and Paxinos coordinate system.

Similar to Bourgeois et al. (2021), upon matching an image
series with an anteroposterior coordinate, the user can download
the corresponding image from the unified atlas generated by
Yongsoo Kim’s laboratory at Penn State University [see Text
Footnote 9; (Chon et al., 2019)] and process the included .ai
file with a vector graphic software, such as Inkscape (free open
source software by The Inkscape Project) or Adobe Illustrator
(licensed by Adobe Inc.) to export the included outline as a “.png,”
a compatible file format for FIJI-ImageJ. Using our second macro
(step 210) the user can upload and deform (“warp”) the “.png”
file containing the outline following the imaged brain section
with FIJI’s ready-to-use plugin “BigWarp” (Bogovic et al., 2016),
and binarize the files within FIJI-ImageJ (Figure 2A). For this
process, with the two images side-by-side (we recommend using
a strong nuclear stain, such as Hoechst for this step), the user
can place landmarks (15–20; landmarks can be managed with the

8https://huygens.science.uva.nl/ggPlotteR/
9http://kimlab.io/brain-map/atlas/
10https://github.com/SwayneLab/PFIA/blob/main/pfia_step_2_warp-
register_brain_section.ijm
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FIGURE 2 | A FIJI-ImageJ based workflow for registration and image processing of mouse brain sections. (A) Brain section images can be registered to a unified
atlas using the FIJI-Image-J plugin “Big Warp.” Using a nuclear stain (such as Hoechst) facilitates the placement of anatomical landmarks to adjust the reference
atlas outline to the brain section image. (B) (i) The “warped” reference atlas outline can be converted into a binary mask. (ii) By binarizing the reference atlas outline,
the user has the ability to select specific anatomical regions of interest (ROI) using the “Wand tool.” Individual ROIs can be merged in the FIJI-ImageJ “ROI Manager”
with the operator “OR” to select larger brain areas. (C) Fluorescence microscopy images often require signal enhancement processing (targeted primarily to reducing
background noise) to make them suitable for application of feature extraction and segmentation algorithms. Uniform and consistent signal enhancement processing
can be achieved through scripts. Signal-enhanced images can be further processed with machine learning-based tools, such as “StarDist.” The “StarDist” logo was
used with permission from copyright holder Dr. Martin Weigert. The convolutional neural network diagram is published under the Creative Commons
Attribution-Share Alike 4.0 International license (Vicente Oyanedel M., CC BY-SA 4.0; URL: https://commons.wikimedia.org/wiki/File:1D_Convolution.png).

“Landmark Analyzer”) using characteristic anatomical features
such as the lateral ventricles, corpus callosum, and boundaries
of the dorsolateral cortical surface (Figures 2A,B). To note,
the warping process can create 1–5-pixel gaps on the outline,
which requires the addition of a border and small adjustments
using FIJI-ImageJ’s “Brush tool” to close such gaps and prepare
the “warped” image for further processing. Once this step is
complete, the user can use FIJI’s “Wand tool” to select their
target region of interest. For example, a user can select individual
layers within the barrel cortex and transfer them to FIJI’s “ROI
Manager” or create a full depth cortical selection of the barrel
field by selecting and combining all layer regions of interests
using FIJI’s “OR” function (Figure 2B, bottom half). The area
of the selected region of interest is then calculated and stored as
a “.csv” file.

Segmentation and Quantification
Once a region of interest has been selected, automated counts
of labeled cells can be obtained using the included ImageJ
language macro scripts (step 311,12) (Figures 2C, 3). The key
image processing steps in order to obtain cell counts are
feature extraction and image segmentation. In the digital image
processing and computer vision fields, feature extraction refers
to the group of image processing operations that detect edges,
corner, and segmentation refers to the separation and labeling of
objects based on their signal intensity relative to the background

11https://github.com/SwayneLab/PFIA/blob/main/pfia_step_3_count_pv_
cells.ijm
12https://github.com/SwayneLab/PFIA/blob/main/pfia_step_3_count_neun_
cells.ijm
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FIGURE 3 | Feature extraction, segmentation, and quantification using “StarDist” and other conventional and manual approaches. (A) (i) Representative
fluorescence micrographs of the barrel cortex with parvalbumin-labeled cells and “StarDist” color-coded annotating output of segmented objects. (ii) “StarDist” was
as accurate as a senior research trainee in detecting the number of parvalbumin-labeled cells. Note the similar distribution of the data points between “StarDist,” the
manual quantification by a senior research trainee, and the two methods combined (“StarDist,” mean: 251 ± 50.6 cells; senior research trainee, mean: 268 ± 55.1
cells; “StarDist” + senior research trainee: 267.8 ± 52.71 cells; mean ± standard deviation; p = 0.694; d = –17.8 [95CI –77.8; 42.8]; d = –1 [95CI –60.8; 60.4]).
(B) (i) Representative fluorescence micrographs of the barrel cortex with NeuN-labeled cells and “StarDist” color-coded annotating output of segmented objects. (ii)
As expected, using labeling with NeuN results in images with high cellular density, which are significantly challenging for inexperience research trainees and
conventional thresholding approaches (p < 0.0001). “StarDist” significantly outperformed the autothresholding and “Find Maxima”-based conventional approaches
in detecting, segmenting, and quantifying labeled cells (“StarDist,” mean: 3765.8 ± 13.3 cells; autothresholding /“Find Maxima,” mean: 2580.4 ± 339.8 cells;
p < 0.0001; d = 1190 [95CI 907; 1440]). “StarDist” performance was similar to that of the manual quantification by a senior research trainee or the two combined,
albeit with lower variability (senior research trainee, mean: 3698.6 ± 40.1 cells; “StarDist” + senior research trainee, mean: 3789 ± 25.7; p = 0.9570; d = –17.8 [95CI
–77.8; 42.8] and d = –1 [95CI –60.8; 60.4], respectively). N = 5 randomly selected barrel cortex micrographs; “****”p < 0.0001. For experimental details regarding
the animals used and image acquisition and processing parameters see Supplementary Methods.

and features, breaking the image into smaller fragments and
facilitating image interpretation (Nixon and Aguado, 2019).
Prior to these processing steps, images must be prepared by
subtracting their background and denoising them, leading to
an enhancement of the acquired signal (Sternberg, 1983; Nixon

and Aguado, 2019). For signal enhancement of images with
cells labeled with the neuronal nuclear protein [NeuN; also
known as RNA binding protein fox-1 homolog 3 (Wolf et al.,
1996; Kim et al., 2009; Duan et al., 2016)] we use FIJI-ImageJ’s
“Subtract Background” function, while the signal on images
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FIGURE 4 | Solutions and recommendations for the implementation of systematic and open science framework to studies for quantifying cell-types in the mouse
brain. Familiarization with experimental design concepts and principles helps to identify sources of bias early on and establish plans to mitigate these, resulting in
conducting research in an efficient and reliable way. For example, using the ARRIVE guidelines to design an experimental plan not only provides a procedural a
structure but also a reference to identify critical items to report on a study (A). Likewise, be acquainted with research methods and equipment is paramount to keep
consistency across processed samples (B,C). Using quality control checklist for these steps can facilitate achieving this goal while at the same time provide a
reference when it comes to reporting the study. When it comes to process images and extracting data, using workflows based on user-friendly and open-source
tools (e.g., FIJI-ImageJ) will contribute to the reproducibility and usability of a study (D). Lastly, incorporating estimation statistics analysis to statistical analysis plan
improves the interpretation of study outcomes by providing a quantitative measure of the extent of an outcome (i.e., effect size) and clearly depicting variability. The
latter is further benefited by plotting all the data points and their respective distributions using highly descriptive types of scatterplots such as “SuperPlots” or
Gardner-Altman and Cummings estimation plots (E). Implementing these items not only contributes to open science, but also enhanced the robustness of a research
study.

with parvalbumin-labeled cells was enhanced by smoothing the
image (by replacing each pixel with the average of its 3×
neighborhood) and subtracting its Gaussian-blurred duplicate
from it (sigma = 10) with the “Image Calculator” tool for
Figure 2C. Traditionally, feature detection and segmentation
workflows for the analysis of cell density in fluorescence
microscopy has been based on thresholding (selection of a
minimum intensity value to binarize the image) and watershed
segmentation (for example, using the auto-thresholding method
“Moments” alongside watershed segmentation and size/shape
filtering for parvalbumin-positive cells and “Find Maxima” for
NeuN-positive cells; see Supplementary Methods for more
details) to identify cells (Sezgin and Sankur, 2004; Aaron and
Chew, 2021; Bourgeois et al., 2021). While this approach is
not resource intensive and relatively simple, it is prone to
significant performance variability, leading to inconsistencies
across images (Sezgin and Taşaltín, 2000; Sezgin and Sankur,
2004). To overcome this issue, researchers have developed
machine learning tools using deep learning of artificial neural
network, which in addition to significant improvements in
performance, accuracy, and speed, are adaptable to virtually
any dataset by training artificial neural networks (Moen et al.,
2019; Meijering, 2020; Hallou et al., 2021; Stringer et al., 2021).

While implementing these approaches often requires specialized
personnel and high-performance computing equipment, the
computing efficiency is being optimized work on regular
consumer-graded computing equipment (Moen et al., 2019;
Meijering, 2020; Tyson et al., 2021; von Chamier et al.,
2021) and there are novel developments in user-friendly
implementations (Gómez-de-Mariscal et al., 2021; Lucas et al.,
2021; von Chamier et al., 2021). For our FIJI-ImageJ-based
workflow, we decided to use “StarDist,” a Python implementation
for the detection of star-convex objects that uses machine
learning and is available as a ready-to-use and user-friendly
plugin for FIJI-ImageJ (Schmidt et al., 2018; Weigert et al.,
2020). While “StarDist” was originally designed to detect cell
nuclei in fluorescence microscopy images via a convolutional
neural network that approximates nuclei shape with star-convex
polygons, “StarDist” base-and-ready-to-use models perform well
at detecting cell bodies for various fluorescence and brightfield
microscopy applications, in particular in challenging cases such
as images with high cellular density (Schmidt et al., 2018;
Weigert et al., 2020). “StarDist” produces two outputs: a 16-bit
image containing a color-coded annotation of the segmented
objects and the corresponding ROIs for each segmented object
(directed to the “ROI Manager”). Following the application
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of “StarDist,” our framework exports the segmented objects
ROIs, their area, and total object count to a “.csv” files into
each image series respective subdirectory. From here, users can
perform further downstream analysis with open source statistical
software tools such as R and RStudio (R Core Team, 2021)
or online R-based and Python-based tools such as “ggPlotteR”
(see Text Footnote 8), “PlotsofData” (Postma and Goedhart,
2019), “SuperPlotsofData” (Goedhart, 2021), and “DABEST”
(Ho et al., 2019); the latter two are further discussed in the
following section.

To validate this workflow, we compared the performance
of “StarDist” with that of a conventional thresholding and
watershed segmentation, manual counting by a junior research
trainee (<1 year of experience), and manual counting by a senior
research trainee (>5 years of experience) using 10 randomly
selected micrographs of the barrel cortex (anteroposterior
coordinate +0.2 mm; 5 images with parvalbumin labeling, and 5
images with NeuN labeling) acquired from 30 µm brain sections
obtained from C57BL/6J male and female 1-month old mice
(Figure 3). The conventional approach resulted in inaccurate
and inconsistent detection and quantification of cells. Moreover,
this exercise revealed the prowess of “StarDist” to detect and
segment cells consistently and accurately, even in images with
high cellular density such as those containing NeuN-labeled
cells (p < 0.0001). “StarDist” alone, showed a very small error
rate of ∼0.8%, calculated based on the a posteriori inspection
and verification of “StarDist” output by a senior researcher
(p = 0.9991). In the case of images labeled with parvalbumin,
no clear difference was observed between analysis methods;
however, “StarDist” output maintained an error rate of 7%. The
inclusion of “StarDist” as the feature extraction/segmentation
tool within our framework is twofold: first, it significantly speeds
up the analysis while maintaining very low error rates and
an easy-to-use interactive user interface that allows to tweak
the parameters of the object segmentation algorithm to refine
it. Second, “StarDist” also provides the flexibility to train its
convolutional neural network with additional datasets in case
the included machine learning models do not accurately detect
the cells or structures of interest in a given set of images; albeit
this task requires relative expertise in machine learning and its
applications for bio-image analysis. While we have developed and
validated this framework using coronal sections from 1-month
old C57BL/6J mouse brains (postnatal day age 30–33), brain
sections from younger or older animals should be still compatible
with our framework, as long as brain sections micrographs
contain enough anatomical landmarks can be recognized and
adjusted using the described plugins.

Data Analysis and Presentation:
Implementing Recent Paradigm-Shifting
Advances
The final steps of data analysis, visualization, and sharing and
reporting can arguably be the most exciting aspects of scientific
discovery. Most biomedical sciences disciplines rely heavily on
null hypothesis statistical testing. As a result, p-value significance
cut-offs have become a binary arbiter of biological importance
(Halsey, 2019; Ho et al., 2019). It is important to understand

that the p-value is an error threshold (Wasserstein et al., 2019),
and while these values can identify differences between two
groups, they provide no insight into the amplitude of difference.
In other words, though a statistical test comparing two means
can result in a statistically significant p-value (<0.05), the
difference between those means may not have any biological
relevance [an excellent example in neuroscience is provided in
Calin-Jageman and Cumming (2019)]. While p-values cannot
resolve the extent of observable difference, a measure that can
provide this insight is effect size, obtained with estimation-
based statistical analysis (Ho et al., 2019). For this reason,
we strongly advocate to complement null hypothesis statistical
testing with estimation-based statistical analysis, available in
open-source web-packages such as “DABEST” (“data analysis
with bootstrap-coupled estimation”) (Ho et al., 2019). The
advantage of estimation statistics is to report quantitative data
and eliminate statistical uncertainty by providing the potential for
error, reported as confidence interval estimates (Calin-Jageman
and Cumming, 2019), enabling the comparison of results from
different studies/contexts (Bernard, 2019; Calin-Jageman and
Cumming, 2019; Ho et al., 2019). Lastly, because statistical
analysis goes hand in hand with appropriate data visualization
and presentation, we recommend plotting data according to
the recommendations outlined by Lord et al. (2020) in their
“SuperPlots” paper and estimation graphics such as Gardner-
Altman and Cummings estimation plots (Ho et al., 2019).
The key points can be summarized as follows: (1) display all
data points, including all technical and biological replicates;
(2) avoid presenting data using bars or boxplots; (3) always
display a measure of variability, such as the standard deviation or
confidence intervals; and lastly (4) add the results of the statistical
test used. Both DABEST and “SuperPlots” are suitable tools to
communicate data variability and reproducibility. These plots
can be easily generated through free and open-source web tools
(Ho et al., 2019; Goedhart, 2021), thereby dismantling barriers to
reproducible data visualization and analysis.

DISCUSSION

Quantitative analysis of cell-types in mouse brain has enabled
critical advances in understanding proper neurodevelopment and
neurological disease in mammals (Stoner et al., 2014; DeTure
and Dickson, 2019; Briscoe and Marín, 2020). However, the
reusability of datasets and analysis methods is hampered by
inconsistencies and errors in experimental design, gaps in the
reporting of studies, as well as lack of user-friendly resources
to design and produce systematic research studies that adhere
to current best practices and open science principles (Button
et al., 2013; Marqués et al., 2020; Picciotto, 2020). Given the
growing (and much-needed) popularity of the open science
movement (Koch and Jones, 2016), there is an impending need to
elaborate and implement frameworks that are easy to adopt and
adapt to each researcher interests. Here we provide an accessible
and flexible framework for a commonly used study approach
in neuroscience: quantification of cell density in a given brain
region. Within this framework, we aimed to compile information
that can help guide the implementation of open science
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workflows throughout the full span of an experimental research
study, beginning with experimental design, tissue processing,
and image acquisition, and concluding with an example of a
workflow for image processing registration, and data analysis
(Figure 4). This workflow takes advantage of the popularity,
familiarity, and ease of use of the open-source platform for
image analysis FIJI-ImageJ and availability of bio-image analysis
community-built plugins, such as “Bio-Formats,” “BigWarp,” and
“StarDist” (Linkert et al., 2010; Schindelin et al., 2012; Schmidt
et al., 2018). We acknowledge that our proposed approach
may not fulfill every researcher’s needs, and for this reason,
we sought to complement our discussion with a compilation
of emerging and in-development analysis tools (Supplementary
Table 2). While simple, the flexibility of our framework allows
for adaptation to capture more subtle or complex morphological
features (e.g., quantifying cells with cytoskeletal markers) or to
quantify other cell types (e.g., microglia, oligodendrocytes, and
astrocytes) by modifying the image processing and segmentation
steps with alternative FIJI-ImageJ-based tools and plugins. As
the availability of bio-image analysis tools that use machine
learning and artificial intelligence continues to grow, these
tools can be implemented as modules within our proposed
framework, expanding its capabilities and usability. We discuss
some of these exciting new tools in Supplementary Table 2,
such as those within the Python-based BrainGlobe platform
(which includes “brainreg,” “cellfinder,” “brainredner,” and an
“ilastik” implementation) which provide powerful and integrative
analyses platforms for whole mouse brain sections, as well as
alternative workflows to those published in the past (Berg et al.,
2019; Yates et al., 2019; Claudi et al., 2021).

In all, the present work represents a compilation
of key theoretical and practical considerations, and an
operational framework that support and encourages a broader
implementation of systematic and open-science workflows with
the goal of creating greater synergy in our collective efforts as
neuroscientists. Not only do we hope that this resource is helpful
to the neuroscience research community, especially trainees, but
we expect it will be further refined and improved upon.
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