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Abstract: Pyrrolnitrin (PRN) is a microbial pyrrole halometabolite of immense antimicrobial
significance for agricultural, pharmaceutical and industrial implications. The compound and
its derivatives have been isolated from rhizospheric fluorescent or non-fluorescent pseudomonads,
Serratia and Burkholderia. They are known to confer biological control against a wide range of
phytopathogenic fungi, and thus offer strong plant protection prospects against soil and seed-borne
phytopathogenic diseases. Although chemical synthesis of PRN has been obtained using different
steps, microbial production is still the most useful option for producing this metabolite. In many
of the plant-associated isolates of Serratia and Burkholderia, production of PRN is dependent on
the quorum-sensing regulation that usually involves N-acylhomoserine lactone (AHL) autoinducer
signals. When applied on the organisms as antimicrobial agent, the molecule impedes synthesis of key
biomolecules (DNA, RNA and protein), uncouples with oxidative phosphorylation, inhibits mitotic
division and hampers several biological mechanisms. With its potential broad-spectrum activities,
low phototoxicity, non-toxic nature and specificity for impacts on non-target organisms, the metabolite
has emerged as a lead molecule of industrial importance, which has led to developing cost-effective
methods for the biosynthesis of PRN using microbial fermentation. Quantum of work narrating
focused research efforts in the emergence of this potential microbial metabolite is summarized here to
present a consolidated, sequential and updated insight into the chemistry, biology and applicability
of this natural molecule.

Keywords: Halometabolites; pyrrolnitrin; biosynthesis; biochemistry; spectral properties; antifungal
activity; applications

1. Introduction

Of 5–30 million species on the Earth, fewer than 2 million have been described and fewer than 1%
have been explored for a vast repertoire of new natural products with socio-economic significance [1].
Hence, it is reasonable to expect that many more natural products not only from known species, but
also from unidentified organisms are yet to come to benefit humanity and the environment [2]. Natural
products offer unique structural molecules unparalleled by any other molecular family with an array
of biological activities such as for drug leads. The many natural products that occupy the market
today without any chemical modification are a testimony to the remarkable properties of secondary
molecules produced by an array of plants, insects, animals, microbes and numerous species of marine
organisms [3].

Secondary metabolites are small heterogenous organic molecules [4] that display prominent
ecological benefits to the host organisms in providing defense against predators, parasites, diseases,
interspecies nutritional competence, and competitive edge over interaction with the environment [5,6].

Biomolecules 2019, 9, 443; doi:10.3390/biom9090443 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0002-1868-5832
http://www.mdpi.com/2218-273X/9/9/443?type=check_update&version=1
http://dx.doi.org/10.3390/biom9090443
http://www.mdpi.com/journal/biomolecules


Biomolecules 2019, 9, 443 2 of 26

Extensive microbial structural diversification has led to maximizing chemical diversity in terms of the
secondary metabolite resources that triggered scope for new drug leads [7]. Since natural products
have reflected a wide array of therapeutic and biological applications (antibiotic, anti-inflammatory,
antimicrobial, antitumor, anticancer, antiparasitic and immunosuppressing agents as well as enzyme
inhibitors), the scope for further exploration of uncharacterized molecules of plant and microbial origin
has always remained a focused area for identifying new leads for pharmaceutical and agro-chemical
usages [8].

Continuously changing environmental patterns, the emergence of new diseases and resurgence of
resistance towards existing drugs have led to an extensive search for novel natural metabolites at a rapid
rate [9]. Low molecular size secondary metabolites from living entities have been obtained with typical
therapeutic, biological and agricultural implications including antimicrobials, growth promoters,
disease suppressers, enzyme inhibitors, health stimulators, and biocontrol agents against pathogenic
fungi, bacteria and insects [10,11]. Systematic strategies for obtaining bioactive metabolites include
isolation and identification of known secondary metabolites with biological activities unmatched with
the molecular libraries or search for unknown natural molecules with versatile bioactivities. For both
these options, the microbial world offers a great repository of natural molecules due to their extensive
chemical diversity. However, there remains limitations of the culturability of microbial species and
the expression of desired molecular traits or chemical species under isolated culture conditions.
To overcome this, metagenomics has emerged to represent vast structural diversity of taxonomic
communities with multi-functionalities having diverse chemical structures and functions [12].

Thus, secondary metabolites are supposed to be conserved in the species, evolved in a competitive
environment, emerged to serve purposes other than primary metabolism, secreted for specific
physiological or defense-related reasons, related with the habitat of producing organisms, blessed with
complex chemical structures and clubbed with diverse bioactivity [13,14]. These attributes potentiate
the usefulness of structurally diverse but functionally sound microbial biomolecules in therapeutics,
and agricultural, industrial and environmental applications. We discuss structural, chemical, biological
and functional perspectives of one of the earliest known pyrrole antibiotic antifungal metabolite of
microbial origin, pyrrolnitrin, which has witnessed laboratory to commercial implications.

2. Halometabolites with Potential Functions

Secondary metabolites have emerged as a potential tool against many diseases after 1980 [15].
These molecules account for nearly 67% of the total antibiotics produced [16,17]. Secondary metabolites
with halogen moiety in their chemical structure, referred to as “halometabolites”, display wide
structural diversity with unique biological functions [18] (Table 1). Earlier, 29 halometabolites were
reported with various functions [18] but now more than 5000 natural organohalogens, predominantly
chlorinated and brominated compounds, have been identified [19]. These halometabolites are produced
by several organisms including microbes, sponges, higher plants and insects. Organisms undergoing
abiotic stresses such as extreme conditions, forest fires, volcanoes and volcanic eruptions that lead
to abiotic oxidation of organic matter are more prone to halo-compound synthesis [20]. Initially,
halometabolites were considered nothing more than an oddity, but later they attracted more attention
because of their biogenesis, structural diversity and potential bioactivity.
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Table 1. Structural diversity of organohalogen secondary metabolites from various organisms inhabiting
different habitats.

Organohalogens Bioactivity Halogen Type and Number Source; Habitat Reference(s)
Plants

4-Chloroindole Ester Plant growth
promoting hormone Cl (01) Pisum Sativum (Lentil, Sweet Pea, Sea Pea,

Vetch); Soil [21,22]

3-Chloroindole acetate Plant hormone Cl (01) Ptychodero Povo Loysanica;
Marine acorn worm [23]

Romucosine B Plant alkaloids Cl (01) Rollinia mucosa;
Tropical south America [24]

Neoirietetrao Diterpene Br (01) Laurencia yonaguniensis;
Yonaguni island, Japan [25]

Bromomethane Fumigant; pesticides Br (01)
Cabbage, Broccoli, Turnips, Rapeseeds

(Family: Brassicaceae);
Soil

[26]

2-Chloro-4-Nitrophenol Fungicide Cl (01) Stephanospora Caroticolor;
Soil [26]

Animals

Tyrosine derivative
Improving adhesion

between protein fiber,
sheets

Cl (01-03) Marine Sponges, Sea fans, Gorgonians;
Sea water [27]

Diiodotyrosine
Precursor in

production of thyroid
hormone

I (02) Gorgonia Cavolii, Sea Fan;
Western Atlantic Ocean [28]

Ecuadoran Analgesic activity Cl (01) Epipedobotes;
Eastern Atlantic Ocean [29]

Tyrian Purple Dye Dye Br (02) Murex Brandaris;
Sea snail [30]

Drosophilin A Antibiotic Cl (04)
Drosophila Substrata; Ligninolytic

Basidiomycetes;
overripe or rotting fruit

[31]

2,6 Dichlorophenol Sex pheromone;
growth hormone Cl (02) Female; Penicillium Mold;

Decaying material [26]

2,4 Dichlorophenol Broad spectrum
herbicides Cl (02) Penicillium Spp.;

Agricultural inoculant [26]

Epibatidine Pain killer Cl (01) Epipedobates Anthonyi (Frog);
Central; Southern cuador [32]

Microorganisms

Chloramphenicol Antibiotic Cl (02) Streptomyces venezuelae;
Soil, decaying vegetation [33]

Chlortetracycline Antibiotic Cl (01) Streptomyces aurefaciens;
Agricultural soil [34]

Grisiofulvin Antifungal drug Cl (01) Penicillium grisiofulvum;
Soil [35]

Pyoluteorin Antibiotic Cl (02) Pseudomonas aeruginosa;
Rhizospheric soil [36]

Fluoroacetic Acid Pesticide F (01) Streptomyces cattleya;
Soil [37]

Pyrrolnitrin Antifungal antibiotic Cl (02)
Burkholderia pyrrocinia, P. fluorescence,

Serratia plymuthica;
Rhizospheric soil

[38]

Nucleocidin Nucleoside antibiotic F (01) Streptomyces calvus;
Soil [39]

Vancomycin Antibiotic Cl (02) Amycolatopsis orientalis;
Soil [40]

2′Chloropentostatin Nucleoside antibiotic Cl (01) Actinomadura sp.;
Soil [41]

Napyradiomycin Antibiotic Cl (02) Chainia rubra;
Soil [42]

Calicheamicin B1 Cytotoxin Br (01) Micromonospora echinospora;
Rhizospheric soil [43]

Pyrroindomycine B Antibiotic Cl (01) Streptomyces rugosporus;
Soil [44]

Pentabromopseudilin Marine antibiotic Br (05) Pseudomonas bromoutilis;
Coastal area [45]

Cryptophycin A Anticancer Cl (01) Cyanobacterium;
Terrestrial, aquatic habitat [46]

2-Chloro-4-Nitrophenol Fungicide Cl (01) Stephanospora caroticolor;
Rotting wood or plant debris [47]

3,5 Dichloro-Hexanophenone Inhibit fruiting body
formation Cl (02) Dictyostelium discoideum;

Decaying peach [31]

Rebeccamycin Weak Topoisomerase I
Inhibitor, antitumor Cl (02) Streptomyces sp.;

Rhizosphere, agricultural soil [26]

Chlortetracycline Antibiotic Cl (01) Streptomyces aureofaciens;
Sanborn field [48]
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In halometabolites, the halogen atom from halides ions (Cl−, Br−, I− and F−) is incorporated
in organic compound with halogenation catalyzed by halogenase. Metabolites having bromine and
iodine are mostly secreted by invertebrates and algae from marine habitats. Organisms from sea water
habitat have comparatively more bromine content, while chlorinated metabolites were dominant in
terrestrial species. Besides, fluorinated metabolites were also synthesized by few higher plants [30].
The 200-fold increase in the number of secondary metabolites with halo-molecules has been seen due
to extensive research for antibiotics from marine habitats. It may have happened because incorporation
of a halogen moiety potentiates more bioactivity and facilitates bioavailability of molecules [49].
Furthermore, the prevalence of halogen (Cl- or Br-) can offer a chemically reactive and orthogonal
handle for selective modification through cross coupling chemistry [50]. The most common halogen
found in secondary halometabolites is chlorine followed by bromine, while iodine and fluorine are
considerably low [49,51]. Of these, chlorinated halometabolites has more advantages of being amenable
to chemical modification for tailor-made bioactivity and increased drug efficacy [52]. The recent surge
of interest in halometabolites seems to be due to their potentialities as effective alternative to current
antifungal agents and, therefore, the pyrrolnitrin metabolite of soil microbial habitat holds promise.

3. Pyrrolnitrin (PRN)

Pyrrolnitrin [3-chloro-4-(2-nitro-3-chlorophenyl) pyrrole] is a phenylpyrrole derivative containing
two chlorine atoms and a nitro group. PRN, isolated from Pseudomonas pyrrocinia and various other
pseudomonads, was classified as halometabolite in as early as 1964 [38]. Later, the compound was
biosynthesized using tryptophan as supplement in the medium [53] and chemically synthesized
by Nakano et al [54]. Biosynthesis of PRN in Pseudomonas aureofaciens ATCC 15926 has shown that
L-tryptophan is a direct precursor (Figure 1) [53]. However, Hammil et al. [55] obtained high yield of
PRN in D-tryptophan amended medium. Tryptophan analogs amended in the fermentation medium
can also yield a series of PRN-like derivatives [56] (Table 2) with low antimicrobial activity than the
native parent compound.



Biomolecules 2019, 9, 443 5 of 26

Table 2. Derivatives of pyrrolnitrin biosynthesized by Pseudomonas aureofaciens [56].

IUPAC Name Common Name Structure Extinction Coefficient ňmax MeOH (log ε) Molecular Formula Molar Mass/
Molecular Weight

3-(2-amino-3-chlorophenyl)-pyrrole Mono-chloro-amino-pyrrolnitrin
(MCA)
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Structurally, PRN possesses benzene and pyrrole rings with chlorine atoms on both of them
and nitro and chlorine units to form an unusual natural skeleton. It has chlorine moiety to
contribute more towards biological activity [57] in comparison to its bromine derivative [58].
Consequently, several natural congeners of PRN such as amino-pyrrolnitrin, iso-pyrrolnitrin,
2-chloropyrrolnitrin, oxy-pyrrolnitrin, 4-fluoropyrrolnitrin, and 3-fluoro-3-dechloropyrrolnitrin have
been reported. Brominated derivatives of PRN can be synthesized by replacing chlorine ion with
bromine in the presence of sodium bromide.
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Figure 1. Biosynthetic steps in the synthesis of pyrrolnitrin. 7-chlorotryptophan is formed from
tryptophan due to flavin-dependent halogenation catalyzed by the enzyme tryptophan 7-halogenase
(PrnA). Further, the enzyme PrnB (monodechloroaminopyrrolnitrin synthase catalyzes formation of
monodechloroaminopyrrolnitrin from 7-chlorotryptophan while the enzyme PrnC leads to catalytic
reaction for the conversion of monodechloroaminopyrrolnitrin into aminopyrrolnitrin. In the last step,
aminopyrrolnitrin is converted to pyrrolnitrin with the help of the enzyme PrnD (aminopyrrolnitrin
oxygenase).

3.1. Pyrrolnitrin: Chemical Synthesis

PRN is positive towards Ehrlich’s reagent where pyrrole ring gets condensed with
p-dimethylaminobenzaldehyde to form the violet color complex. Pauly’s coupling reaction yields red
color [59] and gives a negative reaction to the ferric chloride nitro group detection test. PRN can be
oxidized by chromic acid to form corresponding compound which on oxidation with permanganate,
yields carboxylic acid [38].

Modern synthetic targets for chemical synthesis require regiospecific polysubstituted aromatic
or heteroaromatic components [60]. PRN is chemically synthesized by α-block of pyrrole
ring and 2-nitro-3-chloroacetophenone, and subsequent chlorination at 4-position and oxidation
of methyles using sulfurilchloride followed by decarboxylation [54]. In another approach,
2-Methyl-4-(2-nitro-3-chloro-phenyl)-5-ethoxycarbonyl-pyrrole was prepared in various steps from
2-amino-3-chloro-toluene [61]. One of the most versatile synthetic approach for PRN allowed access
to analog compounds such as monodechloroaminopyrrolnitrin and aminopyrrolnitrin. This step
facilitated PRN synthesis using Suzuki–Miyaura cross-coupling of an appropriately halogenated
pyrrole pinacolboronate ester with halogenated arylpyrroles using 2,6-disubstituted nitrobenzenes
or 2,6-disubstituted anilines [62]. Palladium-catalyzed coupling of 1-(triisopropylsilyl-3-substituted
pyrroles with arylhaildes has also been described [63]. However, chemical synthesis of PRN makes
synthetic route cost extensive and pose threat to the environment [62]. Furthermore, the chemical
process utilizes noxious chemicals, high temperature and pressure, more energy and yield poor
regioselectivity with lack of public acceptability [49]. Thus, chemical industries prefer microbial species
for more selective, greener and cost-effective approach for synthesizing PRN.



Biomolecules 2019, 9, 443 7 of 26

3.2. Microbial Pyrrolnitrin Production and Recovery

Microbial synthesis of PRN is easy, reliable and eco-friendly and requires low-cost medium
constituents, ambient conditions for growth and production, the least additional energy requirements
and minimum expensive equipment. This is the major reason microbial synthesis of PRN has become
the preferred alternative to chemical processes [49]. After initial isolation of PRN from Pseudomonas
pyrrocinia [38] and thereafter reports from different fluorescent and non-fluorescent Pseudomonas
species [53,64], several strains of Burkholderia cepacia, Corallococcus exiguus, Cystobacter ferrugineus,
Enterobacter agglomerans, Myxococcus fulvus, Serratia spp. and Actinosporangium vitaminophilum have
been classified to produce PRN in varying quantities [65–68]. Serratia plymuthica [69] and S. ruhidaea [70]
are identified for enhanced production of PRN. Recently, a strain belonging to Burkholderia cepacia
complex, JKB9, showing broad-spectrum antifungal activity, was held responsible for suppressing
growth of Phytophthora capsici, Fusarium oxysporum and Rhizoctonia solani [71]. This strain, which
has shown stronger antifungal activity than Burkholderia strains KCTC2973 and ATCC25416 against
Phytophthora blight, was confirmed for PRN production using thin layer chromatography (TPC), high
performance liquid chromatography (HPLC) and Nuclear Magnetic Resonance (NMR) spectrometric
studies. Complete genome sequencing of Burkholderia pyrrocinia 2327T revealed insights into the cells
possessing antibiotic capabilities for the biosynthesis of PRN [72]. Cloning of gene clusters responsible
for encoding enzymes involved in the production of pyrrolnitrin in organisms has greatly helped in
marking of the biosynthetic routes. Using an antibiotic producing strain of P. fluorescens [73] cloned
four gene clusters to elucidate biochemistry of these molecules and to link it with the enzymes that may
offer the routes for the synthesis of new chemical structures. Earlier, prnABCD operon from P. protegens
Pf-5 was co-expressed in tomato plants with universal vector IL-60 and successfully demonstrated
resistance to damping-off disease caused by R. solani [74].

Microbial wild type strains secrete PRN in low quantity (Table 3) and production varies with the
medium constituents. P. aureofaciens ATCC 15926 strain when grown in minimal medium, secreted PRN
in low concentration (<0.3 µg mL−1). Even optimized variation of constituents in growth medium could
not increase PRN production. However, the production enhanced by 30-fold when P. aureofaciens ATCC
15926 was mutated with N-methyl-N’-nitro-N-nitrosoguanidine [75]. Addition of DL-tryptophan
(1 mg mL−1) in CMM medium also doubled PRN production after 120 h but additional amount of
tryptophan resulted in less yield [76].
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Table 3. Characteristics of PRN production by different microbial species inhabiting several ecohabitats.

Sr. no. Producer Habitat Medium Physical Condition Incubation Period
(Days) Concentration Significance Reference

1. Pseudomonas pyrrocinia - Bouillon Medium - - ND Antibiotic, antifungal nature [26,38]

2.
P. aureofaciens, P.

fluorescens, P.
multivorans

- CMM, Synthetic C, E 27 ◦C, shaker 7 0.32–126 (µg mL−1)
PRN widespread in groups of

Pseudomonas [64]

3. P. aureofaciens - CMM 27 ◦C, shaker 5 9.5 to 50 (µg mL−1)
Production of substituted PRN

from Tryptophan analogs [56]

4. P. aureofaciens - CMM 30 ◦C, shaker 5 18.35–19.9 (µm) Possible pathway discussed [77]

5. Pseudomonas cepacia
B37w (NRRL B-14858) Rhizosphere Sabouraud Maltose

Broth - 6 2.133 (mg L−1)
Efficacy against F. Sambucinum
incited potato dry rot disease [59]

6. Pseudomonas cepacia
LT4-12- W Apple leaves Mineral Salt, Nutrient

Broth, Kings medium B 27 ◦C, 200 rpm 7
1) MS: 51.50 (mg L−1)
2) NB: 7.20 (mg L−1)

3) KMB: 5.50 (mg L−1)

Production of phenylpyrrole
metabolites with respect to

time
[78]

7. B. cepacian - Mineral Salt 27 ◦C, shaker 7 ND Delays postharvest fruit rot in
strawberries [79]

8. Enterobacter agglomerans
IC1270 Grapes rhizosphere Potato Dextrose Agar Incubated on agar plate 5 ND

Possible role of a combination
of Chitinases and pyrrolnitrin

in antagonism
[65]

9. B. cepacia NB-1
Ponds in botanical

garden of Tubingen,
Germany

Minimal medium
27 ◦C, aeration rate

0·5 vvm, stirrer speed
150 rev min−1, pH −7.0

5 0.54 (mg L−1)
PRN block ETS Neurospora
crassa 74 A; inhibition of

Streptomycine spp.
[66]

10.
Burkholderia cepacia 5.5B

(ATCC 55344) Wild
Type

Soil sample, North
Carolina

Nutrient broth, Mineral
salt 25 ◦C, at 200 rpm, pH 5.8 5 NB: 35.59; MS: 28.54

(mg 1012 cfu)
Biocontrol of Rhizoctonia stem

rot of poinsettia [80]

11. Pseudomonas fluorescens
psd

Roots of Vigna
mungo

Standard succinate
medium (SSM) - - ND Biocontrol property of plants

protected from strain [81]

12. Pseudomonas
chlororaphis O6 - Nutrient broth, Mung

bean medium 28 ◦C 200 rpm - 1.7 (µg mL−1)
Regulation by glucose of PRN

production influenced
biocontrol of tomato leaf blight

[82]

13. Acinetobacter
haemolyticus A19 Wheat rhizosphere Luria broth - 2 15 (mg L−1)

Plasmid-mediated pyrrolnitrin
production by A. Haemolyticus

A19
[83]

14. Pseudomonas
chlororaphis strain PA23 - M9 medium + 1 mm

MgSO4 + 0.2% glucose - 5 ND
Nematicidal and repellent

activity against Caenorhabditis
elegans

[84]

15. Serratia marcescens
ETR17 Tea rhizosphere Semi-solid pigment

producing media 30 ◦C 8 ND

Effective reduction of root-rot
disease tea plant on talc-based

formulations; Plant growth
promoting activity

[85]

CMM: Citrate minimal medium; ND: not determined; NB: Nutrient broth; MS; Murashige-Skoog medium; cfu: colony forming units; KMB: King’s medium-B.
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Besides intracellular production of PRN from Pseudomonas spp., the excretion of the compound
was also detected in the supernatant of fermented medium of Serratia marcescens strain ETR17 [85].
B. cepacia yielded 0.54 mg L−1 of PRN in monosodium glutamate medium at 27 ◦C as quantified
by preparative HPLC [66]. Initially, Elander et al. [64] reported that only 27.58% Pseudomonas spp.
secreted PRN in shake flask fermentation propagated in CMM, C, or E media. The authors concluded
that P. multivorans C653 (ATCC 17760) showed maximum PRN production in medium C, followed by E
and then CMM. P. aureofaciens was shown to secrete moderate PRN in CMM medium (40–80 µg mL−1).
The PRN concentration increased in D-tryptophan amended medium where it was incorporated in the
biosynthesis of PRN.

While growing P. aureofaciens in isotopically labeled tryptophan (at different positions) containing
medium, Martin et al. [86] demonstrated that amino nitrogen of D-tryptophan became the nitro
group of PRN. The two chlorine atoms in PRN, C3 of side chain became pyrrole and C2 of the indole
nucleus got retained during biosynthesis (Figure 1). Furthermore, Chang et al. [77] confirmed that
H-2 and H-α of the indole and side chain give rise to H-5 and H-2 of PRN, respectively, and, thus,
proposed that L-tryptophan is the immediate precursor in PRN biosynthetic pathway. PRN formation
using labeled tryptophan showed that L- rather than D-tryptophan was the immediate precursor of
PRN [87]. 7-chloroindole-3-acetic acid, 3-chloroanthranilate detected in fermented medium revealed
that 7-chlorotryptophan served as a common precursor for PRN [88].

Variety of production media and their pH remained a key parameter to influence PRN secretion.
Shake flask fermentation of P. cepacia LT4-12-W revealed that the final yield (at 168 h) of PRN almost
doubled at pH 5.8. Amendment of MS medium with glutamate salt of sodium yielded 60.50 mg mL−1

of PRM secretion [89]. The effect of different physicochemical conditions on plasmid-mediated PRN
secretion has also been reported from Acinetobacter haemolyticus A19 isolate from wheat rhizosphere [83].

Recovery strategy of PRN involves cell growth in appropriate medium, extraction in acetone
followed by removal of oily matter from concentrated acetone solution using petroleum benzene [38].
From fermented broth at pH 10 or 11 (6 mL) with NaOH, cell pellet centrifugation following sonication
with acetone (600 µL) for 1 min, separation of acetone supernatant, re-extraction of pellets again in
acetone (300 µL) and drying of acetone extract also yield PRN extract [59]. Further, fermented cultures
were extracted after 48 h with equal volume of ethyl acetate [90] and centrifuged. Pellets sonicated
twice with ethyl acetate (5 mL) for 3 min then recovery of organic phase [91] resulted in PRN rich
dried extract [92]. Majumdar et al. [83] reported lysis of 18 h culture of Acinetobacter haemolyticus A19
using 1% SDS followed by sonication for 5–15 min and supernatant collection for PRN. In the case
of bioactivity and characterization study, chromatographic separation techniques such as column
chromatography and flash column with different mobile phases were explored (Table 4).
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Table 4. Purification of pyrrolnitrin using various separation techniques with different solvent systems.

Matrix Column Organic Phase Detection Reference
Silica gel G 35 cm × 1.5 cm Chloroform: methanol (9:1) - [83]

Silica gel (40 µm) 35.6 cm × 1.75 cm Benzene: hexane (2:1); Benzene; Benzene:
acetone (1:1); Acetone; methanol TLC - bioautography [59]

Silica gel (60 µm) -
Chloroform: hexane (1:1, 1.5:1, 2:1, 5:1)

(v/v); chloroform; chloroform-acetone (5:1,
1:1) (v/v); acetone

Bioassay with R. solani [65]

Sephadex LH-20 - Methanol pHPLC [66]

Silica gel 60 (0.015–0.040 mm;
Merck) - Dichloromethane then methanol TLC [93]

Silica gel (H60) - Dichloromethane Bioautography [94]

Silica gel (20 × 170 mm, Wakogel C-200)
Benzene, 10% ethyl acetatobenzene, 20%
ethyl acetate benzene and finally ethyl

acetate
TLC [95]

Silicic acid (240 × 22 mm) Diethyl ether and methanol - [96]

- RP C-18 flash Water and methanol TLC [97]

- RP C-18 (MPLC) 50% to 100% aq methanol HPLC [97]

Silica gel (60 µm) - Toluene - [98]
TLC: thin layer chromatography; HPLC: high performance liquid chromatography; Aq.: Aqueous; MPLC: medium pressure liquid chromatography; RP: Reverse phase; pHPLC:
preparative HPLC.
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3.3. Analytical Characteristics of Pyrrolnitrin

PRN is chemically substituted with 3-phenyl pyrrole derivative containing two
chlorine atoms and a nitro group [57]. The compound is a pale-yellow crystal [38],
3-chloro-4-(3-chloro-2-nitrophenyl)-1H-pyrrole, a phenylpyrrole molecule having a chemical formula
of C10H6O2N2Cl2 and molecular weight 257.07 gmol−1. The melting point of PRN, which is sparingly
soluble in water, petroleum ether and cyclohexane, but more soluble in ethanol, butanol, ethyl acetate,
ethyl ether, snf chloroform, is 124.5 ◦C. Elemental analysis of the compound reflected C, 46.71%; H,
2.33%; O, 12.45%; N, 10.89%; and Cl, 27.68% [38]. PRN separation was achieved by different methods
like chromatography TLC and HPLC [65,82] while structural features have been elucidated using
Fourier transform infrared spectroscopy (FTIR) [93], nuclear magnetic spectroscopy (NMR 1H and
13C) [89] and mass spectroscopy (LC-MS and GC-MS) [99].

Separation of PRN from bacterial media extract using TLC utilized various stationary phases such
as silica gel G, GF254, 60 F254, KCI8 F, C18 Glass and several mobile phases. PRN can be detected on
TLC under UV transilluminator [83,100] and visualized by spraying diazotized sulfanilic acid (DSA)
or Pauly’s, Ehrlich’s and van Urk’s reagent to develop maroon and violet color, respectively [101,102]
or H2SO4 on Silica Gel G plate [64]. The Rf value for various TLC system served to identify PRN
from different bacterial species. The compound has been analyzed by retention time in gradient
HPLC system [65] but isocratic solvent system of 45% water, 30% acetonitrile, and 25% methanol
also separated pyrrolnitrin at 252 nm in preparative HPLC [102]. Modifications in the polarity of
solvents, mobile-stationary phase and elution methods are key strategies to quantify PRN using HPLC
(Table 5). Yellow colored PRN molecule isolated from Pseudomonas pyrrocinia absorbs at 252 nm with
molar extinction coefficient of ε = 7500 in ethanol [26]. Myxobacterial PRN also showed λmax at
252 nm in methanol [94]. Functional group stretching in FTIR vary with different PRN derivatives
due to its structural features. Typical bond stretching at 1530 and 1375 cm−1 characterized for nitro
group [38] while 3489 cm−1 represent pyrrole ring. Similarly, PRN isolated from supernatant of
fermented medium inoculated by Myxococcus fulvus strain Mx f147 indicated infrared spectrum to
confirm pyrrole ring (3460), nitro group (1530 and 1375), CH3 (stretch) (1460) and C=C aromatic
weak intensity (1600) [94]. Mass spectroscopy (MS) of PRN is ascertain using different ionization
techniques. MS of PRN isolated from Pseudomonas cepacia B37w showed molecular ion at m/z 256 with
the formula C10H6C12N2O2 [59]. Electrospray mass spectroscopy (negative ion spectrum) of PRN
further confirmed (mass-to-charge ratio; m/z) at 256 [66]. High-resolution mass spectrometry of the
two molecular ions gave m/z 255.9826 and 257.9777, respectively, indicating the molecular formula
C10H6N2O2

35C12 and C10H6N2O2
35Cl37Cl [99].
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Table 5. Several HPLC methods adopted to separate and quantify pyrrolnitrin from microbes using different solvent system.

Column Flow Rate (mL/min−1) Solvent System Detector Retention Time (min) References
RP 18 2 Methanol: water (70:30; v/v) - - [103]

50 mm × 4.6 mm I.D. guard 1.0 Acetonitrile: methanol: water (1:1:1) UV (254 nm) 10 [78]

Rainin Dynamax C18
(21.4 × 250 mm) -

Acetonitrile: water (3:2; v/v) fractions
collected at 9.5 to 12.5 min and

re-chromatographed on a silica column
eluted with chloroform: hexane (1:1; v/v)

- 13.5 [79]

C-18 column, 5 µm - Isocratic acetonitrile: methanol: water
(1:1:1) - - [59]

Hypersil octyldecyl saline
(2.1 mm diameter by 10 cm) - Water: methanol from 0%: 100 % and

gradually changing up to 100%: 0% - between 10-15 [104]

Reverse phase 18 0.7

0 min 50% methanol in water
15 min 100 % methanol in water
17 min 100% methanol in water
20 min 50% methanol in water
25 min 50% methanol in water

UV (252 nm) 15.4 [65]

C-18 reverse phase
(125 × 4.6 mm) - Methanol: water (70:30; v/v) UV (252 nm) - [105]

- 1.0
2-min initialization at 10% ACN: 0.1%
TFA; 20-min linear gradient to 100%

ACN: 0.1% TFA

990-photodiode array
detector - [91,106]

Nucleosil C-18 Acetonitrile: water (20 to 100%) - 27.5 [66]

RP C-18 column 1.0 Isocratically 45% water: 30% acetonitrile:
25% methanol - - [102]

C-18 RP column

10% acetonitrile: water (v/v) (both
acidified with 0.1% amino acid) run for
2min linear gradient 100% acetonitrile

(acidified with 0.1% amino acid)

- 18 [107]

- - 30 ~ 60% aq acetonitrile (for 70 min) - 68.9 [97]

Gemini C18 column
(100 × 4.6 mm; 5mm particle

diameter)
1.0 Isocratically 45% acetonitrile: 35% water:

20% methanol

Dionex AD20
(Dionex,Sunnyvale, CA)

(225 nm)
- [84,108]

Cosmosil C18 0.7
18 min linear gradient from 50 to 100%

methanol and 0.1% trifluoracetic acid in
methanol

- - [82]
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NMR spectroscopy is widely used for analytical measurement of microbial metabolites. The PRN
is confirmed by NMR spectrum [59] with values: (i) 1H NMR: H-2 and H-5: 6.82 (m, 2H); H-5′:
7.41-7.53 (m, 3H); NH: 8.29 (br s, 1H); and (ii) 13C NMR δ value: 111.9 indicated C-3, 115.4 for C-4,
116.6 for C-5, 117.4 meant for C-2, while 124.8, 127.6, 128.6, 130.1, and 130.3 designated for C-3′, C-1′,
C-6′, C-4′ and C-5′, respectively. Chemical shift (δ) values at 6.81 (m, 2H) indicate the presence of H-2
and H-5, 7.41: H-6′, 7.43: H-5′, 7.52: H-4′, 8.38: NH [89]. NMR spectrum of purified PRN secreted by
plasmid-mediated A. haemolyticus A19 revealed the values δ: 6.2–6.6 (m, 2H, H-2, H-5), 6.77 (q 1H,
H6), 7.03 (m, 1H, H-4), 7.38 (m2H, Ha, Hc) compared with standard 1H NMR spectrum of [65]. PRN
synthesized from Myxococcus fulvus strain Mx f147 showed 13C NMR spectrum (in acetone-d6; Bruker
400 MHz) [94]. Structural investigation of PRN with X-ray analysis revealed the presence of two
molecules with observed density of 1.74 g/cm3 that lie opposite to each other about the center of
symmetry. It further confirmed the location of two Cl atoms in the asymmetric unit with 3D Patterson
function, dihedral angle of the pyrrole, the benzene rings and chlorine substitution on pyrrole ring
located apart from the nitro group [109].

3.4. Biochemistry of Pyrrolnitrin

Microbial synthesis of PRN requires D-tryptophan, but cost of precursor amino acid and
intracellular secretion limits its large-scale production. The NO2 group is derived from anthranilic
acid, phenylalanine and tryptophan that could serve as a precursor for PRN secretion [57]. However,
anthranilic acid and L-phenylalanine usually decrease PRN secretion in P. aureofaciens and B. cepacian [66],
while tryptophan stimulates PRN production [57,101]. In the medium, L-tryptophan gets quick intake
within the cells than the D- isomer but addition of L-isomer could not yield more PRN secretion [110].
In actinomycetes, D-tryptophan enhances secretion of PRN when added separately in the culture
medium [101] and maximum accumulation was observed at stationary phase after 120 h [66,101]. It
indicated that the L-isomer of tryptophan enter cells quickly and participate in the protein synthesis,
while D-tryptophan enter slowly and available at the time of antibiotic secretion [55]. Besides,
L-glutamic acid amended medium showed maximum antifungal activity, which substantially declined
with the addition of L-tryptophan, L-valine, L-serine, L-phenylalanine and L-cysteine [66]. In brief,
D-tryptophan and L-glutamic acid are more direct precursors of PRN than any other amino acids.

PRN biosynthesis was unraveled in P. aureofaciens [77,101]. Later, genes (prnABCD operon)
and corresponding enzymes involved were delineated in P. fluorescens BL915 (Figure 2) [90,111].
The biosynthesis of PRN occurs in four sequential steps: chlorination by prnA, rearrangement and
decarboxylation by prnB, chlorination by prnC and oxidation by prnD enzyme (Figure 1). This involves
regioselective halogenation of tryptophan through the addition of chlorine into D-tryptophan by
tryptophan 7-halogenase (prnA) following nucleophilic and electrophilic reactions [112] and activation
of intermediate lysine-chloramine species as the first step [113,114]. Further, the reaction catalyzed
by prnB shows structural similarity with two-domain indoleamine 2,3-dioxygenase enzyme (IDO)
and involves several intermediary steps. The second step forms a binary complex that combines with
L-tryptophan or 7-Cl-L-tryptophan to create a ternary complex. The third step in PRN biosynthetic
pathway of P. fluorescens leads to catalytic conversion of mono-chloro-deamino-pyrrolnitrin into
amino-pyrrolnitrin by regioselectivity using halogenating and chlorinating enzyme [115]. In the last
step, prnD catalyzes the oxidation of amino group of aminopyrrolnitrin to nitro group and thus forms
PRN [90,111,116].
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Figure 2. Cluster organization of pyrrolnitrin biosynthetic genes in Serratia plymuthica PR1-2C (1),
Pseudomonas protegens Pf5 (2), Burkholderia pyrrocinia (3) and myxobacterium Melittangium boletus (4).
Nucleotide sequence (NT size indicated for prnA–D genes) of the bacterial species was obtained from
KEGG database.

Aminopyrrolnitrin oxidase or arylamine oxygenase (rieske N-oxygenase) catalyzes oxidation
of an arylamine into the arylnitro group. Except prnB, trptophan-7-halogenase (prnA),
monodechloroaminopyrrolnitrin (prnC) and aminopyrrolnitrin oxidase (prnD) enzymes require
flavin reductase (prnF) gene located close to the prnABCD operon which is considered as a part of the
cluster [117]. Bioinformatics clubbed with the biochemical tools identified the role of prnF gene in
prnD-catalyzed unusual arylamine oxidation in Pseudomonas fluorescens Pf-5 [118]. The prnF and prnD
genes form a two-component oxygenase system, in which the gene product enzyme prnF supplies the
reduced flavin to prnD. The prnF requires NADH as an electron donor to reduce FAD so that reduced
FAD supplies electrons from NADPH to the prnD oxygenase component through protein-protein
interactions in order to protect the flavin from oxidation.

The prnF gene having molecular mass of 17kD with GC content of 62%, encodes for a polypeptide
chain of 160 amino acids. The enzyme belongs to flavin:NAD(P)H reductases family with part of
two-component monooxygenase systems and its C-terminal region possesses highly conserved GDH
motif for NAD(P)H binding [119]. It resembles with PheA2, SnaC, VlmR, ActVB and HpaC with 31.5%,
28.6%, 26.4%, 25.6%, and 25.5% amino acid identity, respectively [120–126].

3.5. Pyrrolnitrin Derivatives

Several halogen variations of the PRN molecule have been isolated in the past in the form of
bromo-analogs of pyrrolnitrin from fermentation of Pseudomonas aureofaciens in sodium bromide
with low antifungal activity [58]. In addition, 2-chloropyrrolnitrin contain an additional chlorine
atom which possesses about 10% of the antifungal activity of PRN [55]. The pyrrolomycin
(B, C, D, E, F1, F2a, F2b, and F3) derivatives encompass a chlorine or bromine atom at the
3-position of the pyrrole ring, and either two chlorine atoms at positions 4 and 5 or one chlorine
and one bromine at any of these positions have shown significant antifungal activity [57].
Novel oxidized derivatives of pyrrolnitrin including two new pyrrolnitrin analogs, namely
3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-oneand4-chloro-3-(3-chloro-2-nitrophenyl)-
5-methoxy-3-pyrrolin-2-onehave, were reported from B. cepacia K87 [97].
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Furthermore, number of de-chloro and de-nitro derivatives of PRN and the isomers were
synthesized by cyclization of enamine reaction, hydrolysis, carboxylation and Mannich’s reaction [127].
The strongest antifungal activity of PRN and its analogs resulted when it got unsubstituted by ester
group at any position. The antifungal activity become more stronger when shift of NO2 group was
increased. Few PRN derivatives such as denitropyrrolnitrin (3-chloro-4-(3-chlorophenyl), bromo analog:
3-chloro-4-(3-bromophenyl)pyrrole) and trifluoromethyl derivative (3-chloro-4-(3-trifiuorornethyl)
pyrrole) were strong antimicrobials. However, among all the analogs homologous to NO2

group of pyrrolnitrin, PRN has remained the strongest biologically active compound. The UV
irradiation of 2-(pyrrol-3-yl)nitrobenzene moiety of PRN in an anhydrous aprotic solvent yielded
7,4′-dichlorospiro(1,3-dihydrobenzo(c)isoxazole-3,3′-pyrrolin-2′-one) by the intramolecular oxidation.
Hence, the photodegradation of PRN depends on aqueous reaction media and the nature of its excited
state [98].

4. Applications of Pyrrolnitrin

4.1. Biological Activity

Structure–activity mechanism reveals that the primary target of PRN lies in the cell membrane to
impede protein, RNA, DNA synthesis and uncouple the normal electron flow in the respiratory electron
transport chain [128]. The metabolite has demonstrated biological activity at low concentration and act
as an uncoupler of oxidative phosphorylation in Neurospora crassa. High concentration of PRN causes
impairment of electron transport in flavin region and cytochrome c oxidase; accumulation of glycerol;
synthesis of triacyl glycerol leading to leakage of cell membrane and inhibition of cell growth; in vitro
activity against bacteria and fungi in the range of 1–100 µg mL−1; in vitro activity against leukemia and
melanoma cell lines; and moderate antimycobacterial activity at 8 µg mL−1 [129]. The halometabolite
was used as a drug lead for fenipoclonil and fludioxonil synthesis [130]. The amino derivative of
PRN was identified as an androgen receptor antagonist [131]. PRN has the unique property to persist
actively in the soil over a month, and can be readily diffused and slowly released after lysis of host
bacterial cell [132]. However, the compound is sensitive to decomposition due to light [98].

Inhibitory effect of PRN is seen on the mitochondrial electron transport system of Neurospora
crassa 74A [66]. Studies using N,N,N’,N’-tetramethyl-p-phenylenediamine dihydrochloride (TMPD)
confirmed that PRN block transfer of electron between the dehydrogenases and cytochrome c-oxidase
components of the respiratory chain. At low concentrations, PRN uncouples oxidative phosphorylation
in Neurospora mitochondria and impedes electron transport in both the Flavin region and cytochrome
C oxidase at high concentration [133]. PRN also function as a signal molecule, beyond its role as
a bioactive molecule to suppress fungal and affected cell motility [134]. Antifungal activity of the
compound increased at pH 6.0, became maximum at pH 10 or 11 and declined after pH 11. Temperature
influence on antifungal activity was maximum at 28 ◦C. Similarly, 2% NaCl content in the medium
showed maximum activity. Such studies indicated more scope for medium modifications for obtaining
maximum PRN production followed by maximizing biological activity of the compound.

The quorum-sensing system related regulation of PRN is reported in a chitinolytic bacterium
Serratia plymuthica strain HRO-C48, that protects oilseed rape crop from Verticillium wilt [102].
The mutant deficient in PRN production shown the ability to produce the compound in the medium
supplemented with chemically synthesized N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL)
(100 µM), thus suggesting that quorum sensing (QS) ability regulated PRN biosynthesis. While
investigating the role of N-acylhomoserine lactone (AHL)-dependent quorum sensing for expressing
antifungal traits, Schmidt et al. [135] found that PRN expression was positively regulated by CepR
gene at transcription level. PRN is reported to have significant antimicrobial potential (Table 6) against
Streptomyces antibioticus, S. violaceoruber, Paecilomyces variotii and Penicillium puberulum. However,
S. prasinus, S. ramulosus, Aspergillus proliferans and A. terreus showed tolerance to pyrrolnitrin.
PRN displayed activity against Ustilago maydis, Candida albicans, Hansenula anomala, Arthrobacter
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oxidans, Bacillus coagulans, B. lichenifernis, B. subtilis and B. thuriengiensis at low concentrations [66].
Pyrrolnitrin produced by Pseudomonas chlororaphis strain PA23 exhibited nematicidal and repellent
activity against Caenorhabditis elegans [84]. Co-culturing P. chlororaphis and C. elegans enhanced
expression of biocontrol-related phzA, hcnA, phzR, phzl, rpoS and gacS genes and, thus, contributed to
the fast killing of nematode in bacterial interaction.

Table 6. Bioactivity spectrum of pyrrolnitrin against bacteria, fungi and nematodes.

Sr. No. Name of Test Microorganism PRN (µg mL−1) Reference

Bacteria

1. Staphylococcus aureus 209-P 6.2 [38]

2. Escherichia coli 250 [38]

3. M. tuberculosis CIP 103471 4.0 [129]

4. M. avium CIP 103317 8.0 [129]

5. M. smegmatis CIP 103599 16.0 [129]

6. M. gordonae CIP 6427 >16.0 [129]

7. M. marinum CIP 6423 >16.0 [129]

Yeast

8. Candida albicans 1.0 [38]

9. Saccharomyces cerevisiae 10.0 [38]

10. Cryptococcus neoformans < 0.78 [136]

11. Candida albicans 12.5 [137]

12. Cryptococcus neoformans 0.78 [137]

13. Candida utilis 10.0 [138]

Fungi

14. Trichophyton asteroids 0.05 [38]

15. Sporotrichum schenckii < 0.78 [136]

16. Penicillium atrovenetwn 10.0 [139]

17. P. oxalicwn 10.0 [139]

18. Sporotrichum schenckii 3.12 [137]

19. Blastomyces dermatitidis < 0.78 [137]

20. Histoplasma capsulatu 0.156 [137]

21. Sclerotinia sclerotiorum 0.01 [59]

22. Rhizoctonia solani 50 (µg/disc) [97]

Nematode

23. Caenorhabditis elegans 0.1 [84]

Bacterial growth inhibition by PRN forms complex with phospholipids of cell membranes that
eventually cease cellular respiration [138]. Furthermore, PRN causes leakage of A260 mµ absorbing
material inside the cells and impairs synthesis of protein, DNA and RNA [138]. However, in vitro
protein synthesis in PRN treated Rhizoctonia solani and Escherichia coli remained unaffected [139]. It
bursts protoplast of Bacillus megaterium KM at growth inhibitory concentration [138]. The multitudes
and range of activity of PRN makes it a preferred bioactive compound for agricultural chemical sector.
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4.2. Agricultural Applications

Phenylpyrroles were proven and effective agents against Trichophyton, Microsporium,
Epidermophyton, Penicillium, Candida spp. and several Gram-positive bacteria [57]. Besides, PRN
showed activity against soilborne fungal phytopathogens Rhizoctonia solani [140] and Fusarium
sambucinum [33] and foliar fungal pathogens Fusarium graminearum, F. culmorum [141], Pyrenophora
triticirepentis [142], Thielaviopsis brasicola, Verticillium dahlia and Alternaria spp [143]. The compound
inhibited Gaeumannomyces graminis of wheat, Alternaria brassicae and Botrytis cinereal, and partially
inhibited Fusarium roseum. Remarkable inhibition of mycelial growth and conidial germination
was observed at a PRN concentration of 0.4 µg mL−1 compared to phenazine-1-carboxylic acid at
50 µg mL−1 [144]. Results suggest strong possibility of the compound being a prospective biocontrol
agent in the agriculture.

The fungistatic effect of PRN was most distinct against Alternaria sp., Botrytis cinerea, Pythium
aphanidermatum, P. ultimum, Rhizoctonia solani, Rhizopus sp. Aspergillus niger, Fusarium
oxysporum, Penicillium expansum, and Sclerotium rolfsii [65]. Antibacterial activity was also recorded
against Agrobacterium tumefaciens, Corynebacterium insidiousum, Pseudomonas syringae pathovar
syringae, and Xanthomonas campestris (Minimum Inhibitory Concentration (MIC) ≥1 µg mL−1).
Organisms such as Clavibacterium michiganense and Serratia marcescens were suppressed at
MIC ≥ 10 µg mL−1 [65]. Moderate activity against Gram-positive and Gram-negative bacteria was
seen at 12.5–100 mg mL−1 (MIC). Strong toxicity was noticed against fungi, especially trichophytes,
Trichophyton asteroids, at MIC of 0.05 mg mL−1. In addition, PRN as a nitro-heterocyclic
chemotherapeutic agent exhibited antimycobacterial activity against M. tuberculosis and M. avium [129].
At present, only two synthesized derivatives of PRN, namely fludioxonil and fenpiclonil analogs, were
registered as agricultural fungicides in France and Switzerland, respectively. Commercial products of
fenpiclonil and fludioxonil include BERET, GALBAS and SAPHIRE, CELEST and MAXIM sold by
Syngenta, respectively [145].

PRN found most prolific applications in controlling damping-off disease of cotton and cucumber,
tan spot of wheat, storage molds of pome fruits, seedling disease of cotton, dry rot of potato and
sclerotinia wilt of sunflower [73]. More usage of the compound lies in its significant antibiotic
activity and low toxicity to mammalian species [146]. Wounds on apple and pear were challenged
with a conidial suspension of antagonist grey mold B. cinerea and blue mold Penicillium expansum to
investigate the efficacy of pyrrolnitrin (6–200 µg mL−1) to control diseases at 2 and 24 ◦C after harvest.
High concentrations of PRN proved effective at 24 ◦C on both diseases of apple and pear, while low
concentrations appeared effective at cold temperature [147]. Hence, PRN is an attractive strategy to
control postharvest diseases on fruits, vegetables and other agricultural products being produced at low
temperature conditions. In a preliminary field experiment on strawberries, postharvest treatment with
PRN (250 mg L−1) at low storage temperature delayed development of post-harvest rot by 2–4 days,
but did not reduce rate of development [79] and spoilage to acceptable levels.

In greenhouse studies, PRN showed prominent activity against Pyricularia oryzae and Botrytis
cinerea [148]. The PRN producer P. chlororaphis O6 has shown antifungal activities both in vitro and in
planta [82] on tomato against late blight disease and demonstrated major antagonism. In addition,
biocontrol of fungal disease Fusarium Head Blight (FHB) caused by F. graminearum on wheat heads in
growth chamber conditions was studied using strain Pseudomonas chlororaphis G05 co-treated with:
(i) wild-type strain G05; (ii) phz-deleted mutant G05∆phz; and (iii) mutant G05∆prn. The experiment
showed wheat heads were infected with F. graminearum at rates of 5–8% and 80–90%, respectively,
when co-sprayed with wild-type strain G05 and mutant G05∆prn [144], and PRN of wild type strain
was found to be vigorously active against FHB disease.

The glasshouse experiments with talc-based formulation of S. marcescens ETR17 were similar
to in vitro studies. Incidence of root rot in bacteria treated tea plants were considerably lower in
comparison to untreated control as well as the fungicide treated sets. Additionally, ETR17 formulation
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also increased the root and shoot length of the tea seedlings under both sterile and unsterile soil
conditions in comparison to the untreated controls [85].

4.3. Pharmaceutical Applications

Pyrrolnitrin demonstrated strong protecting activity against various pathogenic fungi, especially
against dermatophytosis [149]. It has been recommended for the treatment of superficial fungal
infection of dermatophytic Trychophyton in Japan [150,151]. A patent has been granted on antifungal
composition containing pyrrolnitrin and antimycotic imidazole compound in 1987 [152]. The product
was commercialized under trade name Pyro-Ace W powder Spray by Fujisawa Pharmaceutical
Company Ltd., Osaka. This was marketed by Pharmacia in Italy as “Micutrin” and, in combination
with betamethasone valerate, it was formulated as “Beta Micutrin” for athlete’s foot and ring worm
diseases. The derivative, 3-cyanopyrroles, is more biologically active as pyrrolnitrin and very stable
under light [153]. Jespers and co-workers (1993) reported a Fenpiclonil (CGA 142705) with more
cytotoxicity for the representatives of Ascomycetes, Basidiomycetes, and Deuteromycetes. PRN formulated
with carboxymethyl cellulose (5%) was injected intraperitoneally into mice [154] and LD50 was observed
at a dosage of 500 mg Kg−1 [38].

In pharmacology, in vitro radioactive studies of pyrrolnitrin reflected that pyrrole ring is readily
oxidized by enzymes undetected in urine and bile after administration [96]. Along with this, surface
antigens of Candida albicans were released after treatment with PRN [38]. It also showed cytotoxicity
at 10 µg mL−1 after 24 h and highest after 72 h on rat clonal pancreatic β-lines, INS-1. Thus, the
compound becomes diabetogenic but appears nontoxic and insulinotropic at lower concentration [146].
PRN affected physiology of Caenorhabditis elegans, acted as repellent for adult nematodes to lower
egg hatching by almost <50% at higher concentrations of PRN (1, 5, and 10 µg mL−1) after 24 h of
exposure [84].

5. Conclusions

Natural bioactive PRN from different subgroups of rhizobacterial species display an array of
biological properties, most prominently being the antifungal activity. Besides the leads on the
formulation development and commercialization of the products for human and plant disease
management, there exists tremendous scope with this small molecule for future research on making
prominent functional derivatives with unmatched biological properties. The knowledge about
metabolic route for biosynthesis, network of genes and enzymes linked with the intermediates,
optimization of process parameters, assessment of efficient producer strains and optimized nutrient
requirements of microbial species for improved PRN production need further improvement. We
systematically rationalized chemistry and biological applications of PRN. However, the search for
hypersecretory bacterial strains from the rhizosphere and soil habitat for economic production is being
realized for maximum optimization of productivity of the molecule. Microbial systems tolerant to a
wide range of organic solvents of industrial use might be a new route to economic PRN biosynthesis.
Application of halogenase from high yielding bacteria could help to overcome issues of regioselectivity,
dependency on chemical synthetic route and low yield of PRN. Besides, organic solvent tolerant
halogenases for tailor-made synthesis and simplified downstream operations possible for PRN and
green synthesis routes could also support industrial processes for PRN production.
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