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Overview
A single biological neuron is able to perform complex
computations that are highly nonlinear in nature, adap-
tive, and superior to the perceptron model. A neuron is
essentially a nonlinear dynamical system. Its state
depends on the interactions among its previous states, its
intrinsic properties, and the synaptic input it receives.
Some of these factors are included in Hodgkin-Huxley
(HH) model, which describes the ionic mechanisms

involved in the generation of an action potential. This
paper proposes training of an artificial neural network to
identify and model the physiological properties of a bio-
logical neuron, and mimic its input-output mapping. An
HH simulator was implemented to generate the training
data. The proposed model was able to mimic and predict
the dynamic behavior of the HH simulator under novel
stimulation conditions; hence, it can be used to extract the
dynamics (in vivo or in vitro) of a neuron without any prior
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Output of the LRN trained with 232 ms of data on a positive step current, tested on (a) the training data, (b) novel test data that consists of a negative step current, (c) 800 ms of previously unseen data that follow the 232 ms of training dataFigure 1
Output of the LRN trained with 232 ms of data on a positive step current, tested on (a) the training data, (b) novel test data 
that consists of a negative step current, (c) 800 ms of previously unseen data that follow the 232 ms of training data.
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knowledge of its physiology. Such a model can in turn be
used as a tool for controlling a neuron in order to study its
dynamics for further analysis.

Methods and results
To test whether artificial neural networks were able to
learn the dynamic behavior of the HH model, four prop-
erties of the model were used as testing criteria: threshold-
ing, periodic firing, refractory period, and anode break
action potential. Three different neural network architec-
tures were explored: parallel and series-parallel nonlinear
autoregressive models with exogenous inputs (NARX
[1,2]) and layer-recurrent networks (LRN [3]). All three
architectures were able to mimic the behavior of the HH
model, provided that they had been trained previously on
a similar input. However, among them LRN was the only
one that was able to generalize to novel stimuli (Figure
1b). Furthermore, when tested for long-term prediction,
LRN outperformed other network architectures by pre-
dicting the output for an extra 800 time steps for a positive
step signal, although it was trained only once for duration
of 232 ms (Figure 1c).

Conclusion
This paper shows that ANNs can learn to behave like the
Hodgkin-Huxley model of a biological membrane. In the
future it should be possible to apply this approach to
modeling biological neurons in vitro. The main advantage
of this approach is that it does not require any prior
knowledge of the physiological properties of the neuron.
After training is completed, the neural process is encoded
within the weights of the ANN used to model the neuron.
Several ANN architectures were tested in this task, with the
recurrency in the LRN architecture proving to be the best.
Online modeling using ANNs can provide the necessary
tools for capturing the dynamical state of a biological neu-
ron, simulate its output for further analysis, and may pro-
vide a more powerful dynamic clamp and online control.
Such mechanisms should prove valuable in understand-
ing the behavior of biological neurons in the future.
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