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Abstract

Spatial structure impacts microbial growth and interactions, with ecological and evolutionary consequences. It is
therefore important to quantitatively understand how spatial proximity affects interactions in different environments.
We tested how proximity influences colony size when either Escherichia coli or Salmonella enterica are grown on
various carbon sources. The importance of colony location changed with species and carbon source. Spatially explicit,
genome-scale metabolic modeling recapitulated observed colony size variation. Competitors that determine territory
size, according to Voronoi diagrams, were the most important drivers of variation in colony size. However, the relative
importance of different competitors changed through time. Further, the effect of location increased when colonies took
up resources quickly relative to the diffusion of limiting resources. These analyses made it apparent that the
importance of location was smaller than expected for experiments with S. enterica growing on glucose. The
accumulation of toxic byproducts appeared to limit the growth of large colonies and reduced variation in colony size.
Our work provides an experimentally and theoretically grounded understanding of how location interacts with
metabolism and diffusion to influence microbial interactions.

Introduction Spatial structure modulates the resource competition
that shapes microbial communities [5-7]. Competition
Microbial interactions help determine functions from influences community assembly [8] and stability [9], and
nutrient cycling to human health [1, 2]. Spatial structure  influences selection on microbial traits [10]. Spatial
mediates microbial interactions [3]; however, the relation- structure alters the scope of competition [6]. In agitated
ship between proximity and interaction strength remains  liquid environments, all cells tend to have equal access to
unclear [4]. Quantifying, and being able to predict, the  resources and interactions are global. In contrast, in
effect of location on microbial interactions is critical for  structured environments, cells interact more strongly with
understanding the function of microbial systems as well as  neighbors than with distant individuals. This localizing
their ecological and evolutionary dynamics. effect of spatial structure has been repeatedly shown to
influence the outcomes of microbial evo-ecological
experiments [10-23].
The specific location of bacteria in spatially structured
environments matters. Within a biofilm or colony, bacteria at
the edge have lower local density and grow faster than those
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While it is known that location matters, we lack a rig-
orous framework for understanding and predicting the
impact of location on interactions. Interaction strength is
likely a function of distance, but by what distance-based
measure: the distance to the closest competitor, a function
of all competitor distances, or a measurement of how
competitors divide the available territory? Ecologists often
use distance metrics to explain variance in plant growth
[33], and a linearly-weighted distance model captured a
decline in bacterial colony size due to crowding [34]. In
contrast, Voronoi diagrams, which measure the territory that
is closer to a focal colony than any other colonies [35], have
been used to investigate pattern formation as bacteria cover
a surface [36]. To date, there has not been a rigorous test of
the ability of different geometric models to explain variance
in colony size.

In addition to this geometric description, the question
arises what minimal biophysical model can predict the
location-based effects on colony growth in variable envir-
onments. Microbes typically interact through chemicals that
they consume and excrete [37, 38]. Does accounting for
metabolism and diffusion suffice to predict the variation in
colony growth? Genome-scale metabolic models and flux-
balance analysis can quantitatively predict the metabolites
that microbes consume and excrete, and therefore can pre-
dict the ecological interactions that emerge from intracel-
lular mechanisms [17, 39, 40]. Diffusion can be
incorporated to predict system dynamics in structured
environments [17]. We therefore can test to what extent
colony variation is purely a function of metabolism and
diffusion by comparing computational predictions against
experimental observations. If factors such as toxicity, sig-
nals, or stochastic differences in lag time drive colony
variation, then the model, which does not take these effects
into account, will do a poor job. Determining the extent to
which metabolic mechanisms drive spatial effects will be
critical for predicting growth in complex natural settings.

Here, we investigated how location influences interac-
tions in arguably the simplest scenario—monocultures
grown on homogeneous surfaces. We plated monocultures
of either Escherichia coli or Salmonella enterica on various
media and used high-resolution scanners to investigate the
size of colonies and the associated variance within each
plate. We then used simulations and geometric descriptions
to determine how much colony variation is explained by
metabolic mechanisms, what aspect of location best
explained variation in growth, and how variation was
influenced by nutrient uptake, diffusion, and duration of
growth. Finally, we investigated one case in which variation
differed from expectation and suggest that this deviation
was caused by byproduct toxicity. Our work provides a
quantitative framework for understanding and predicting the
effect of location on microbial competition.

SPRINGER NATURE

Methods
Strains and media

We used cells of either Salmonella enterica serovar Typhi-
murium LT2 or Escherichia coli K12-MG1655. In the
genome-scale metabolic modeling, these strains were repre-
sented by the iRR_1083 model [41] and the iJO_1366 model
[42], respectively. The Petri dish experiments either used
Luria—Bertani (LB) media (10 g/L tryptone, 10 g/L NaCl, 5 g/
L yeast extract) or a modified Hypho minimal media (7.26
mM K,HPO,, 0.88mM NaH,PO,, 3.78 mM [NH4],SOy,
0.41 mM MgSOy, 1 mL of a metal mix [43]). The minimal
media contained glucose (16.6 mM), citrate (10.2 mM), lac-
tose (8.33mM), or acetate (12.5mM) as the limiting
resource. The glucose concentration in the low and medium
glucose treatments was 4.15 and 8.33 mM. Experiments
where acetate was added to glucose plates had concentrations
of 16.6 mM glucose and 12.5 mM acetate. All Petri dishes
contained 25 mL of media with 1% agar. Experiments to
visualize acidification of the media used bromothymol blue at
a concentration of 0.08 g/L.. To reduce condensation dishes
were left open for 30 min as the agar solidified. UV lights
were used to maintain sterility as plates cooled.

For Petri dish experiments, after spreading approxi-
mately 60 cells onto a Petri dish, a piece of matte black
Kydex Plastic Sheet (0.08 in. thick) was placed within the
upper lid of the dish to improve contrast and reduce
reflections. Petri dishes were placed onto a Canon Perfec-
tion V600 scanner agar side down and a 600 dpi image was
scanned every 20 min for almost 150 h. We housed scanners
in a 30 °C incubator. Each treatment (a unique combination
of a species and a media type) was repeated in separate Petri
dishes 3-8 times. The replicates per treatment are in Sup-
plementary Table 2. We tracked colony areas over time, and
quantified acidity, using custom image analysis software
(Supplementary Material).

Computational modeling

Simulations were run in COMETS, a platform developed to
model growth and interactions in structured environments
using genome-scale metabolic networks [17]. Biomass and
resources are distributed on a lattice. Then dynamic flux-
balance analysis determines optimal metabolic activity and
growth for all biomass based on the local environment at
each time step. Biomass and resources each diffuse with
specific diffusion coefficients. Michaelis—-Menten kinetics
constrain resource uptake.

In addition, we used simplified models in which the
genome-scale metabolic model was replaced with a set of
differential equations. The simplified model describes a
reaction-diffusion system in which bacteria grow under
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Fig. 1 The variance in colony yields depends on the species and
environment. a A snapshot of S. enterica colonies on LB media (left)
and the yields (areas) of those colonies determined by automated
image analysis (right). b Kernel density distributions of S. enterica
colony yields grown on acetate or LB. ¢ The coefficient of variation of
colony yields for each species on each carbon source. Error bars are
standard error of mean. Four to eight Petri dishes are included in each
point

Monod kinetics. Bacteria and resource spread via diffusion,
with the diffusion coefficient for the bacteria, Dy, being
much smaller than that for the resource, Dg (Egs. 1):

OB

== DgV*B + f(B,R), (1a)
(’;_I: - DszR - 7f(BaR)7 (lb)
R

f(B,R) = Bfm

: 1
4R (Ic)

The first term in the differential equations describes
diffusion (V? is the two-dimensional Laplace operator), the
second term describes conversion of the resource into

biomass. y sets the resources used per biomass produced,
and was equal to 1 unless otherwise stated. The maximum
growth rate, un.c, 1S approached as the resource con-
centration R increases. The saturation concentration is set by
k-

For the simple Monod simulations the “world” was a
5cm x 5 cm square, into which 60 colonies were seeded at
random locations. Resources were distributed uniformly at a
concentration of le—6 mmol per box. These simulations
were run until resources were fully consumed unless
otherwise stated. The genome-scale metabolic model
simulations were conducted in circular environments that
were 90 mm in diameter and seeded with biomass and
resources to mimic the experimental conditions. Genome-
scale simulations were run for equal lengths of time as the
laboratory experiments unless otherwise stated. Other
simulation parameters are provided in Supplementary
Table 1. Simulations were carried out using the University
of Minnesota Supercomputing Institute’s Mesabi cluster.

To simulate toxicity and resource competition, we
modified our simplified model to include a toxin (A), which
diffuses like the resource and which is produced as biomass
grows with a conversion of 4 (Egs. 2). The toxicity of A on
growth changes with A*, where higher values are less toxic:

OB

5= DyV*B + f(B,R)g(B,A) (2a)
‘2_1: = DrV’R — yf(B,R)g(B, A) (2b)
‘96_‘? = DpV2A + Af(B,R)g(B,A) (2¢)
F(B.R) = B]::"%I; (2d)
g(B,A)=e H*" (2¢)

To test whether toxicity improved the fit to experimental
data for S. enterica grown on glucose, we parameterized the
simplified model to match the genome-scale model in
the absence of toxins (Supplementary Fig. 4B-E). To test
the effect of toxicity on Voronoi response, we ran simula-
tions of model 2 for 150h in an environment mimicking
experiments with S. enterica grown on a glucose Petri dish
using 4 =0.2mmol/g, which was conservatively set at
approximately 10x less than produced by E. coli during
growth on glucose [44]. The model used to generate the
data in Fig. 5d used A* =0.01 mM.

Statistics

In the programming language R, we used the spatstat
package to find Voronoi areas with the dirichletArea

SPRINGERNATURE



672

J. M. Chacodn et al.

Fig. 2 Genome-scale metabolic A
modeling recapitulates the
variance in colony yields. a We
used genome-scale metabolic
modeling in the COMETS
platform to test the mechanisms
generating the observed variance
in colony yields. The relevant
genome-scale metabolic model
was seeded into an environment
at the sites from which colonies
initiated in experiments.
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function [45]. After calculation of any distance metric,
colonies <5 mm from a Petri dish edge were excluded. We
also used R to carry out analysis of variance (ANOVA),
analysis of covariance (ANCOVA), t tests, and linear
regressions as described throughout the results.

Results
Variance in colony size is context-dependent

We tested whether species and resource identity influenced
the variance in colony size within monoculture plates.
Approximately 60 S. enterica or E. coli cells were grown on
Petri dishes with different carbon sources, and colony areas
were measured using flatbed scanners and custom software
(Fig. 1a, see Methods for more detail). Within every plate/
replicate and treatment we found a range of colony sizes, as
seen in the example density plots of the final colony areas in
Fig. 1b. Because the average colony size differed
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substantially across treatments (see, for example, Fig. 1b),
we used the coefficient of variation of colony area at
the end of the experiment (standard deviation over mean)
within a plate to compare variation in colony size
between treatments. Differences in media and species
caused large differences in the coefficient of variation across
treatment (ANOVA, F(7,32) =18.9, p = 1.07e—-9, Fig. 1¢),
suggesting that spatial effects were highly context-
dependent.

Variance in colony size can be predicted with
models that pair metabolism and diffusion

We tested whether the observed variations in colony size
could be predicted from the interplay of intracellular
metabolic mechanisms, diffusion, and colony location, by
running simulations that combine genome-scale metabolic
modeling with diffusion calculations. Our computational
platform, COMETS, uses dynamic flux-balance analysis to
predict the growth and metabolic activity of bacteria by
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identifying the metabolic strategy that maximizes biomass
production at each time step [17, 39]. Biomass and meta-
bolites diffuse to simulate growing colonies and the
resource gradients that arise as a result of microbial meta-
bolism. Note that colony expansion is the result of both
increasing biomass and diffusion [46].

Simulations were initiated with resources and colony
locations that matched each experimental plate (Fig. 2a).
We plotted the relative yields (yield of a colony/total yield
on a Petri dish) for simulations against those for

max uptake (mmol (g hr)_1)

experiments (Fig. 2b). We used relative yields because the
measurements of interest were the relative differences
between colonies on a plate, which can be compared with
relative numbers even if the specific yield measurement
(area vs. biomass) differs. The relative colony sizes in
simulations were well correlated with the relative colony
sizes in experiments, although the predictive ability of the
simulations depended on the treatment (mixed-effects linear
regression with subsequent F tests, main effect of simulated
yields: F(1,1479) =2027, p<2.2e—16, main effect of
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Fig. 3 Voronoi diagrams capture the effect of location on yield better
than other distance metrics. Using the simplified differential equations
model, four metrics were tested to determine which colonies interact to
generate variation in colony size and to what extent. a—d show a
cartoon of the measurement and the metric plotted against simulated
colony yield (biomass). a The distance to the closest colony, such that
the yield of the focal colony (indicated by the arrow) would be pre-
dicted from the distance to colony 1, which is closest, but no other
colony would be considered. b The sum of the inverse linear distances
to every colony, such that the yield of the focal colony would be
predicted by the distance to every colony, with each colony’s influence
inversely proportional to its distance. ¢ Like b, but colonies become
quadratically less important as distance increases. d The territory
closest to a colony, described by a Voronoi diagram. Here, the focal
colony’s Voronoi area is shown (solid line polygon). A Voronoi dia-
gram divides a plane into areas around colony initiation sites such that
all the space in a territory is closer to its enclosed colony than to any
other colony, which is accomplished by drawing perpendicular lines
half-way through lines connecting a focal colony to Voronoi neigh-
bors. ¢ A Voronoi diagram drawn for all colony initiation sites on a
Petri dish. For a focal colony (blue), its Voronoi neighbors are the
green colonies. f The change in R* over time for the different metrics
vs. simulated colony biomass. The black line shows the proportion of
resources left. g The hour when the R? for Voronoi areas vs. simulated
colony biomass surpasses the R? for all other metrics, as a function of
the max growth rate (u,) used in the simulation. h The magnitude of
the spatial effect (the “Voronoi response”) as a function of time. Dif-
ferent lines are from simulations with different average Voronoi areas,
which is inversely proportional to initial cell density. i The Voronoi
response as a function of the maximum potential per-mass uptake.
Changes from the default (baseline) values (Supplementary Table 1) in
maximum growth rate, km, starting resource concentration, or any
combination of these parameters (multiple) all have similar effects j
The Voronoi response is determined by the balance between the
maximum uptake rate of a colony (x-axis) and the rate of resource
diffusion (y-axis)

treatment: F(5,24) = 11, p = 1.3e—S5, interaction: F(5,1470)
=85, p <2.2e—16). Deviations from simulated predictions
had a slope <1, meaning there was more variability in
colony size in simulations than in experiments. These over-
predictions were most pronounced when the carbon
resource was a sugar (i.e., glucose or lactose). Below, we
further explore the deviations caused by S. enterica growth
on glucose.

Relative colony size is driven by the location of
adjacent competitors

To understand how location determines colony size, we
tested the explanatory power of different metrics that varied
in the influence assigned to potentially competing colonies.
We focused on metrics that had previously been used in the
forestry or microbiology literature [33, 34, 36]. These
metrics tested whether colony size could be best predicted
by (i) the distance to the nearest neighbor (Fig. 3a), (ii) the
sum of the inverse distances to all neighbors (Fig. 3b), (iii)
the log of the sum of the squared inverse distances (Fig. 3c),
(iv) or a colony’s Voronoi area, which is the area on a Petri

SPRINGER NATURE

dish which is closer to a focal colony than to any other
colony (Fig. 3d, see also Fig. 3e) [35].

To abstract away species/environment-specific intracel-
lular metabolism, we ran these tests with a simplified model
that simulated biomass growth on an explicit limiting
resource using Monod kinetics paired with diffusion (see
Methods). We simulated conditions with a high maximum
growth rate (upy.x=1/h) until all resources were used and
asked which metric correlated best with colony size. While
all metrics were somewhat predictive, the Voronoi areas had
almost perfect prediction. The high R* of Voronoi areas
suggested that under these parameters removing non-
Voronoi neighbors (Fig. 3e) would have negligible effects
on the size of a focal colony; this prediction was confirmed
with  “colony dropout” simulations (Supplementary
Figure 1A).

We next tested how the predictive power of Voronoi
diagrams (the R®> of Voronoi area vs. colony biomass)
changed over the course of growth. At the start of simula-
tions all colonies were the same size, and then variance
between colonies increased as colonies grew and drew
down the resources available to them. The correlation
between Voronoi area and colony size increased through
time, as did the performance of Voronoi relative to other
metrics (Fig. 3f, see Supplementary Figure 1B for analysis
with non-parametric Spearman’s p). Voronoi area became
the best predictor of colony size once the majority of
resources were consumed (Fig. 3f) and was the best pre-
dictor across multiple resource diffusion coefficients (Sup-
plementary Figure 1C). Consistently, as maximum growth
rate increased, resources were consumed faster, and the time
required for Voronoi to be the best predictor decreased
(Fig. 3g).

In addition to understanding which competitors caused
differential growth (i.e., the relative performance of differ-
ent metrics), we were also interested in the strength of
spatial effects (i.e., the magnitude of the best metric). We
defined the “Voronoi response” to measure the extent to
which colonies have monopolized resources that started in
their respective territories. The Voronoi response is the

slope of the line that is generated when plotting nye;il ]

Voronoi area;
Voronoi area

the Voronoi response, the R*> of Voronoi area vs. colony
biomass, and the yield coefficient of variation are correlated
(Supplementary Figure 1E). Voronoi response declines
from a max of 1 towards O as colony size becomes less
dependent on Voronoi area, which can occur because some
colonies are accessing resources that originated in other
territories, or because resources have not yet been fully
consumed. As with the Rz, the Voronoi response increased
through time (Fig. 3h). When the size of the average

against (Supplementary Figure 1D). Note that
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Voronoi area is increased, it takes longer to reach the
maximum Voronoi response, but the final Voronoi response
is larger meaning colonies are able to monopolize more of
the resources that start in their territory. In the other direc-
tion, extremely dense environments have small final Vor-
onoi responses, which will approach zero as areas become
extremely small (Fig. 3h).

Finally, we tested how the maximum Voronoi response
(when no nutrients remain) is influenced by the balance
between resource uptake and diffusion. Increasing max-
imum resource uptake rate through a variety of parameters
all increased the Voronoi response until saturating (Fig. 3i).
Increasing resource diffusion (Dg) reduced the Voronoi
response (Supplementary Figure 1G). The final magnitude
of the Voronoi response was determined by the balance of
nutrient uptake to diffusion (Fig. 3j). While the ratio of
uptake to diffusion changed the maximum Voronoi
response, it did not change the relative performance: Vor-
onoi outperformed other metrics if all resources were con-
sumed (Supplementary Fig. 1C).

The Voronoi response varied in laboratory
experiments

Voronoi area was a good predictor of colony size variation
across many laboratory treatments (Fig. 4a, Supplementary
Figure 2A). Voronoi area was significantly better than other

metrics on rich LB media (ANOVA followed by Tukey's
multiple comparisons: LB, p < 5e—4), and as good as other
metrics in most other treatments. Voronoi area fared sig-
nificantly worse than the inverse distance metrics for both
species on acetate, and for S. enterica on glucose (ANOVA
followed by Tukey's multiple comparisons: acetate, p < le
—7; glucose p < le—7).

The relative performance of spatial metrics in different
treatments is consistent with our simulation-based findings
on the effects of resource depletion (Fig. 4b and Supple-
mentary Figure 2B,C). For example, on LB plates S.
enterica colonies reached the carrying capacity and Voronoi
areas rose to outperform other metrics (Fig. 4b, compare to
Fig. 3f). Conversely, on acetate S. enterica grows slowly
and appeared to still be growing. S. enterica on glucose
violated our expectations: colony growth had plateaued, but
Voronoi did not outperform other metrics (Fig. 4b). We
hypothesize why this was below.

The connection between resource depletion and relative
metric performance is further supported by an analysis of
growth rate. Consistent with simulations (Fig. 3f), in
laboratory experiments faster growth rate -correlated
strongly with the relative superiority of Voronoi (the R* of
Voronoi minus the R* of the log. sum Inv. dist. metric)
(Fig. 4c, linear regression, slope = 1.15, p =5.4e—4). This
correlation suggests that the variable performance of Vor-
onoi in different treatments was at least partially explained
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by differences in the proportion of resource consumed by
the end of the experiment. Additionally, genome-scale
simulations showed incomplete resource utilization after
150 h for the substrates that caused slow growth (Supple-
mentary Figure 3A, B, O).

Experimental data also support the computational pre-
diction that the Voronoi response (i.e., the magnitude of
spatial effects) is influenced by the growth rate. The Vor-
onoi response in laboratory experiments increased as max-
imum growth rate increased (Fig. 4d, linear regression,
slope = 1.7, F(1,43) = 31.3, p = 1.4e—6). This is in agree-
ment with simulations, although at least part of the small
Voronoi response for low growth rate treatments might be
due to residual nutrients in these treatments (see above).

Deviations from expected spatial patterns suggest
production of toxic waste

S. enterica grown on glucose deviated from expected spatial
patterns. In this treatment (i) colony size variation was
poorly explained by Voronoi areas (relative to other
metrics) despite rapid initial growth and cessation of growth
before the end of the experiment (Fig. 4a—c, Supplementary
Figure 2B, C) and (ii) the treatment was the most poorly
predicted by the genome-scale metabolic modeling
(Fig. 2b). This led us to hypothesize that a mechanism in
addition to competition for diffusing resources was occur-
ring in this treatment. S. enterica can generate potentially
toxic acetate during growth on glucose, so we hypothesized
that acetate accumulation arrested growth of large colonies
[47-49]. This is particularly likely as we realized that our
glucose concentration was in a range in which bacteria are
prone to the Crabtree effect. The Crabtree effect causes
fermentation to be preferred over respiration above glucose
concentrations of ~8 mM, resulting in secretion of high
levels of acetate even in the presence of oxygen [44].

Several lines of experimental evidence are consistent with
toxic byproducts reducing colony size variation when S.
enterica is grown on glucose. First, the pH indicator bro-
mothymol blue was used to demonstrate that glucose plates
became acidified by growth of S. enterica (Fig. 5a). Second, if
glucose concentration was dropped below the Crabtree
threshold (~8 mM, [44]), then less acidification was detected
(Fig. 5a) despite more biomass being produced (Supplemen-
tary Figure 4F). Reducing the amount of glucose and thus
acidification also increased the response of colony size to
Voronoi area (Fig. 5b, linear regression, slope = —0.012, p =
4.9e—4). Conversely, if acetate was added to glucose plates,
the maximum colony size, and the Voronoi response,
decreased (Supplementary Figure 4G, H).

Finally, incorporating production of toxic waste into the
differential equation model decreased the Voronoi response
observed in simulations and improved the fit between
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experiment and simulation. Incorporating toxins into our
simulations reduced the Voronoi response (Fig. 5c). We
additionally tested whether toxins improved the ability of
simulations to predict colony size. Incorporating toxin
production into a parameterized version of the simplified
model significantly improved the ability of simulations to
predict observed colony sizes for S. enterica on glucose
(Fig. 5d, ANCOVA, interaction term between toxicity and
simulated biomass in predicting experimental biomass,
p="72e—4).

Discussion

Understanding the quantitative way that spatial proximity
affects interactions between bacterial colonies will allow us
to better understand and manage microbial ecosystems. We
found that the impact of location on bacterial colony size
was context-dependent and strongly influenced by both
species and resource identity. Encouragingly, spatially
explicit, genome-scale metabolic models were able to pre-
dict much of the context-dependent variation in colony size
by modeling the interaction between diffusion and intra-
cellular metabolism. A simplified model of differential
equations demonstrated that variation in colony size is
driven by the size of Voronoi areas, though the relative
performance of metrics changes over the course of growth.
Furthermore, differences in Voronoi response are primarily
driven by differences in the rate at which colonies grow and
consume resources. Faster consumption causes size varia-
tion between colonies to be larger and mitigates diffusion’s
tendency to reduce colony size variation. These general
ecological relationships serve as a useful null model from
which to predict spatial effects caused by resource compe-
tition. We demonstrated the utility of this null model by
identifying a toxin-mediated interaction that we did not
anticipate. In summary, we provide an experimentally and
theoretically grounded understanding of how location
interacts with metabolism and diffusion to influence
microbial interactions.

Voronoi diagrams identified the competitors that drove
colony variance once resources were depleted. The relative
performance of Voronoi suggests that the arrangement of
competing colonies (i.e., colony geometry) is an important
determinant of relative growth. This is an intuitive result as
diffusing resources are most likely to be consumed by the
closest colony and Voronoi diagrams demarcate the resource-
containing area closest to each colony. Interestingly, the
superiority of this metric is time-dependent, however, and
Voronoi diagrams only outperform other metrics once most
resources have been consumed. Much of the variation in
relative performance across experimental treatments is con-
sistent with growth rate-specific differences in the extent of
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Fig. 5 Generation of toxic waste
reduces the Voronoi response. a
S. enterica colonies grown on
Petri dishes with glucose
concentration below (low) or
above (high) the Crabtree
threshold, which is the glucose
concentration when acetic acid
is produced during growth in the
presence of oxygen. The Petri
dishes contained the pH dye
bromothymol blue, which is
dark green at neutral pH and
becomes yellow as it acidifies.
High glucose dishes had higher
acidity despite less total growth
(see Supplementary Methods for
image analysis of yellow
intensity, Supplementary

Figure 3F for yield data). b The
Voronoi response as a function
of glucose concentration. Both
the 8 and 16.6 mM
concentrations are at or above
the Crabtree threshold. ¢ The
Voronoi response after 150 h in
the simplified models modified
so that toxic metabolites are
generated as biomass grows.
The model parameter A* is a
measure for the effect of toxicity
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on growth (see Methods/main
text). The dotted line indicates
the Voronoi response when
toxicity is removed from the
model. d Scatter plots of a
simulation mimicking S.
enterica grown on a glucose
Petri dish, without (gray) or with
(black) toxicity in the model.
The x-axis is the relative
biomass in simulation, and the y-
axis is the relative biomass
measured in the experimental
Petri dish. Adding toxicity
significantly improved the fit, by
bringing the relationship
between the x and y data closer
to the line with slope 1 passing
through the origin (shown with
the dashed line)

resource depletion by the end of the experiment. Simulations
demonstrated that after resource depletion Voronoi diagrams
outperform other metrics at explaining how the location of
competitors determines relative microbial growth across
treatments. The lack of resource depletion in experiments can
explain situations where genome-scale simulations are good
predictors of relative colony size, but Voronoi diagrams are
not, for example, with E. coli grown on acetate.
Metabolism influenced the importance of location by
altering the balance of nutrient uptake to diffusion. Nutri-
ents that generated rapid growth increased the variance in

toxicity = logo(1/A*)

3

0.00 ; . . .
0.00 0.03 0.06 0.09
relative simulated biomass

relative experimental biomass

final colony size, and led to a larger response to location
(i.e., Voronoi response). The Voronoi response also became
larger as colonies were further apart on average. It is
important to note that decreasing the magnitude of spatial
effects is not equivalent to decreasing competition. The
average colony size and total biomass on a plate are
equivalent whether competition is local or global (assuming
all resources are consumed). However, if the balance of
uptake and diffusion causes interactions to be local, spatial
location matters, and some colonies will grow much larger
than others.
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The success of genome-scale models to predict the
effects of competition suggests that it will be possible to
quantitatively predict microbial metabolic interactions in
complex, spatially structured environments. Genome-scale
metabolic models can be generated directly from sequence
data using known gene—protein reaction associations [40,
42]. High-throughput methods to generate models from
sequence data are improving [50-55], and therefore spa-
tially explicit tools such as COMETS may be increasingly
useful to generate quantitative predictions of the effect of
location on growth and microbial interactions. However, it
should be noted that COMETS did not perfectly predict all
observed variation even in our simplified system, and
incorporating non-metabolic interactions such as toxicity
into genome-scale modeling frameworks will likely be
important.

Voronoi areas and genome-scale simulations provide
null models for size variance between competing colonies,
and departures from the null suggest additional interactions
are occurring. S. enterica deviated from model expectations
when growing on glucose, leading us to suspect that toxins
were altering interactions. The production and response of
S. enterica to organic acids are certainly well established
[48]; however, we did not anticipate that they would be
sufficient to halt growth on our plates. Indeed, E. coli also
produces acidic waste, but did not deviate from expectations
on glucose. This lack of deviation is likely because our E.
coli is less sensitive to acetate than S. enterica (Supple-
mentary Figure 4A). More broadly, the detection of toxicity
in our system serves as an example of how quantitative
analysis can aid in the identification of species interactions.
Different biological phenomena likely cause specific
departures from the null expectations, akin to the reduced
variance caused by waste accumulation. Further research
will be aimed at finding spatial signatures of biological
phenomena in microbial systems.

A quantitative understanding of how location mediates
microbial interactions has important consequences for
understanding and harnessing microbial evolutionary ecol-
ogy. It is well established that spatial structure can alter the
interactions between microbes [4] and plays a critical role in
determining health outcomes [7]. Quantifying how space
mediates interactions will allow for more rigorous
understanding of community composition, and improve
prediction of dynamics such as competitive exclusion.
Additionally,  understanding  organisms’ interaction
strengths is critical for understanding the evolution of
microbial traits. For example, it was recently demonstrated
that the level of antibiotic secretion can be explained by the
relative strength of interaction with sensitive and resistant
competitors [10]. As technology which allows for fine-scale
placement of cells matures [56-58], we can create spatial
arrangements that maximize selection of competitive
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phenotypes of interest. As we strive to move beyond
descriptions of microbial diversity to explanations and
management of diversity it will be critical to develop
quantitative understanding of microbial interactions.
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