
DeMix Workflow for Efficient Identification of
Cofragmented Peptides in High Resolution
Data-dependent Tandem Mass Spectrometry*□S

Bo Zhang‡, Mohammad Pirmoradian‡§, Alexey Chernobrovkin‡,
and Roman A. Zubarev‡¶

Based on conventional data-dependent acquisition strat-
egy of shotgun proteomics, we present a new workflow
DeMix, which significantly increases the efficiency of pep-
tide identification for in-depth shotgun analysis of com-
plex proteomes. Capitalizing on the high resolution and
mass accuracy of Orbitrap-based tandem mass spec-
trometry, we developed a simple deconvolution method of
“cloning” chimeric tandem spectra for cofragmented pep-
tides. Additional to a database search, a simple rescoring
scheme utilizes mass accuracy and converts the unwanted
cofragmenting events into a surprising advantage of multi-
plexing. With the combination of cloning and rescoring, we
obtained on average nine peptide-spectrum matches per
second on a Q-Exactive workbench, whereas the actual
MS/MS acquisition rate was close to seven spectra per
second. This efficiency boost to 1.24 identified peptides per
MS/MS spectrum enabled analysis of over 5000 human
proteins in single-dimensional LC-MS/MS shotgun experi-
ments with an only two-hour gradient. These findings sug-
gest a change in the dominant “one MS/MS spectrum -
one peptide” paradigm for data acquisition and analysis
in shotgun data-dependent proteomics. DeMix also dem-
onstrated higher robustness than conventional approaches in
terms of lower variation among the results of consecutive
LC-MS/MS runs. Molecular & Cellular Proteomics 13:
10.1074/mcp.O114.038877, 3211–3223, 2014.

Shotgun proteomics analysis based on a combination of high
performance liquid chromatography and tandem mass spec-
trometry (MS/MS) (1) has achieved remarkable speed and effi-
ciency (2–7). In a single four-hour long high performance liquid
chromatography-MS/MS run, over 40,000 peptides and 5000
proteins can be identified using a high-resolution Orbitrap mass

spectrometer with data-dependent acquisition (DDA)1 (2, 3).
However, in a typical LC-MS analysis of unfractionated human
cell lysate, over 100,000 individual peptide isotopic patterns can
be detected (4), which corresponds to simultaneous elution of
hundreds of peptides. With this complexity, a mass spectrom-
eter needs to achieve �25 Hz MS/MS acquisition rate to fully
sample all the detectable peptides, and �17 Hz to cover rea-
sonably abundant ones (4). Although this acquisition rate is
reachable by modern time-of-flight (TOF) instruments, the re-
ported DDA identification results do not encompass all ex-
pected peptides. Recently, the next-generation Orbitrap instru-
ment, working at 20 Hz MS/MS acquisition rate, demonstrated
nearly full profiling of yeast proteome using an 80 min gradient,
which opened the way for comprehensive analysis of human
proteome in a time efficient manner (5).

During the high performance liquid chromatography-
MS/MS DDA analysis of complex samples, high density of
co-eluting peptides results in a high probability for two or
more peptides to overlap within an MS/MS isolation window.
With the commonly used �1.0–2.0 Th isolation windows,
most MS/MS spectra are chimeric (4, 8–10), with cofragment-
ing precursors being naturally multiplexed. However, as has
been discussed previously (9, 10), the cofragmentation events
are currently ignored in most of the conventional analysis
workflows. According to the prevailing assumption of “one
MS/MS spectrum–one peptide,” chimeric MS/MS spectra are
generally unwelcome in DDA, because the product ions from
different precursors may interfere with the assignment of
MS/MS fragment identities, increasing the rate of false dis-
coveries in database search (8, 9). In some studies, the pre-
cursor isolation width was set as narrow as �0.35 Th to
prevent unwanted ions from being coselected, fragmented or
detected (4, 5).

On the contrary, multiplexing by cofragmentation is consid-
ered to be one of the solid advantages in data-independent
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acquisition (DIA) (10–13). In several commonly used DIA
methods, the precursor ion selection windows are set much
wider than in DDA: from 25 Th as in SWATH (12), to extremely
broad range as in AIF (13). In order to use the benefit of
MS/MS multiplexing in DDA, several approaches have been
proposed to deconvolute chimeric MS/MS spectra. In “alter-
native peptide identification” method implemented in Perco-
lator (14), a machine learning algorithm reranks and rescores
peptide-spectrum matches (PSMs) obtained from one or
more MS/MS search engines. But the deconvolution in Per-
colator is limited to cofragmented peptides with masses dif-
fering from the target peptide by the tolerance of the database
search, which can be as narrow as a few ppm. The “active
demultiplexing” method proposed by Ledvina et al. (15) ac-
tively separates MS/MS data from several precursors using
masses of complementary fragments. However, higher-en-
ergy collisional dissociation often produces MS/MS spectra
with too few complementary pairs for reliable peptide identi-
fication. The “MixDB” method introduces a sophisticated new
search engine, also with a machine learning algorithm (9). And
the “second peptide identification” method implemented in
Andromeda/MaxQuant workflow (16) submits the same data-
set to the search engine several times based on the list of
chromatographic peptide features, subtracting assigned
MS/MS peaks after each identification round. This approach
is similar to the ProbIDTree search engine that also performed
iterative identification while removing assigned peaks after
each round of identification (17).

One important factor for spectral deconvolution that has
not been fully utilized in most conventional workflows is the
excellent mass accuracy achievable with modern high-reso-
lution mass spectrometry (18). An Orbitrap Fourier-transform
mass spectrometer can provide mass accuracy in the range
of hundreds of ppb (parts per billion) for mass peaks with high
signal-to-noise (S/N) ratio (19). However, the mass error of
peaks with lower S/N ratios can be significantly higher and
exceed 1 ppm. Despite this dependence of the mass accu-
racy from the S/N level, most MS and MS/MS search engines
only allow users to set hard cut-off values for the mass error
tolerances. Moreover, some search engines do not provide
the option of choosing a relative error tolerance for MS/MS
fragments. Such negligent treatment of mass accuracy re-
duces the analytical power of high accuracy experiments (18).

Identification results coming from different MS/MS search
engines are sometimes not consistent because of different
statistical assumptions used in scoring PSMs. Introduction of
tools integrating the results of different search engines (14,
20, 21) makes the data interpretation even more complex and
opaque for the user. The opposite trend—simplification of
MS/MS data interpretation—is therefore a welcome develop-
ment. For example, an extremely straightforward algorithm
recently proposed by Wenger et al. (22) demonstrated a sur-
prisingly high performance in peptide identification, even
though it is only marginally more complex than simply

counting the number of matches of theoretical fragment
peaks in high resolution MS/MS, without any a priori statis-
tical assumption.

In order to take advantage of natural multiplexing of MS/MS
spectra in DDA, as well as properly utilize high accuracy of
Orbitrap-based mass spectrometry, we developed a simple
and robust data analysis workflow DeMix. It is presented in
Fig. 1 as an expansion of the conventional workflow. Princi-
ples of some of the processes used by the workflow are
borrowed from other approaches, including the custom-made
mass peak centroiding (20), chromatographic feature detec-
tion (19, 20), and two-pass database search with the first
limited pass to provide a “software lock mass” for mass scale
recalibration (23).

In DeMix workflow, the deconvolution of chimeric MS/MS
spectra consists of simply “cloning” an MS/MS spectrum if a
potential cofragmented peptide is detected. The list of can-
didate peptide precursors is generated from chromatographic
feature detection, as in the MaxQuant/Andromeda workflow
(16, 19), but using The OpenMS Proteomics Pipeline (TOPP)
(20, 24). During the cloning, the precursor is replaced by the
new candidate, but no changes in the MS/MS fragment list
are made, and therefore the cloned MS/MS spectra remain
chimeric. Processing such spectra requires a search engine
tolerant to the presence of unassigned peaks, as such peaks
are always expected when multiple precursors cofragment.
Thus, we chose Morpheus (22) as a search engine. Based on
the original search algorithm, we implement a reformed scor-
ing scheme: Morpheus-AS (advanced scoring). It inherits all
the basic principles from Morpheus but deeper utilizes the
high mass accuracy of the data. This kind of database search
removes the necessity of spectral processing for physical
separation of MS/MS data into multiple subspectra (15), or
consecutive subtraction of peaks (16, 17).

Despite the fact that DeMix workflow is largely a combina-
tion of known approaches, it provides remarkable improve-
ment compared with the state-of-the-art. On our Orbitrap
Q-Exactive workbench, testing on a benchmark dataset of
two-hour single-dimension LC-MS/MS experiments from
HeLa cell lysate, we identified on average 1.24 peptide per
MS/MS spectrum, breaking the “one MS/MS spectrum–one
peptide” paradigm on the level of whole data set. At 1% false
discovery rate (FDR), we obtained on average nine PSMs per
second (at the actual acquisition rate of ca. seven MS/MS
spectra per second), and detected 40 human proteins per
minute.

EXPERIMENTAL PROCEDURES

Sample Preparation—HeLa cell line was grown with Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum
and 1% antibiotics. Cells were collected and washed with PBS three
times. Three separate cell pellets were lysed with ProteaseMAX™
Surfactant (0.1% w/v) in aqueous ammonium bicarbonate (50 mM)
mixed with acetonitrile at a ratio of 9:1 (v:v) as previously described
(2). Mixtures were incubated at 95 °C for 5 min and 15 min sonication

Efficient Identification of Cofragmented Peptides

3212 Molecular & Cellular Proteomics 13.11



(30% amplitude, 3:3 pulse) with a Branson sonicator. After that,
protein extracts were reduced and alkylated via incubation with 10
mM of DTT and iodoacetamide, respectively. Proteins (80 �g) were
digested with trypsin and incubated at 37 °C for 9 h. Trypsination was
terminated by adding 5% acetic acid (vol.). Samples were incubated
for 30 min at 45 °C in order to precipitate the detergent, and purified
using spin filtration (Pall Nanosep® 10 kDa with Omega membrane).

LC-MS/MS Experiment—Three micrograms of each sample was
injected to Thermo Scientific EASY-Spray columns (PepMap® RSLC,
C18, 100 Å, 2 �m bead packed 50 cm column) connected to an
Easy-nLC 1000 pump (Proxeon Biosystems, Odense, Denmark, now
part of Thermo Fisher Scientific). Samples were loaded into the col-
umn with buffer A (99.9% water, 0.1% formic acid) and eluted in a 150
min LC-MS/MS experiment. The gradient was started from 2% and
increased stepwise to 5% in 12 min, 19% in 88 min, and 30% buffer
B (99.9% acetonitrile, 0.1% formic acid) in 15 min at a flow rate of 250
nL/min. It followed by a sharp increase to 98% buffer B in 15 min, then

8 min in 98% buffer B, followed by a sharp decrease to 2% buffer B
in 2 min, and finally 10 min in 2% buffer B.

Data Acquisition—Mass spectra were acquired with an Orbitrap Q
Exactive mass spectrometer (Thermo Scientific) in a data-dependent
manner using a top-20 method. MS spectra were acquired at a
resolution of 70,000 with maximum integration time of 250 ms and a
target value of 3 � 106 ions. The m/z range was from 400 to 1200.
Peptide fragmentation was performed via higher-energy collisional
dissociation set at 25 V of normalized collisional energy. The MS/MS
spectra were acquired at a resolution of 17,500, with a target value of
2 � 105 ions and a maximum integration time of 120 ms. For testing
precursor selectivity, replicated experiments were performed with
four different isolation widths: �1.0, �2.0, �3.0, and �4.0 Th as
described in the main text. MS and MS/MS spectra in the profile
mode were converted from Thermo .RAW files into mzML format
using msconvert in ProteoWizard software package (25) (v. 3.0.5047
downloaded from http://proteowizard.sourceforge.net), with zero in-

FIG. 1. An overview of the DeMix workflow that expands the conventional workflow, shown by the dashed line. Processes are colored
in purple for TOPP, red for search engine (Morpheus/Mascot/MS-GF�), and blue for in-house programs.
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tensity sampling being ignored (filter: zeroSamples removeExtra 1–2).
The OpenMS Proteomics Pipeline (TOPP) (24) (v. 1.11, downloaded
from (http://open-ms.sourceforge.net) was used for calculating cen-
troids of peaks from profile mass spectra, with signal-to-noise filter
disabled in the PeakPickerHiRes. It was found important to use
PeakPickerHiRes rather than the “Peak Picking” function in mscon-
vert, because the former algorithm is more accurate.

The mass spectrometry proteomics data have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.proteome
xchange.org) via the PRIDE partner repository (26) with the dataset
identifier PXD000999.

Chromatographic Feature Detection—The FeatureFinderCentroided
tool in TOPP was used for detecting and quantifying peptide chromato-
graphic features from the centroided MS spectra, with the following
parameters: m/z_tolerance � 0.01 Da, charge_low � 2, charge_high �
7, and feature_min_score � 0.5. The resultant features were exported
from the FeatureXML format to CSV tables, containing for each feature
the RT range, monoisotopic m/z, charge state, isotope distribution, and
integrated ion intensity.

MS/MS Spectra Processing—Centroided MS/MS spectra were
processed by msconvert with a filter “MS2Deisotope true 0.005Da.”
MS/MS data (m/z and z of the precursor as well as RT of the MS/MS
event) were matched with the feature list. Normally, at least one
feature matched the nominal precursor, including RT, z, and m/z (the
latter within 10 ppm). When no feature from the list matched, the
original MS/MS spectrum was retained “as is.” If the �2.0 Th isolation
window overlapped with another detected feature’s m/z, and MS/MS
RT - with feature’s RT range, the MS/MS spectrum was cloned, with
the precursor m/z and z of the cloned MS/MS entry being copied from
the matched feature. The resultant MS/MS spectra were written in the
MGF format by a home-written Python script utilizing pymzml (27),
and converted to mzML format by msconvert.

Search Engine—We used Morpheus (rev. 45) that has been de-
signed by Wenger et al.(22) specifically for high resolution mass
spectrometry. All options for spectral processing were unchecked.
Parameters were set as: Protease � trypsin (no proline rule); Maxi-
mum Missed Cleavages � 3; Fixed Modifications � (carbamido-
methylation of C); Variable Modifications � [oxidation of M, acetyla-
tion of protein N terminus]. UniProt Human Complete Proteome
database (v. 2012_04, 89,601 human protein entries) was used as a
source of target sequences. As a decoy, reversed protein sequences
were generated on-the-fly and concatenated to the target database.

The first pass of search was done on the original MS/MS spectra
with a large mass tolerance (�20 ppm) for both precursor and prod-
uct monoisotopic peaks. The masses of reliably identified (in terms of
FDR) peptides were used as “software lock mass” for MS scale
recalibration. A Python script written in house and utilizing pyteomics
package (28) was used for theoretical mass calculation. The RT-de-
pendent calibration curve was calculated by the method of multivar-
iate adaptive regression splines (MARS) (29) based on the RT and
precursor m/z of unique peptide identifications (FDR � 1%). Python
script was written using py-earth (https://github.com/jcrudy/py-earth)
for nonlinear regression in mass error recalibration. All precursor
masses in the MS/MS spectra as well as feature lists were then
recalculated. The second pass database search was performed on
deconvoluted MS/MS data with a narrower MS tolerance (10 ppm; the
tolerance for MS/MS was still 20 ppm); it generated PSMs that were
then rescored.

PSM Rescoring—The scoring scheme from the original Morpheus
algorithm was reformulated. In the new scheme, the PSM score S is
a summation of three subscores: S1, S2, and S3, reflecting three
parameters: mass errors in MS and MS/MS, and relative fragment ion
intensities, respectively. Three subscores played different roles in
discriminating target and decoy peptide-spectrum matches.

Firstly, for all PSMs with q-value � 5 (equivalent of �5.0% FDR),
precursor mass errors (deviations from the theoretical mass) were
calculated, and the resultant mass error distribution (Fig. 2A) was
fitted with normal distribution, giving the standard deviation of mass
errors. Using the survival function of this normal distribution, for a
given precursor mass error, a p value was calculated. The absolute p
value ranging from 0.0001 to 1.0 was added to the final score of the
precursor as S1. It also played the role as a soft mass tolerance.
PSMs with precursor p value lower than 0.0001 were rejected as too
improbable.

Furthermore, for each peptide sequence in the list, theoretical
MS/MS product masses were calculated for only b- and y-series
singly charged ions. Other types of ions were excluded as less prob-
able products. By matching spectra with theoretical peaks for all
PSMs in one set of data, an overall fragment mass error distribution
was estimated the same way as estimating precursor mass errors
(Fig. 2B). Then the � (standard deviation) of mass error in MS/MS was
calculated based on the distribution. In one PSM, each matching
peak deviating from its theoretical value by less than 2� (95.4%
confidence interval) added 1.0 point to the score S2, to the maximum
of (2n-2), where n is the number of residues in the peptide sequence.
Additional to the original algorithm, if a complementary (b-y) pair of
product peaks was found, an extra score of 1.0 was added to S2 for
rewarding the confirmation of the precursor mass. As in the original
Morpheus algorithm, this score of counting matched products is the
major part of final score, which plays the most important role of
identifying peptides. The scoring scheme was reformulated for the
consideration of complementary peaks and postcalculated mass tol-
erance. Thus, S2 ranged from 0 to 3n-3. Comparing to the original
Morpheus score, S2 provides larger space for discriminating between
the target and decoy hits, and has less bias against short peptides, as
the latter tend to produce more complementary fragments per unit
length than longer peptides.

Because counting of matched fragments produces a discrete
value, it is not optimal for a later estimation of the cutoff score in a
continuous space. In order to smoothen the score distribution at the
edge of the trimming threshold (e.g. at 1% FDR), the original Mor-
pheus algorithm adds to the final score an absolute value of the
matched fraction of ion intensity (ranges from 0 to 1.0), assuming that
a true match will explain a larger fraction of ion peaks. Although that
is generally true when comparing two alternative sequence assign-
ments, in the case of analyzing chimeric spectra, the absolute value of
ion matching varies significantly depending upon whether the as-
signed peptide is a primary or a secondary match. To better exploit
the differences in the relative abundances of target and decoy frag-
ments for chimeric spectra, distributions of log-transformed values of
the matched fraction of ion intensity for target and decoy hits were
investigated (Fig. 2C). We used the normal probability density func-
tion P(x, N) to calculate the different probabilities of being a target or
decoy hit for a given fraction of intensity (ln I). The relative ratio of the
probability densities of the target distribution (N3�) and decoy distri-
bution (N3�) was calculated as

S3 �
P�ln I, N3�	 � P�ln I, N3�	

P�ln I, N3�	 � P�ln I, N3�	

Which ranged from �1.0 to 1.0. As in the original Morpheus algorithm,
the sub score S3 was used here to smoothen the score distribution at
the edge of an arbitrary cutoff (1% FDR).

FDR Trimming—Duplications in the PSM list were removed, with
the highest-scoring PSM retained, to ensure that one feature corre-
sponded to only one peptide, and every deconvoluted spectrum was
present only once. The filtered PSM list was sorted by score S in a
descending order. The distribution of S for target and decoy peptides
is shown in Fig. 2D. The FDR level was calculated as in MaxQuant/
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Andromeda, that is, as the ratio of decoy hits (FP, reversed se-
quences) and target hits (TP, forward sequences): FDR � FP/TP. The
peptide list was trimmed to contain less than the chosen fraction of
false identifications. As in some other search engines, sorting and
trimming was done hierarchically three times for three peptide sub-
populations, which possess different statistical properties in terms of
FDR. First-pass: “high-risk” peptides with N-terminal proline—these
peptides are rare because of trypsin specificity (no cleavage of prolyl
bonds); second-pass: “medium-risk” peptides with the number of
basic residues (Arg, Lys, and His) equal or larger than the charge
z—these peptides are more stable in collisional dissociation (30); and
third-pass: other peptides. Factors such as peptide length and charge
were not considered as risks of causing false discoveries. The final
PSM list was converted to OMSSA .csv format, which was used by
Protein Herder from COMPASS package (31) (v. 1.0.4.5, downloaded
from http://www.chem.wisc.edu/
coon/software.php) to assign pep-
tide sequences to protein groups using the principle of maximum
parsimony.

Comparison with State-of-the-Art—The same set of three .RAW
files was processed using Mascot MS/MS search engine (v. 2.3.02,
Matrix Science), MaxQuant software (v. 1.4.1.2, downloaded from
http://maxquant.org) with Andromeda search engine (16), and MS-
GF� (v. 9979) with Percolator (v. 2.07) (32). Precursor mass tolerance
was set as 6 ppm. Products mass tolerance was set as 20 mmu in
Mascot, 20 ppm in MaxQuant. MS-GF� does not allow user-defined
mass tolerance for MS/MS, thus we chose the default setting for
Q-Exactive (parameter: -inst 3). PSMs from Mascot were filtered by
E�0.05 for comparing the trimming by significance to FDR trimming.
PSMs from Andromeda were filtered by 1.0% FDR. MS-GF� result-
ant .mzid files were converted, rescored and filtered by Percorlator to
1.0% peptide FDR.

RESULTS

We used the HeLa cell lysate to test the performance of the
DeMix workflow. The proteome was supposed to contain
more than 10,000 expressed proteins (33), and had been
comprehensively analyzed by Guo et al. (34) on a similar

workbench. In a triplicate experiment, we obtained in each run
with a 2 h chromatographic separation and the top-20 DDA
strategy roughly 12,000 MS and 54,000 MS/MS spectra. At
least 98% of MS/MS spectra were found simultaneously con-
taining peaks of both protonated lysine (m/z 147.11280) and
arginine (m/z 175.11895), indicating multiplexing of at least
two different peptides (Table I).

Chromatographic Feature Detection and MS/MS Deconvo-
lution—We formed a set of possible precursors from a map of
peptide-like chromatographic features in a three-dimensional
space of monoisotopic m/z, retention time (RT), and ion in-
tensity. We used The OpenMS Proteomics Pipeline (TOPP) to
create this feature map, assembling full MS spectra into pep-
tide features based on isotopic modeling and chromato-
graphic tracing (20, 24). Thus obtained feature list was prac-
tically free from noise spikes, nonmonoisotopic assignments
or nonpeptide artifacts. We detected around 80,000 peptide-
like features in each of the three replicate experiments, in
broad agreement with a previous report (4). In accordance
with the estimation from MS/MS, we found that 92% of the
listed features overlap with at least one other feature. This
value was estimated by counting the number of co-eluting
(RT-overlapping) features that have the distance between
their monoisotopic masses smaller than the isolation width (�
2.0 Th) (Table I). Such features have a high chance of cofrag-
mentation in MS/MS.

The deconvolution of chimeric MS/MS spectra was done by
creating several spectral “clones” from a single original
MS/MS spectrum. Alternative precursors from the feature
map were assigned to individual clones when their chromato-
graphic trace overlapped in the isolation window of the orig-

TABLE I
Statistics of the triplicate analysis of unfractionated HeLa digest using 2 h-gradient LC-MS/MS

Experiment 1 Experiment 2 Experiment 3

Full MS (Survey) Scans 11769 12136 12080
Chromatographic Features 76603 79372 81953

Overlappinga 70420 (91.9%) 72933 (91.9%) 75327 (91.9%)
Identified (-)d 26948 (35.2%) 28539 (36.0%) 27742 (33.9%)
Identified (�)e 34337 (44.8%) 35937 (45.3%) 34861 (42.5%)

MS/MS Scans 53343 53977 53940
LysH� and ArgH�b 52297 (98.0%) 53080 (98.3%) 53017 (98.3%)

MS/MS Spectral Clones 134031 136143 136396
Multiplexing Rate (x) 2.51 2.52 2.53

Peptide-spectrum Matchesc 66042 68734 65420
Success Rate 49% 50% 48%
Identification Efficiency 124% 128% 121%

Unique Peptide Sequences 33066 34261 32412
Protein Groups 4726 4759 4682

a Overlapping was estimated in the RT-m/z space, where RT corresponds to feature’s chromatographic trace (eluting peak width), and m/z
equals to the MS/MS isolation width (�2.0 Th around the monoisotopic peak).

b Protonated lysine and arginine occurrences are calculated based on the co-existence of both peaks at m/z 147.11280 and 175.11895 in
the MS/MS peak list, with 10 ppm tolerance.

c PSM list of unique peptide sequences was trimmed to 1.0% FDR.
d (-) Identified features without MS/MS cloning.
e (�) Identified features with MS/MS cloning allowed.
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inal MS/MS spectrum. Unlike in other deconvolution or de-
multiplexing methods, the cloning of MS/MS spectra did not
result in any changes in the fragment list: in each spectral
clone, the precursor was replaced by a new candidate, but
the list of MS/MS fragments was kept the same as in the
original MS/MS spectrum. Using this cloning method, we
generated on average 2.5 MS/MS spectra out of one original
MS/MS spectrum (Table I and supplemental Table S1).

Peptide-spectrum Matching and Rescoring—For each con-
ventional PSM, a new score S was calculated reflecting three
parameters: peptide molecular mass errors (Fig. 2A), mass
errors of matched fragment peaks (Fig. 2B), and the relative
abundances of these peaks (Fig. 2C). In this scoring scheme,
mass tolerances were calculated a posteriori, separately for
MS and MS/MS spectra, depending on the corresponding
overall mass error distributions in the current dataset. Precur-
sor mass errors were used to smoothly increase the score
proportionally to the proximity to the theoretical values. Fur-

thermore, theoretical MS/MS products were only calculated as
singly charged b- and y-series ions, as the most probable types
of fragments. No additional statistical assumption was made,
for example, the prevalence of y-ions was not presumed. These
omissions arguably leave space for further improvements, for
example weighing fragment scores differently based on ion
charge and type frequency and ion relative intensity. To widen
the search space, we allowed up to three missed tryptic cleav-
ages for candidate peptides from the sequence database.

Directly applying this rescoring method to the benchmark
dataset, we obtained over 40,000 PSMs in each experiment
with a 2 h gradient, which equals to �75% success rate of
MS/MS identification for unique peptides at 1.0% FDR (Table II).

To relate the new score S with the “classical” scoring sys-
tems, we compared scores of the peptides identifications with
those of other search engines (supplemental Fig. S1). The
inhomogeneities in the new score distribution indicate that the
new scoring system has a potential for further improvement.

FIG. 2. Scoring metrics of Morpheus-AS, A, precursor mass error distribution in MS; B, fragment mass error distribution in MS/MS; C,
distribution of relative fragment ion abundances (log-transformed intensity fraction); D, score distribution after rescoring all PSMs; blue: target
peptides; red: decoy peptide.
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One MS/MS Spectrum - More Peptide Identifications—The
combination of cloning and rescoring yielded a total identifi-
cation of 41,628 unique peptides at 1.0% FDR, which were
grouped into 5167 human proteins covering around half of the
expressed proteome (Table II and supplemental Table S2).
Remarkably, the number of PSMs was 1.24 times the total
number of the original MS/MS scans, breaking the “one
MS/MS spectrum - one peptide” paradigm at the level of the
whole data set for the first time. This identification efficiency
was much higher than that of MaxQuant/Andromeda (0.82),
which also enabled spectral deconvolution; it was 2.5 times of
that of Mascot (0.50), when using E-value instead of FDR to
trim the PSM list. The improvement obtained using the DeMix
workflow was not because of the search engine; when Mor-
pheus-AS was replaced with another modern search engine
MS-GF� Percolator (32), a similar efficiency was obtained
(Table II).

The effective multiplicity distribution reflecting the number
of identified peptides per MS/MS spectrum is shown in Fig. 3.
In our workflow, less than 17.4% of all MS/MS spectra failed
to produce a single hit in the database search, which was
likely because of nontryptic, post-translationally modified or
poorly fragmented peptides. At the same time, 50.7% of all
MS/MS spectra produced a single hit. Over 30% were confi-
dently assigned to two or more peptides, with a maximum of
seven peptides identified from a single original MS/MS spec-
trum. In contrast, MaxQuant/Andromeda that also employs
MS/MS spectra deconvolution, assigned less than 8% of all
MS/MS spectra to �2 peptides. We were puzzled by such a
difference in performance, but then found that the “second
peptide” method implemented in MaxQuant was not efficient
when the “first peptide” failed to be identified.

Fig. 4B presents a typical MS/MS spectrum, which failed to
produce a single identification in Andromeda search, but was
assigned to four peptides from the feature map (Fig. 4A) and
successfully identified in DeMix workflow. One-by-one anno-
tation for the four peptides is shown in supplemental Fig. S2.

For the 11.5% MS/MS spectra that were only assigned by
DeMix workflow but not Andromeda, we found that 64% of
these spectra produced identifications for alternative precur-
sors, and 40% produced identifications only for alternative,
but not primary, precursors.

Comparing the average number of unique peptides in a
protein group, we found that our workflow gave almost the
same number, roughly eight peptides per protein, as Androm-
eda, with mean coverage of �25% for proteins having more
than one unique peptides identified (Table II).

On average, one unique peptide sequence was supported
by 4.8 PSMs by DeMix, compared with roughly 3.5 PSMs/
peptide by MaxQuant. Therefore, DeMix peptides were re-
identified more than one time by spectral clones. A majority
(68.4%) of the spectral clones identified with alternative pre-
cursors provided extra support to identifications from the
primary precursors in some other MS/MS scans; the remain-
ing 31.6% supported new sequences. Such large fraction of
“known” sequences identified using alternative precursors
testifies to the validity of identification via MS/MS cloning.

TABLE II
Comparison between the DeMix and MaxQuant workflow, with four database searching methods, based on the combined HeLa triplicate dataset

Search engine
MaxQuant DeMix

Andromeda Mascot MS-GF� Percolator Morpheus-AS

Deconvolutiona - � - � - � - �
Peptide-spectrum matchesb 115135 131597 78063 80096 118715 193450 122208 200292

PSM per MS/MS 0.714 0.816 0.484 0.497 0.736 1.199 0.758 1.242
Unique peptides 32646 38112 23133 23095 35468 45022 33712 41628

PSM per peptide 3.53 3.45 3.37 3.47 3.35 4.30 3.63 4.81
Confetti supportedc 86.4% 84.6% 89.3% 89.4% 85.4% 83.0% 86.3% 84.6%

Protein groups 4409 4642 3800 3801 4831 5443 4707 5167
Strongly supportedd 3597 3985 2865 2868 3776 4446 3691 4222
Mean coverage 24.4% 25.1% 22.9% 22.9% 24.7% 25.7% 24.6% 25.6%

a Deconvolution: secondary peptides in MaxQuant or spectra cloning in DeMix are allowed (�) or not (-).
b PSM lists were trimmed to E-value � 0.05 for Mascot, or to FDR � 0.01 for Andromeda, MS-GF� Percolator and Morpheus-AS.
c Proportion of unique peptide sequences found in the Confetti database (34).
d Protein groups supported by two or more unique peptides are considered to be strongly supported; and mean coverage was calculated

for these strongly supported proteins.

FIG. 3. Deconvolution comparison: the distribution of peptide
identifications per MS/MS spectrum for MaxQuant and the DeMix
workflow.
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Shown in supplemental Fig. S3, the distribution of the re-
tention time differences between the primary spectra and
secondary (clone) MS/MS spectra is very small, mostly less
than 30 s, consistent with the typical width of the chromato-
graphic peaks of only 15 s. If secondary peptides would give
a broad distribution of RT differences with the primary pep-
tides, that might indicate spurious identifications. Even so,
there is a possibility that one peptide may have two distant
chromatographic features. One possible cause of chromato-
graphic splitting is isomerization of proline-containing pep-
tides (35). Indeed, we found one example of this phenome-
non. Peptide GVLLYGPPGTGK (P62195–2�PRS8_HUMAN:
177 - 188) was eluted separately at 88 min and 92.5 min (4.5
min difference). supplemental Fig. S4 shows the comparison
of a pair of MS/MS spectra where the peptide was identified
as a primary precursor and as a distant secondary precursor.
A great deal of overlap was found between MS/MS fragments:
the primary spectrum shared 12 out of 13 b- and y-ions with
the secondary spectrum (supplemental Table S3). The corre-
lation of ion intensities from the same fragments in the two
MS/MS spectra is also very high: R2 � 0.895 (supplemental
Fig. S5).

To additionally test the validity of peptide identifications, we
made three sets of artificial spectra by shifting all original
precursor masses in MS/MS spectra by �30 ppm (within the
same isolation window), �3.0 Th (out of the isolation window),
or by randomization of the whole precursor mass list. All three
categories of these spectra yielded less than 1% identifica-
tions compared with the unmodified dataset (supplemental
Table S4). The �30 ppm set had a higher number of identifi-
cations than the other two artificial sets, because of a small
but nonzero probability that a real cofragmented peptide with
that shifted mass is present in the same isolation window.
Because �1% hit rate is exactly what would be expected at
�1% FDR (the same level as the decoy hits), these results
support both the validity of peptide identifications as well as
the fair accuracy of our FDR estimates.

To further confirm that newly identified peptides really be-
long to the HeLa proteome, we mapped the identified se-
quences to the Confetti database (34), which hosts over
400,000 unique peptide sequences covering over 40% of
more than 8000 detected proteins from HeLa cells. Without
spectral cloning, 29,109 peptides identified by DeMix mapped
on the Confetti with 4656 remaining unmapped (86.2% suc-
cess rate). Enabling spectral cloning added 7931 peptides, of
which 6088 peptides mapped and 1843 peptides did not
(success rate of 76.7%). These figures agree well with the

MaxQuant results where the mapping rates were around
85%. The somewhat lower success rate of the additional
identifications produced by DeMix is understandable, be-
cause they were low-abundance peptides that have a lower a
priori probability to be included in the Confetti dataset.

The above results indicate that extra identifications from
spectral clones are mostly untargeted peptides during DDA.
They can probably be targeted and identified in experiments
with a longer LC gradient, enhanced digestion, or with pre-
fractionation. Interestingly, replacing Morpheus-AS with MS-
GF�Percolator yielded 8% more unique peptides without
increasing the number of PSMs. But our investigation showed
that these extra peptides had a lower rate (66%) of mapping
to Confetti database. This could be because of the risk of
model over-fitting when discriminating between the target and
decoy hits by Percolator’s machine learning.

One reason for a peptide not being targeted in DDA could
be its low abundance. Investigating the abundance distribu-
tion of identified chromatographic features confirmed our ex-
pectation that the majority of newly identified peptides have
relatively low abundances. As shown in Fig. 5 and Table I, the
primary peptides identified without spectral cloning covered
35% of all features, which explained 71% of the total precur-
sor ion current (sum of the peptides’ absolute abundances) on
the feature map. The average abundance of the identified
primary peptide features was 8.64 (�0.56) on the log10-scale.
By enabling spectral cloning, extra peptide identifications
from deconvolution extended the coverage up to 45% of all
features, and to 73% of the total precursor ion current. The

FIG. 4. Deconvolution example: a) a local feature map showing four peptides (boxes) being co-selected by the isolation window (red dash
line) of a DDA acquisition (red X); square spots on the map are color-coded MS1 peaks in the RT-m/z space; b) the corresponding MS/MS
spectrum (HELA3 #36982) was assigned to four peptide precursors in DeMix workflow, but failed in Andromeda search. The spectrum is
annotated by “Expert System” with 20ppm mass tolerance (47). Only b-/y-type fragments are presented. 1) [HGDGTTLDIMLK]2�, m/z �
650.8311, Score�21.76, sp�P55786�PSA HUMAN: 754–765; 2) [ALVGGAVGGLAGAASK]2�, m/z �649.8724, Score�16.19,
sp�Q96RL7�VP13A HUMAN: 2908–2923; 3) [FVAFSGEGQSLR]2�, m/z �649.3308, Score�13.65, sp�Q92890–1�UFD1 HUMAN: 326–337;
4) [QMCICADFEK]2�, m/z �651.2697 (original precursor), Score�11.19, sp�P14868�SYDC HUMAN: 255–264.

FIG. 5. Abundance distributions of chromatographic features:
gray: all peptide-like features detected in LC-MS; blue: identified
peptides targeted in conventional DDA strategy; yellow: peptides
additionally identified by feature-based deconvolution.
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average abundance of these additional peptide features was
8.23 (�0.42), nearly 2.5 times lower than the average abun-
dance of the primary ones. Thus, deconvolution by spectral
cloning provided an expansion of the dynamic range, which is
currently considered to be one of the most important param-
eters in proteomics (36, 37). However, being technologically
limited by the instrumental sensitivity, we found it extremely
challenging to reliably identify any feature with an abundance
below seven orders of magnitudes on the Q Exactive abun-
dance scale.

Multiplicity and Selectivity—To investigate the limit to the
complexity of MS/MS data that can be efficiently deconvo-
luted by our method, we compared a new set of LC-MS/MS
experiments with ascending widths of isolation, �1.0, �2.0,
�3.0, and �4.0 Th. The results are presented in Table III.

The proportion of MS/MS spectra with co-existing proto-
nated lysine and arginine well correlated with the size of the
isolation window, varying from 88.5% for �1.0 Th to 98.1%
for �4.0 Th window. The difference was much more consid-
erable in comparing the multiplexing rates of spectral cloning:
from 1.77x with the narrowest �1.0 Th window, to 2.51x with
a �2.0 Th window, to 3.57x with a �3.0 Th window, and to the
maximum of 4.61� with the widest �4.0 Th window. The
multiplexing function of absolute window width is nicely (R2 �

0.994) described by a linear function:

Multiplicity � 0.479 � Widthisolation � 0.72

The peptide identification efficiencies exceeded 100% for all
windows except for the �1.0 Th window. Widening the iso-
lation window inevitably increased the spectral complexity
during DDA. As a result, the success rate in peptide-spectrum
matching declined with the window size. However, for a single
LC-MS/MS run, DeMix yielded very similar numbers of unique

peptides (
28,000) and protein groups (
4000) for different
isolation windows, despite the huge differences in the num-
bers of deconvoluted spectra (MS/MS clones). This high sta-
bility in numbers disproved the suspicion that introducing a
large amount of unidentifiable spectral clones may increase
the number of random identifications from false discoveries.
The maximum effective identification rate (number of unique
peptides per MS/MS) was reached with a �2.0 Th window, in
accordance with previous studies (2, 4). Notably, DeMix work-
flow showed not only higher number of identifications, but
also a three times smaller variation in this number across the
four LC-MS/MS data sets, demonstrating higher robustness
when varying precursor selectivity, compared with the state-
of-the-art MaxQuant/Andromeda workflow (Table III).

Practical Software Solution—Our workflow shared some
similarities with MaxQuant, which is a highly integrated all-in-
one solution with very limited space for user-defined modifi-
cations. Thus, we had to reinvent some of the advanced
features in MaxQuant workflow, such as the “software lock
mass,” and to use open-sourced equivalent components,
such as feature detection. Our workflow is not as integrated
as MaxQuant, but it is more flexible: it allows much greater
freedom for user-defined modifications. Users are only re-
quired to sequentially specify in different user-interfaces
some parameters and file paths starting from the .RAW files
and until the FDR-filtered lists of peptides and proteins are
obtained. Because all the components in this pipeline are
open-sourced, and mostly platform-independent (Windows/
OSX/Linux), DeMix can be integrated, if needed, into a one-
button solution resting on top of the TOPP platform; or ulti-
mately, into an intelligent data-acquisition method at the
instrument end. Source codes of DeMix workflow can be
downloaded at https://github.com/userbz/DeMix

TABLE III
Comparison of the results obtained with different MS/MS isolation window widths: �1.0, �2.0, �3.0 and �4.0 Th

MS/MS
scan

Lys� and Arg�
Spectral

clone
Multiplexing rate PSM Success rate ID efficiency

# % # x # % %
�1.0 45037 88.5 79739 1.77 42071 52.8 93.4
�2.0 44023 94.2 110671 2.51 46999 42.5 106.8
�3.0 46937 96.7 167529 3.57 57951 34.6 123.5
�4.0 48049 98.1 221313 4.61 63624 28.7 132.4

Unique
peptide

Effective peptide
ID ratea

Protein
group

Effective protein
ID rateb

MaxQuant
PSM

MaxQuant unique
peptide

MaxQuant protein
group

�1.0 27455 0.610 3995 0.0887 34733 24699 3676
�2.0 27777 0.631 4013 0.0912 33385 23706 3494
�3.0 28623 0.610 4112 0.0876 32268 22656 3445
�4.0 27716 0.577 4066 0.0846 29840 21187 3353
Mean 27893 4047 23062 3492
S.D. 506 53 1503 136

a Unique peptides per MS/MS scan.
b Protein groups per MS/MS scan.
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The computational performance of DeMix was reasonable,
although not faster than MaxQuant. On our desktop computer
(Intel quad-core i7 3.40 GHz with 16GB RAM), the complete
analysis of the benchmark 2 h-gradient LC-MS/MS dataset was
finished in roughly five hours, as opposed to three hours
with MaxQuant. We found that the major bottlenecks are the
feature detection (�10 GB memory and �3 h CPU time),
and using in-house Python scripts in text (mzML) process-
ing, for example,spectral cloning and PSM rescoring. Im-
plementing multi-thread parallelization could increase the
computational efficiency.

DISCUSSION

The DeMix workflow described in this study demonstrated a
significant improvement in analyzing shotgun proteomics data
with data-dependent acquisition (DDA). The observed improve-
ments in MS/MS peptide identification were mainly attributed to
two processes: spectral cloning and PSM rescoring (supple-
mental Table S4). At 1% FDR level, the number of peptide-
spectrum matches significantly exceeded the total number of
MS/MS spectra, breaking the “one MS/MS spectrum–one pep-
tide” paradigm. Even though such a paradigm is attractive
because of its simplicity, it is not realistic in analysis of complex
proteomes without the significant narrowing of the precursor
isolation window. Our estimates show that, in order to keep the
degree of natural multiplexing below 10%, the isolation window
has to be narrowed to 0.2 Th. This would present a challenge
even for modern mass spectrometers, such as the Orbitrap
Fusion (Thermo Scientific), which has the narrowest MS/MS
window of 0.4 Th. Moreover, as the dynamic range of analysis
increases, and new, low-abundant peptides become detecta-
ble, the paradigm is bound to break down again, demanding
even further narrowing of the MS/MS window. Thus, natural
multiplexing is a fact that the DDA practitioners have to accept
and learn to deal with. Changing the paradigm to “one MS/MS
spectrum–several peptides” will call for rethinking both data
acquisition and data analysis in deep proteomics. The goal of
modern instruments should be to record in multiplexed mode
the MS/MS spectra of all precursors that are detected in MS
spectra. Our data demonstrate that we at the moment are within
a factor of two or less to this goal.

A respective adjustment in MS/MS search engines will also
be needed. Direct matching of multiple precursors found in
one MS/MS spectrum would be more elegant, and statistically
more satisfactory, than processing of quasi-independent
MS/MS clones. Furthermore, considering the simplicity of the
scoring scheme, it is feasible to integrate the precursor de-
convolution and peptide-spectrum matching into an intelli-
gent data acquisition method.

It has become fashionable in recent times to compare un-
favorably the DDA strategy to the alternative DIA, for its mul-
tiplexing nature and higher reproducibility (38). But objectively
speaking, introducing into DDA extensive demultiplexing, as
in our approach, brings DDA closer to DIA. In our study, the

optimized isolation width �2.0 Th was much narrower than
that of most DIA methods, for example, the 25 Th wide
window in SWATH (12). But the amount of evidence for pep-
tide identification and thus the identification validity was also
much higher in our approach, where each peptide was iden-
tified without a priori assumptions in the sequence database
of the complete proteome, whereas SWATH (and some other
DIA methods) only match a few fragment peaks to an MS/MS
database containing only proteotypic peptides.

When widening the window above �2.0 Th, we observed a
decrease in spectral identification rate, which is closely re-
lated to spectral complexity and precursor intensity. Wider
isolation window leads to more precursors being mixed to-
gether. Thus, mass conflict (two or more different fragments
having an identical mass in one spectrum) will have a higher
chance to happen. To avoid this conflict, Andromeda and
some other search engine iteratively remove from the MS/MS
spectra the peaks belonging from the previously identified
peptide. Being too conservative, this method does not pro-
vide for the possibility that the same fragment mass belongs
to different sequences, whereas such an event is statistically
quite frequent for even-electron b- and y- fragments ions even
in high resolution Orbitrap mass spectra (39). Thus, DeMix
allows for multiple assignment of the same fragment peak.
This increases the spectral identification rate but may also
result in an increased rate of false matches. However, be-
cause these false matches would equally contain both direct
and reversed (decoy) hits, trimming the output peptide list to
�1% of reversed hits effectively checks this danger. This
target-decoy approach may raise a concern of a bioinforma-
tician because of the absence of a thorough statistical model
for the scoring method, which precludes accurate calculation
of p values for individual PSMs (40). However, our simple
scoring method is unlikely to violate the basic presumptions
of the target-decoy model, and thus the empirical estimation
of FDR is satisfactory. Multiple evaluations performed in this
study for a huge number of peptide identifications convinced
us in the fair accuracy of the FDR estimates. In our opinion,
using the FDR cutoff produces more reliable results than a
probability (E-value) cutoff in analyzing chimeric spectra, be-
cause the FDR threshold will be automatically adjusted based
on the actual decoy hit content, rather than on a presumed
statistical model, as in the E-value cutoff.

Similarly, the phenomenon of decreased identification rate
with an MS/MS window broadening has also been found in a
recent study in metabolomics (41). The existence of the optimal
window width for MS/MS seems to be a fundamental feature of
tandem mass spectrometry, regardless of the method of anal-
ysis (DDA or DIA), or the analyte nature (peptides or metabo-
lites). The width of the optimal window must however be ana-
lyte-dependent, as different analytes require different number of
fragments to be uniquely identified. The mass accuracy in MS
and MS/MS are two other important parameters. We are not
aware of any theoretical study deducing the optimal window
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size by studying the effect of these parameters on tryptic pep-
tide identification, but perhaps the time for such a study is ripe.

One of the fundamental problems faced by proteomics, es-
pecially in the DDA mode, is the insufficient overlap between the
two consecutive LS-MS/MS runs in terms of identified peptides.
One of the ways to alleviate this problem is to transfer peptide
identifications through alignment of retention time or the order
of elution (42, 43). Nevertheless, it is unlikely that perfect or
nearly perfect overlap can be achieved without reaching the
“bottom” of human proteome in a single LC-MS/MS analysis, as
it is done for yeast proteome (7).

When the peptide abundance is very low (in our study, inte-
grated intensity �107), it is nearly impossible to provide an
informative MS/MS spectrum for reliable peptide identification
(4). An increased sample load should help in detecting low
abundant peptides, but in DIA the broadening of chromato-
graphic peaks reduces the number of identifications, as the
degree of multiplexing grows even further (38). In contrast, DDA
with a much narrower MS/MS selection window should be more
tolerant to chromatographic column overload. It appears that,
because of a higher demand for chromatographic separation,
the optimal on-column loading (300 ng) in DIA (38) is an order of
magnitude lower than in the optimal DDA method (2). The same
effect has recently been reported for the ion mobility platform
(44). Thus DDA, by allowing larger sample loads, should provide
more identifications in a single LC-MS/MS run than DIA. The
reason why this has not been decisively demonstrated so far is
that DDA could not properly handle the issue of natural multi-
plexing, which becomes more acute when the sample load
increases. By employing demultiplexing, we have eliminated or
at least dramatically reduced the impact of this problem on the
number of identifications. As we mentioned before, the bound-
ary between DDA and DIA are likely to be blurred in the future,
and data analysis software can help a great deal in bridging the
gap between the two approaches. But real breakthroughs in
MS-based deep proteomics analysis can only come from hard-
ware advances, such as higher acquisition rate (5), sensitivity
(44), and mass accuracy (18), as well as better peptide separa-
tion (2), ionization (45), fragmentation (38), etc. Ultimately,
reaching the “bottom” of the human proteome within a single
analysis will require extension of the dynamic range of mass
spectrometers by a few orders of magnitude (37).

Our final point reiterates the importance of high mass ac-
curacy in proteomics, which can only be achieved by employ-
ing high resolution in both MS and MS/MS. For instance, in
this study, the improvements came largely because of high
mass accuracy intrinsically present in the Orbitrap data. We
therefore remain strong advocates of employing high-resolu-
tion analyzers in proteomics, even though they are currently
less sensitive than some low-resolution analyzers.

CONCLUSION

In this study, we presented a simple but robust workflow
DeMix for analyzing complex proteomes with data-dependent

LC-MS/MS acquisition. The workflow is able to deconvolute
chimeric MS/MS spectra by spectral cloning for cofrag-
mented precursors. Additionally, a reformulated scoring
method based on Morpheus search engine was employed,
increasing the peptide identification rate by utilizing the intrin-
sic high mass accuracy of the Orbitrap data. Tested on a
benchmark dataset obtained from HeLa cell lysate, we
achieved over 100% identification efficiency, and broke the
“one MS/MS spectrum–one peptide ID” paradigm. With an
instrument introduced to the market three years ago, we
reached as high identification speed as using the next-gen-
eration instrument (5), and enabled rapid and deep analysis of
human proteome twice as fast as in our previous workflow (2).
We showed that integration of freely available, open-source
and platform-independent software can immediately provide
a practical and highly competitive solution for deep proteome
profiling. Efforts to integrate this workflow with our accurate
label-free quantification software (46) are under way to
achieve a one-button operation.
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