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ABSTRACT: Photothermal therapy (PTT) holds great promise for cancer treatment
with its effective ablation of solid tumors. As the essential core point, photothermal
agents (PTAs) with excellent photothermal properties and good biocompatibility could
help to fulfill highly efficient PTT. Herein, a novel type of nanoplatform Fe;O,@PDA/
ICG (FPI) nanoparticle (NP) was designed and synthesized, which was composed of
magnetic Fe;O, and near-infrared excitable indocyanine green via encapsulation of
polydopamine. The FPI NPs showed spherical structures in shape with uniform
distribution and good chemical stability. Under 793 nm laser irradiation, FPI NPs could
generate hyperthermia of 54.1 °C and photothermal conversion efficiency of 35.21%. The
low cytotoxicity of FPI NPs was further evaluated and confirmed on HeLa cells with a
high survival rate (90%). Moreover, under laser irradiation (793 nm), FPI NPs showed
effective photothermal therapeutic characteristics for HeLa cells. Therefore, FPI NPs, as
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one of the promising PTAs, have great potential in the field of PTT for tumor treatment.

B INTRODUCTION

To date, cervical cancer is the fourth most common
gynecologic cancer, leading to a high probability of female
death.' ™ Although conventional strategies (including surgical
resection, chemotherapy, and radiotherapy) are being utilized
commonly in clinical practice for cervical cancer, their side
effects are still unavoidable.* With a high therapeutic efficacy
and appealing modality, photothermal therapy (PTT) has
attracted widespread interest in cancer treatment.””’

PTT is based on photothermal agents (PTAs) generating
thermal effects under reasonable laser irradiation.*”"" Notably,
this is effective when the excitation light is in the near-infrared
(NIR, 700—1700 nm) spectral region, which possesses deep
tissue penetration and low scattering ability, resulting in the
ablation of tumors with high efficiency.'”~"* Therefore, novel
PTA nanoplatforms are urgently needed for efficacious cancer
treatment. Among the existing PTAs, iron oxide (Fe;0,) is
promising for the advantages of good magnetic properties,
excellent photo-absorbing ability, and low toxicity.'>'®
Furthermore, Fe;O, possesses the ability in MR imaging,'’
To obtain highly efficient and multi-modal treatment, much
effort has been devoted to developing multifunctional PTAs
based on Fe;0,.'*™**

Polydopamine (PDA), one of the promising PTAs,
possesses high photothermal conversion efficiency, biocompat-
ibility, and biodegradability.”>~>* Notably, PDA could
spontaneously convert into a universal coating polymer via
an oxidative self-polymerization process under a moderate
alkaline pH condition.”®™** Thus, it is attractive to design
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multifunctional NPs by utilizing the PDA as the coating shell.
Additionally, to make the multifunctional NPs “visible”,
indocyanine green (ICG) is a favorable one which has
effective fluorescence intensity.””~>" Furthermore, ICG could
be excited by NIR light with low energy to produce heat.”*~>*

In this study, we designed and synthesized the multifunc-
tional Fe;O,@PDA/ICG NPs (FPI NPs) based on magnetic
Fe;0, and NIR excitable/emissive clinical ICG via PDA. The
FPI nanocomposite exhibited promising dispersion properties
and chemical stability. In addition, the results of cytotoxicity
assessment in HeLa cells further confirmed the low cytotoxicity
of FPI NPs without laser irradiation. Under 793 nm laser
excitation (power density: 0.33 W/cm?), the FPI NPs
converted NIR light into heat energy with a high temperature
of 541 °C in 10 min. Furthermore, the photothermal
conversion efficiency of FPI NPs was measured to be
35.21%. Then, FPI NPs exhibited a desirable therapeutic
ability to vanquish cancer cells with highly efficient PTT
during 793 nm laser irradiation. The photothermal stability of
FPI NPs was verified through photothermal heating curves
with heating and cooling experiments. Furthermore, the
cellular uptake of FPI NPs (40 pg/mL) was performed by
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confocal laser scanning microscopy (CLSM), which showed a
good anti-tumor effect. FPI NPs as photothermal materials
provide great potential and a good alternative approach for
antitumor PTT.

B EXPERIMENTAL SECTION

Preparation of FP (Fe;0,@PDA NPs). Porous Fe;O, NPs
were synthesized through a traditional one-pot solvothermal
route.”> 1 mg of Fe;0, NPs was dispersed into the volume of 3
mL of tris buffer (pH = 8.5) solution. Subsequently, 1 mg of
PDA was dissolved in the above solution. The mixture was
reacted at room temperature for 1 day under stirring. Finally,
the Fe;O,@PDA NPs were washed several times with DI water
to remove unreacted reagents and collected Fe;O,@PDA NPs.

Preparation of FPI (Fe;0,@PDA/ICG) NPs. According to
previous work,* the content of 0.5 mg ICG was introduced
into 1.5 mL of tris buffer (pH = 8.5. Then, the above solutions
were added to Fe;O,@PDA NPs dispersion (1.5 mL) under
mechanical stirring for 12 h. Afterward, the reactants were
washed multiple times with DI water, and then FPI NPs
products were collected.

Stability of FPI NPs. For the analysis of stability, the 100
pug/mL of FPI NPs was obtained from 100 pug of FPI NPs
resuspended in DI water, and the absorption was further
measured at pre-set time points (0, 12, 24, and 36 h).

Photothermal Effect and Performance. The photo-
thermal properties of FPI NPs were assessed. The FPI NPs
were exposed to an NIR laser (793 nm, 0.33 W/cm?).
Following exposure, an infrared thermometer monitored the
changes in temperature from the sample in real-time. Briefly,
the FPI NPs in aqueous dispersion at various concentrations
(20, 40, 60, 80, and 100 pig/mL, respectively) with a volume of
500 pL were irradiated by an NIR laser of 793 nm for 10 min.
In contrast, the temperature of the DI water, Fe;O, in an
aqueous dispersion and ICG in an aqueous solution were
observed under the same continuous NIR laser irradiation for
10 min.

To examine the related performance of FPI NPs, including
photostability and photothermal conversion efficiency (1),
0.05 mg of FPI NPs were distributed in 500 pL of water
solutions and irradiated under 793 nm laser. The temperature
of the samples was up to 54 °C. The FPI NPs suspension was
cooled to room temperature after the 793 nm laser was
switched off. The above process was repeated for five cycles,
and the temperature change was monitored with an infrared
camera. In contrast, we used the same condition to observe 1
mL of Fe;O, in aqueous dispersion. According to the eq 1 as
below, the 7 values’*® for Fe;O, and FPI NPs were
calculated:

hS(Tmax - ];Hr)

n(%) = I(1 — 1074) (1)

The (T — Tyur) Was the result of maximum temperature
after laser radiation minus room temperature. The I was the
laser power density, and the value was equal to 0.33 W/cm?,
and A,; was the absorbance value of the sample at 793 nm.
The h and S represented the heat transfer coeflicients and the
container’s surface area, respectively. Furthermore, the value of
hS could be acquired from eq 2:

_ MpCp
Tg (2)

hS

The value of M, (the mass of solvent) was 0.5 mg, and Cp
(heat capacity of solvent) was 4.2 J/(g X °C), respectively. The
7, was the constant of the sample system and value calculated

by eq 3:

T — T
7, = —In| | x 100%
Tmax - sur (3)

Cytotoxicity Analysis. HeLa cells were used to evaluate
the cytotoxicity of FPI NPs. Briefly, the cells were inoculated in
96-well plates overnight in an incubator at 37 °C and 5% CO,
with a density of S X 10° per well for overnight. The
cytotoxicity of the material was assayed using the standard
CCK-8 method. The cells were then incubated with various
concentrations of Fe;0, (0—100 pg/mL) and FPI NPs (0—
100 pug/mL) for 8 h. Following incubation, the CCK-8 reagent
(10 uL) was incubated with the cells of each well for 2 h. Each
well’s optical density (OD) was tested at the wavelength of 450
nm with an enzyme meter. Furthermore, cell viability was
calculated as below eq 4:*

(ODSampIe - ODBlank)

cell viability(%) =
(OD - OD Blank)

X 100%

Negative control
(4)

The cytotoxicity of FPI NPs was further analyzed. HeLa cells
were treated with plates (1 X 10° cells/holes). The DMEM
(control), DMEM + Laser, Fe;O, and FPI NPs were
incubated in HeLa cells for 8 h, then treated with 793 nm
laser (0.33 W/cm?) for 10 min. The Annexin V-FITC/PI
Apoptosis Detection Kits were used to dyed with cells and the
results were recorded.

Cell Uptake. CLSM (Nikon C2+, Japan) was utilized to
analyze the cellular uptake of samples. HeLa cells in the
logarithmic growth phase were inoculated with a volume of
600 uL and a density of 2.5 X 10° cells in confocal culture
dishes and put in a 5% CO,, temperature 37 °C incubator for 1
day. The cells were washed three times with 1 X PBS, followed
by the treatment with 500 yL of complete culture containing
Fe;O, and FPI NPs (40 pg/mL) for 4 h. Then, the
supernatant was discarded and washed three times with 1 X
PBS, followed by the addition of 500 uL of Hoechst 33342 dye
solution (1:100) for 20 min. The above cells were washed
three times with 1 X PBS, and each culture dish was filled with
fresh complete culture medium containing a volume of 600 yL.
Furthermore, the fluorescence imaging was performed
immediately with CLSM.

In Vitro Evaluation of PTT Effects. The procedure for
culturing HeLa cells is the same as the above process. The cells
were washed with 1 X PBS three times and then treated with
500 pL of complete medium containing Fe;O, and FPI NPs
(40 pg/mL) for 4 h. The supernatant was then discarded and
washed three times with 1 X PBS, followed by the incubation
of cells with S00 uL of Hoechst 33342 dye solution (1:100)
and 500 uL of FITC dye solution (1:100) for 20 and 10 min,
respectively. Cells were added with 500 yL of a fresh complete
medium in each culture dish. Cells were then irradiated with a
793 nm continuous laser with the power of 0.33 W/cm? for 10
min in each well. The above irradiation procedure was
performed at room temperature, and samples were imaged by
CLSM immediately after being handled.

In Vivo PTT Effect and Fluorescence Property. Two
groups of mice were used (n = 3 for each group). The control
group 1 (injected with 200 yL PBS), while the mice group 2
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were subcutaneously injected with FPI NPs (500 pg/mL, 200
uL). Under 793 nm NIR light irradiation, the mice were
irradiated for 10 min. The temperature changes were recorded
using an infrared camera. The fluorescence property of FPI
NPs in mice was recorded by using an in vivo fluorescence
imaging system (745 nm laser excitation and 840 nm
emission). The control group 1 (injected with 200 uL PBS),
the mice group 2 were subcutaneously injected with FPI NPs
(500 pg/mL, 200 uL). Then, in vivo fluorescence analysis in
the different group of mice was recorded after 2 h of injection.

B RESULTS AND DISCUSSION

Synthesis and Characterization. Scheme 1 exhibits the
synthesis process of Fe;O,@PDA/ICG (FPI) NPs. Under

Scheme 1. NIR-Emissive FPI NPs for Target-Assisted PTT
for Cervical Cancer
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alkaline conditions, the polymerization of dopamine hydro-
chloride into PDA," combined with magnetic Fe;O, to
construct Fe;O,@PDA. In tris buffer (pH = 8.5), ICG with
good photothermal conversion performance connected to
Fe;0,@PDA to form FPI NPs. The structure and morphology
of the Fe;O, and FPI NPs are shown in Figure 1. As observed,
the uniformly Fe;O, NPs showed a porous spherical shape and
exhibited good aqueous dispersibility (Figure 1A,B). The
surface area for the porous shape of nanoparticles can be tested
according to the previous work.*' Moreover, the M;
(saturation magnetization) of magnetic FPI NPs is $5.7
emu/g (Figure S1B). In addition, the MR effect of FPI NPs
was tested by T,-weighted MR imaging, as shown in Figure
S1A. With increasing concentration of FPI NPs, the FPI NPs
solution became darker. The magnet-responsive signal
suggested its potential for MR imaging."* Figure 1C displays
the XRD patterns of Fe;O, NPs, which processed the peaks
relating to the characteristic of face-centered cubic (FCC)
structure for Fe;O, (JCPDS 00-019-0629).

No other impurity peaks were found in the XRD pattern of
Fe;O, NPs, which indicated that the synthesized sample had a
high purity. Then, to improve the biochemical properties and
enhance the PTT efficiency, Fe;O, NPs were further modified
by ICG and PDA. The surface of FPI NPs encapsulated a
transparent structure under transmitted electron beams which
directly indicated the successful formation of the FPI NPs
(Figure 1D,E). Furthermore, relevant UV—vis absorption
spectroscopy was performed for the samples to further confirm
the successful construction of the stable FPI NPs. Compared
with Fe;O, NPs and FP NPs (Figure S2A black and red line),
UV—vis spectra of FPI NPs (Figure S2A blue line) showed
strong absorption peaks around 785 nm, which was attributed
to the existing ICG. According to previous related work on
ICG,* the characteristic peak of ICG was measured at about
790 nm. Under the NIR light excitation, FPI NPs showed a
suitable alternative for PTT as PTAs. Notably, the FPI NPs
efficiently absorbed light in the NIR range of the spectrum and
converted it to heat energy to ablate tumors. Furthermore, the
positive zeta potential of Fe;O, and FP NPs were measured to
be 041 + 0.04 and —3.6 + 0.6 mV, respectively. After
modification of ICG and PDA, FPI NPs kept a negative zeta
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Figure 1. Morphology image of (A), (B) Fe;0, structure, (C) XRD patterns of Fe;0, NPs, morphology image of (D), (E) FPI structures. (F) Zeta

potential of ICG, PDA, Fe;O,, FP, and FPI NPs.
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Figure 2. Photothermal performance of samples under 793 nm laser irradiation at a power density of 0.33 W/cm?*: (A) Temperature curves of ICG,
Fe;0,, and FPI NPs in the aqueous dispersion (100 yg/mL) at various time points, respectively; (B) images of ICG, PDA, Fe;0,, and FPI NPs in
the aqueous dispersion (from left to right, respectively); (C) temperature curves of FPI NP dispersions with various concentrations (20, 40, 60, 80,
and 100 pg/mL); (D) NIR-thermal images for FPI NPs of different concentrations (20, 40, 60, 80, and 100 yg/mL).
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Figure 3. (A) Photothermal stability of FPI NPs (100 ug/mL) during five cycles with/without laser (793 nm, 0.33 W/cm?). (B) Temperature
evaluation of FPI NPs (100 ug/mL) with/without laser (793 nm, 0.33 W/cm?), and linear time versus -Ln@ data of FPI NPs (during the cooling
period). (C) Images of FPI NPs before (left)/after (right) laser (100 ug/mL, 793 nm, and 0.33 W/cm?). (D) Temperature evaluation of free
Fe;0, (100 ug/mL) with/without laser (793 nm, 0.33 W/cm?), and linear time versus -Ln@ data of free Fe;0, (during the cooling period).

potential of 18.3 + 1.1 mV. Therefore, these results indicate
that ICG, PDA, and Fe;O, NPs were successfully combined to

construct FPI nanocomposite.
Stability of FPI NPs. The stability of FPI NPs was explored

at different time points. The FPI NPs solution (100 yg/mL)
was measured for the absorption and hydrodynamic size at
different time points (0, 12, 24, and 36 h). In this study, the
characteristic absorption spectra of FPI NPs at 785 nm display
a negligible change (Figure S3A) in the long term and there is

21796

little difference change in FPI NPs size after a long term
(Figure S3B).

Evaluation of Photothermal Effect. To verify the
potential application of FPI NPs in PTT, the photothermal
properties were explored for FPI NPs (500 uL, 100 mg/mL) in
an aqueous dispersion under NIR laser irradiation (793 nm,
0.33 W/cmz) for 10 min. Simultaneously under similar
experimental conditions, the photothermal properties of
Fe;0, NPs and ICG NPs were further measured (Figure
2A). The images of an aqueous solution of ICG, Fe;O,, and

https://doi.org/10.1021/acsomega.3c01374
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Figure 4. (A) Fluorescence image of Fe;O, and FPI NPs (concentration of 100 mg/mL) under the CLSM (/,, = 800—1000 nm, 4., = 640 nm).
(B) HeLa cell cytotoxicity viability by CCK-8 of HeLa cells after incubation with Fe;O, and FPI NPs at different concentrations (0, 20, 40, 80, and
100 pg/mL); (C) HelLa cell viability of Fe;O, and FPI NPs at different concentrations (0, 20, 40, 80, and 100 yg/mL), assessed on treated cells
that were laser-irradiated at 0.33 W/cm? for 10 min. (D) Flow cytometry in the case of Control, Fe;O, (40 pg/mL), and FPI NPs (40 pg/mL).
Confocal microscopy of cells in bright field (E) HeLa cell (control), (F) after HeLa cell treatment with FPI NPs for 4 h.

FPI NPs are shown in Figure 2B, which demonstrated good
water solubility. Under the laser irradiation, the temperature of
the water in the control group remained almost constant.

In contrast, the maximum temperature of FPI NPs could
reach 54.1 °C, which suggested the photothermal properties of
FPI NPs were much higher than Fe;O, NPs, ICG NPs, or
PDA” alone. Under the same laser irradiation, an obviously
higher temperature elevation of FPI NPs reached 28.4 °C,
owing to the PDA nanoshell process and the photothermal
conversion property. Moreover, the existence of ICG could
also produce a remarkable photothermal response under
irradiation.™*

Furthermore, the photothermal property of different
concentrations of FPI NPs (20, 40, 60, 80, and 100 ug/mL)
was explored under NIR laser irradiation with the power
density of 0.33 W/ cm?, as shown in Figure 2C. As the
concentration of FPI NPs increased, the maximum temper-
ature of FPI NPs also increased. The results exhibited that the
photothermal effect of FPI NPs dependent on the concen-
tration of the samples. Under NIR laser radiation (0.33 W/
cm?), the jump temperature AT (T — Teurr) Was larger than
13 °C when the FPI NPs at the concentration of 60, 80, and
100. Notably, the result was suitable for the clinical application
of the PTT."

Photothermal Stability and Photothermal Conver-
sion Efficiency. The stability of PTAs is an essential factor in
measuring PTT effectiveness. As shown in Figure 3A, FPI NPs
were irradiated (793 nm, 0.33 W/cm?) and then cooled for §
cycles. There was no apparent degradation after S cycles, which
revealed FPI NPs were sufficiently stable during PTT (Figure
3C). The stability of FPI NPs was further explored, which used
UV—vis spectra before and after laser radiation, as shown in
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Figure S2B. The UV—vis spectrum of FPI NPs after laser
irradiation (10 min) was observed an optical intensity slightly
decreased as compared to the curve without laser radiation.
This phenomenon was caused by the slight photothermal
instability of ICG.>* The recycling heating—cooling curve
inferred the photothermal reversibility and recycling perform-
ance of FPI NPs. The photothermal conversion efficiency of
bare Fe;0, and FPI NPs were tested to conclude PTAs’ ability
to convert light to heat energy. As illustrated in Figure 3B,D,
the temperature change of FPI NPs and bare Fe;O, in an
aqueous dispersion (concentration of 100 yg/mL) were
recorded, respectively.

During laser irradiation, the temperature of FPI NPs
solutions rapidly reached 53.3 °C and down to room
temperature without laser radiation. Through laser radiation,
FPI NPs exhibited a fast response. The photothermal
conversion efficiency of FPI NPs and bare Fe;O, are shown
in Figure 3D, respectively. Compared with bare Fe;0, (7 =
22.18%), the FPI NPs showed higher photothermal conversion
efficiency (7 = 35.21%). According to previous work,* the
Fe;0, coated by the PDA has a better performance in
photothermal efficiency compared with pure Fe;O,. The
improved photothermal conversion efficiency of FPI NPs
revealed that the modification of FPI NPs was helpful in
enhancing the PTT properties.

Cytotoxicity Assay and Cellular Uptake. The NIR
fluorescence property of FPI NPs and Fe;O, NPs were
analyzed. As shown in Figure 4A, the FPI NPs (right) showed
the fluorescence intensity with the CLSM to confirm the NIR
fluorescence property. In contrast, there was no fluorescence in
Fe;0, NPs (left). To verify the cytotoxicity of FPI NPs, the
viability of HeLa cells incubated with samples was studied
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Figure 5. CLSM images of the samples (40 pg/mL) in HeLa cells treated with different conditions (DMEM, Fe;0,, FPI, Fe;0, and laser, and FPI
and laser) (scale bar = 500 pm).
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Figure 6. Under 793 nm NIR light irradiation (A) infrared thermal images of the mice treated with PBS and FPI NPs. (B) Temperature change
curve of the subcutaneous injection site. (C) NIR fluorescence images of mice through the subcutaneous injection with PBS and FPI NPs at 2 h.
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using the CCK-8 method without laser irradiation. With the
increased sample concentrations, cell viability showed a
significant downward trend (Figure 4B). The cell viability of
the Fe;O, and FPI NPs groups were 85.7 and 94.5% at a
concentration of 40 ug/mL, respectively. Even at 100 pg/mL,
the cell viability of the FPI NPs group could still reach 86.1%.
The viability of HeLa cells incubated with samples was further
studied. The flow cytometric analysis was performed to verify
the cytotoxicity of samples, as shown in Figure 4D. Therefore,
the results showed that FPI NPs had low cytotoxicity and the
dark toxicity of FPI NPs to HeLa cells is lower than that of
Fe;O0, NPs. As shown in Figure 4C, only laser irradiation did
not reduce the cell viability, indicating that the laser alone
would not damage HeLa cells. After 10 min of laser irradiation
at 0.33 W/cm?, the cell viability significantly decreased with
the increase in concentration, and the cell viability of the FPI
NPs group decreased more obviously than the Fe;O, NPs
group. When the concentration of FPI NPs reached 100 ug/
mL, the cell viability decreased to 38.9%. The results showed
that FPI NPs have strong phototoxicity to HeLa cells.

In Vitro Evaluation of the PTT Effect. To determine the
ability of FPI NPs to pass through the cell membrane and be
taken up by cells, HeLa cell uptake in vitro was observed with
CLSM. The nuclei of HeLa cells were stained with Hoechst
33342, which showed fluorescence in the blue channel (control
group), while FPI NPs showed fluorescence in the red channel
(Aem = 800—1000 nm, A, = 640 nm) for the existing ICG. The
results are shown in Figures 5 and S4 under a range of different
experimental conditions (control, Hela cells treated with
DMEM, Fe;O,, FPI, Fe;O, and laser, and FPI and laser.
Notably, FPI NPs were taken up by the cells and distributed in
the cytoplasm with emission in the red channel. In contrast,
the Fe;O, did not produce emission in the red channel, but its
ability to enter cells was demonstrated by bright-field photos
(Figure 4E. It has been demonstrated that FPI NPs can enter
HelLa cells, achieve localization, and label HeLa cells (Figure
4F). Additionally, the result reflected that FPI NPs could be
used for NIR fluorescence imaging-guided PTT treatment.
Furthermore, a large amount of fluorescence was detected in
the green channel in HeLa cells when treated with both laser
and FPI, in which the therapeutic efficiency of the FPI on cells
reached 81.81%. In Figure S, the data showed that laser
treatment promotes the cellular uptake of NPs.*”** Above all,
the results indicated the effectiveness of FPI in treating cancer
cells.

In Vivo PTT Effect and Fluorescence Property. Under
793 nm NIR light irradiation, the infrared thermal images of
mice were reflected in vivo PTT effects of FPI NPs. Under 793
nm NIR light irradiation, the mice were irradiated for 10 min.
Compared with control group 1, the temperature of the
subcutaneous injection site increased from 36.7 to 52.7 °C for
group 2, which was subcutaneously injected with FPI NPs
(Figure 6A,B). Its final temperature exceeded the temperature
required for thermal apoptosis of tumor cells (42 °C),*” which
verified the excellent cancer ablation efficiency of FPI NPs. In
vivo NIR fluorescence images at 2 h were performed to analyze
the fluorescence property of the sample. As for the control
group, there was no fluorescence intensity in mice (Figure 6C).
The fluorescence intensity of FPI NPs was displayed, and the
results showed that FPI NPs had good fluorescence property.
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B CONCLUSIONS

The FPI NPs were formed by NIR excitable ICG via
encapsulation of polydopamine (PDA) based on magnetic
Fe;0,. The FPI nanoplatform showed good chemical stability
in the aqueous solution. The FPI NPs displayed improved
photothermal performance compared to the three components
(Fe;0,4 PDA, and ICG) in the spherical structure. With a safe
power density (0.33 W/cm?®) of 793 nm laser irradiation, FPI
NPs could generate hyperthermia of 54.1 °C for an irradiation
time of 10 min. During this period, FPI NPs are sufficiently
stable. Additionally, the in vitro photothermal conversion
efficiency was measured to be 35.21%. Furthermore, the
cytotoxicity test treated with FPI NPs on HeLa cells had a
survival rate larger than 90%, confirming low cytotoxicity. With
laser irradiation, the therapeutic efficiency of the FPI on cells
reached 81.81%. Therefore, the FPI NPs with highly effective
therapeutic effects have proven to provide a powerful tool for
cancer therapy.
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