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Detecting the causality influence of 
individual meteorological factors 
on local PM2.5 concentration in the 
Jing-Jin-Ji region
Ziyue Chen1,2,*, Jun Cai3,*, Bingbo Gao4, Bing Xu1,3, Shuang Dai3, Bin He1 & Xiaoming Xie4

Due to complicated interactions in the atmospheric environment, quantifying the influence of 
individual meteorological factors on local PM2.5 concentration remains challenging. The Beijing-Tianjin-
Hebei (short for Jing-Jin-Ji) region is infamous for its serious air pollution. To improve regional air quality, 
characteristics and meteorological driving forces for PM2.5 concentration should be better understood. 
This research examined seasonal variations of PM2.5 concentration within the Jing-Jin-Ji region and 
extracted meteorological factors strongly correlated with local PM2.5 concentration. Following this, a 
convergent cross mapping (CCM) method was employed to quantify the causality influence of individual 
meteorological factors on PM2.5 concentration. The results proved that the CCM method was more 
likely to detect mirage correlations and reveal quantitative influences of individual meteorological 
factors on PM2.5 concentration. For the Jing-Jin-Ji region, the higher PM2.5 concentration, the stronger 
influences meteorological factors exert on PM2.5 concentration. Furthermore, this research suggests 
that individual meteorological factors can influence local PM2.5 concentration indirectly by interacting 
with other meteorological factors. Due to the significant influence of local meteorology on PM2.5 
concentration, more emphasis should be given on employing meteorological means for improving local 
air quality.

Recent studies1–5 proved that airborne pollutants, PM2.5 in particular, were closely related to all-cause and 
specific-cause mortality. In this case, increasing efforts have been made on regular monitoring of air quality. 
Furthermore, general public and local governments in China are placing growing emphasis on a better under-
standing of airborne pollutants. Since the outbreak of frequent smog events in China since 2012, massive studies 
have been conducted recently to analyze sources6–9, characteristics7,10–16 and seasonal variations17–24 of PM2.5 in 
China. To map spatial variations of PM2.5 concentration across large areas, some researchers25,26 employed differ-
ent remote sensing sources and spatial data analysis methods.

Among these studies, a large body of research has been conducted to examine the correlations between mete-
orological factors and airborne pollutants. Blanchard et al.27 indicated a near-linear correlation between ozone 
concentration and temperature and relative humidity, as well as some non-linear correlations between ozone and 
other meteorological factors. Juneng et al.28 suggested that local meteorological factors, especially local temper-
ature, humidity and wind speed, dominated the fluctuation of PM10 over the Klang Valley during the summer 
monsoon. Pearce et al.29 quantified the influence of local meteorology on air quality and the result indicated that 
the meteorology at the local-scale, was a relatively strong driver for the air quality in Melbourne. This research 
found that local temperature led to strongest responses from different airborne pollutants, whilst other meteoro-
logical factors mainly affected one or more pollutant types. Galindo et al.30 found that fractions of three different 
sizes were negatively correlated with winter wind speed, whilst the temperature and solar radiation had strong 
influences on coarse fractions. El-Metwally and Alfaro31 pointed out that the wind speed was related to both 
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the dilution and the composition of airborne pollutants. Grundstrom et al.32 proved that low wind speeds and 
positive vertical temperature gradients were high risk factors for elevated NOx and particle number concentra-
tions (PNC). Zhang et al.14 assessed the relationship between meteorological factors and critical air pollutants in 
Beijing, Shanghai and Guangzhou, and confirmed that the role of meteorological factors in airborne pollutant 
formation varied significantly across different seasons and geological locations.

However, the analysis of the sensitivity of airborne pollutants to individual meteorological parameters remains 
particularly difficult29, as different meteorological parameters are inherently linked and may affect airborne pol-
lutants through both direct and indirect mechanisms. In this case, Pearce et al.29 suggested that multiple models 
and methods should be comprehensively considered to quantify the role of meteorological factors in affecting 
local air pollution.

The Beijing-Tianjin-Hebei (or referred to as Jing-Jin-Ji) region, located in the north of North China Plain, is 
one of the most influential regions in China. The Jing-Jin-Ji region consists of a series of cities, including Beijing, 
Tianjin, Baoding, Langfang, Tangshan, Zhangjiakou, Chengde, Qinhuangdao, Cangzhou, Hengshui, Xingtai, 
Handan (Due to lack of consistent meteorological data, this city is not included in this research) and Shijiazhuang. 
Geographical locations of these cities are demonstrated in Fig. 1.

Chan and Yao33 pointed out that the Jing-Jin-Ji region experienced most serious airborne pollution in China, 
which was further proved by frequent regional smog events since 2012. To better forecast and enhance local air 
quality within the Jing-Jin-Ji region, it is necessary to gain a better understanding of the characteristics of PM2.5 
concentration and the meteorological influences on PM2.5 concentration. To this end, characteristics and seasonal 
variations of PM2.5 concentration in this region are analyzed. Next, correlations between a set of individual mete-
orological factors and PM2.5 concentration are examined, and those meteorological factors strongly correlated 
with PM2.5 concentration are extracted for each city. Following the correlation analysis, a convergent cross map-
ping (CCM) method is employed to quantify the causality influence of these extracted individual meteorologi-
cal factors on PM2.5 concentration. Hence, the performance of correlation and causality analysis in complicated 
atmospheric environment can be comprehensively compared. Based on these analysis, this research aims to not 
only quantify the meteorological influences on PM2.5 concentration within the Jing-Jin-Ji region, but also provides 
useful reference for mitigating air pollution in other areas.

Results
Characteristics and variations of PM2.5 concentration within the Jing-Jin-Ji region. For the study 
period between Jan 8th, 2014 and Dec 31st, 2014, daily PM2.5 concentration for main cities in the Jing-Jin-Ji region 
was analyzed respectively. Previous studies14,21,34 proved that air quality in China was of notable seasonal vari-
ations. In this study, PM2.5 concentration is also analyzed for each season respectively. In the Jing-Jin-Ji region, 
central heating is provided for cities during Nov 15th to March 15th. Thus this period is commonly categorized as 
winter for this region. According to the characteristics of high temperature, the period from June 1st to August 
31st is defined as the summer. Accordingly, spring is defined as the period from March 16th to May 31st whilst 
autumn is defined as the period between September 1st and Nov 14th. The criteria for categorizing four seasons are 
consistent with a common phenomenon in Beijing, which is described by old sayings as “The spring and autumn 
in Beijing hardly last long”. General characteristics of PM2.5 concentration for different cities are demonstrated as 
Table 1 and Fig. 2.

As shown in Table 1 and Fig. 2, it is noted that general PM2.5 concentration in the Jing-Jin-Ji region is much 
higher than Global Guidelines set by the World Health Organization (WHO) (24-hour mean: 25 μ g/m3). As 
concluded by previous studies21,22, PM2.5 concentration for Beijing is the highest in winter. This phenomenon 
also applies to other cities in the Jing-Jin-Ji region. The notably deteriorated air quality in winter may mainly 
attribute to the fact that central heating by burning coal materials, is supplied widely for the Jing-Jin-Ji region and 
thus leads to extra emission of airborne pollutants. According to PM2.5 concentration, the Jing-Jin-Ji region can 

Figure 1. Geographical locations of cities in the Jing-Jin-Ji region. Handan is not included into our analysis 
due to lack of consistent meteorological data. The maps were drawn by the software of ArcGIS version 10.2, 
http://www.esri.com/software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
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be divided into three sub-regions; slightly polluted region: Zhangjiakou, Chengde, Qinghuangdao; moderately 
polluted region: Beijing, Langfang, Tangshan, Tianjin, Cangzhou; heavily polluted region: Baoding, Hengshui, 
Xingtai, Shijiazhuang.

Meteorological factors correlated with PM2.5 concentration. Based on a case study in Beijing, 
Shanghai and Guangzhou, Zhang et al.14 suggested that relative humidity, temperature, wind speed and wind 
directions were main meteorological factors correlated with the concentration of airborne pollutants. In addition, 
some other scholars29–35 pointed out that radiation, evaporation, precipitation and air pressure also influenced 
PM2.5 concentration. Therefore, to comprehensively understand meteorological driving forces for PM2.5 concen-
tration in the Jing-Jin-Ji region, a set of factors was selected as follows: evaporation, temperature, wind, precipita-
tion, radiation, humidity, and air pressure. To better analyze the role of these meteorological factors in affecting 
local PM2.5 concentration, these factors are further categorized into sub-factors: evaporation (small evaporation 
and large evaporation, short for smallEVP and largeEVP), temperature (daily max temperature, mean tempera-
ture and min temperature, short for maxTEM, meanTEM and minTEM), precipitation (total precipitation from 
8am–20pm and total precipitation from 20pm–8am, short for PRE8-20, PRE20-8), air pressure (daily max pres-
sure, mean pressure and min pressure, short for maxPRS, meanPRS and minPRS), humidity (daily mean and 
min relative humidity, short for meanRHU and minRHU), solar radiation (daily sunshine duration, short for 
SSD) and wind (daily mean wind speed, max wind speed, extreme wind speed and max wind direction, short 
for meanWIN, maxWIN, extWIN and dir_maxWIN). As there are one or more observation stations for each 
city, the daily value for meteorological factors for each city was acquired by averaging the value from all available 
observation stations.

Through correlation analysis, meteorological factors strongly correlated with PM2.5 concentration were 
extracted for each city (Table 2). According to Table 2, meteorological factors strongly correlated with PM2.5 
concentration were of notable characteristics in different seasons. PM2.5 concentration was the highest in winter 
and there were more influential meteorological factors on PM2.5 concentration in winter. Additionally, there was 
no meteorological factor strongly correlated with PM2.5 concentration for all cities or all seasons. In this case, it is 
more meaningful to analyze correlations between meteorological factors and PM2.5 concentration on a seasonal 
basis rather than an annual basis.

Due to complicated interactions between different meteorological factors in the atmospheric environment, 
correlation analysis may extract mirage correlations. Additionally, the value of correlation coefficients cannot 
directly reflect the quantitative influence of individual meteorological factors on PM2.5 concentration. However, 
correlated meteorological factors provide important reference for the following causality analysis. Although the 
correlation between two variables does not guarantee their causality, two coupled variables (except for some weak 
coupling) are usually correlated. Therefore, meteorological factors correlated with PM2.5 concentration are further 
selected for the causality analysis.

The causality influence of individual meteorological factors on local PM2.5 concentration. By 
analyzing two time-series variables using the CCM method, researchers can understand their coupling accord-
ing to an output convergent map. If the interaction between two variables is featured using generally convergent 
curves with increasing time series length, then the causality is detected. On the other hand, if the interaction 
between the two variables is featured as curves without any general trend, then no causality exists between the 
two variables. The value of predictive skills (denoted by ρ value), ranging from 0 to 1, presents the strength of 
influences from one variable on another variable. The CCM method is highly automatic and detailed parameter 
setting for this model is explained in the method section.

The quantitative coupling between PM2.5 concentration and individual meteorological factors is explained 
using convergent cross maps. Thus, there should be a convergent cross map for each variable in Table 2. It is not 
feasible to present more than 100 convergent maps here to explain the causality between PM2.5 concentration and 

Spring Summer Autumn Winter Overall

Mean SD Mean SD Mean SD Mean SD Mean SD

Beijing 82.95 55.69 69.70 47.33 83.92 73.05 100.15 87.14 85.23 69.83

Tianjin 88.14 41.38 64.08 25.60 77.03 50.75 111.19 75.88 86.97 56.84

Shijiazhuang 101.37 51.71 83.70 44.64 98.62 79.31 180.72 123.01 121.52 94.10

Baoding 89.47 46.34 73.84 35.72 113.39 80.96 194.94 122.30 128.81 99.61

Tangshan 97.56 51.63 77.78 36.04 83.68 55.79 129.56 86.09 99.72 65.81

Qinghuangdao 55.14 34.39 39.17 21.31 53.16 41.68 80.92 56.35 59.94 45.43

Chengde 44.92 29.24 44.15 30.51 52.82 45.17 67.36 55.38 53.52 43.73

Zhangjiakou 26.83 14.03 20.81 10.73 22.27 13.33 58.33 63.38 34.36 40.66

Xingtai 109.70 50.32 78.60 37.61 115.82 91.13 193.11 117.19 129.55 95.14

Hengshui 85.89 41.31 73.03 27.96 98.03 53.74 147.81 86.94 107.86 68.84

Langfang 86.45 50.76 65.81 35.18 92.35 72.45 114.15 111.42 90.40 81.51

Cangzhou 80.00 38.62 58.16 24.88 76.29 48.61 117.87 69.41 88.28 56.51

Table 1.  Seasonal and overall mean daily PM2.5 concentration for different cites in the Jing-Jin-Ji region 
(μg/m3).
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Figure 2. Seasonal and overall mean daily PM2.5 concentration for different cities in the Jing-Jin-Ji region. 
The maps were drawn by the software of ArcGIS version 10.2, http://www.esri.com/software/arcgis/arcgis-for-
desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
http://www.esri.com/software/arcgis/arcgis-for-desktop
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each meteorological factor respectively. Hence several convergent cross maps (Fig. 3) are displayed to demon-
strate how CCM method works. For the rest causalities, Table 2 is presented to explain the quantitative influ-
ence of each meteorological factor on PM2.5 concentration (ρ value). It is worth mentioning that ρ value can be 
extracted through the CCM tool directly, instead of the visual interpretation of the convergent cross map. If ρ 
is convergent to a certain value (in other words, Δ ρ is approaching to 0) with increasing time series, then the 
causality is detected and the ultimate ρ value for the coupling is set as the convergent constant. The ρ extraction 
approach based on computation allows the application of the CCM method to a national or global scale, where a 
diversity of interactions between variables should be examined.

As Fig. 3 demonstrates, the coupling between meteorological factors and PM2.5 concentration can be bidi-
rectional. On one hand, some meteorological factors have important influences on PM2.5 concentration. On the 
other hand, PM2.5 concentration has significant feedback effects on these meteorological factors. Therefore, the 
meteorological factor can continuously influence local PM2.5 concentration through even more complicated pro-
cesses. For instance, local meanRHU has a strong influence (ρ =  0.738) on Beijing PM2.5 concentration in winter 
whilst local PM2.5 concentration has a strong feedback effect (ρ =  0.786) on meanRHU. Unlike GC analysis, the 
CCM method does not indicate the positive or negative causality between two variables directly. However, taking 
the correlation analysis into account, it is known that meanRHU has a positive influence on PM2.5 concentration 
whilst PM2.5 concentration has a positive feedback on meanRHU. In this case, high meanRHU in Beijing is more 
likely to cause high PM2.5 concentration, which results in even higher meanRHU. In turn, higher meanRHU can 
further increase local PM2.5 concentration. By analogy, the process how other meteorological factors influence 
local PM2.5 concentration can be understood as well.

Table 2 suggests that the causality influence of individual meteorological factors on PM2.5 concentration is 
better revealed using the CCM method than the correlation analysis. By comparing the correlation coefficient and  
ρ value in Table 2, one can see that some correlations between meteorological factors and PM2.5 concentra-
tion may result from mirage correlations (e.g. the correlation between meanRHU and PM2.5 concentration in 
Hengshui in summer). Secondly, CCM analysis reveals weak or moderate coupling (e.g. the interactions between 

City Spring Summer Autumn Winter

Beijing meanRHU** (0.532, 0.490)
minRHU** (0.648, 0.546), 

SSD** (− 0.447, 0.324), 
minTEM** (0.554, 0.455),

meanRHU** (0.587, 0.555), 
SSD** (− 0.509, 0.410), 

maxWIN** (− 0.468, 0.223),
smallEVP** (− 0.494, 0.287), meanRHU** (0.738, 0.738), 

SSD** (− 0.715, 0.577), maxWIN** (− 0.558, 0.531)

Tianjin
smallEVP** (− 0.494, 0.428), 
meanRHU** (0.448, 0.226), 
extWIN** (− 0.498, 0.349)

minTEM* (0.383, 0.118) meanRHU** (0.442, 0.370) smallEVP** (− 0.478, 0.371), meanRHU** (0.554, 0.599), 
SSD** (− 0.559, 0.493), maxWIN** (− 0.485, 0.520)

Shijiazhuang meanRHU** (0.575, 0.502), 
meanWIN* (− 0.398, 0.322)

minRHU** (0.448, 0.359), 
SSD** (− 0.516, 0.387)

meanRHU* (0.428, 0.225), 
extWIN** (− 0.476, 0.293), 

SSD** (− 0.477, 0.304)
smallEVP** (− 0.414, 0.347), meanRHU** (0.494, 0.509), 

SSD** (− 0.494, 0.565)

Baoding smallEVP** (− 0.454, 0.404), 
meanRHU** (0.496, 0.437) minTEM** (0.523, 0.291) minRHU* (0.415, 0.166), 

SSD* (− 0.429, 0.221),
smallEVP** (− 0.519, 0.299), meanRHU** (0.592, 0.597), 

SSD** (− 0.592, 0.511), extWIN** (− 0.498, 0.432)

Tangshan
smallEVP** (− 0.473, 0.436), 
meanRHU** (0.500, 0.330), 
maxWIN* (− 0.410, 0.46)

minTEM** (0.425, 0.257) meanRHU* (0.408, 0.509) smallEVP** (− 0.435, 0.297), extWIN** (− 0.562, 0.488)

Qinghuangdao smallEVP** (− 0.510, 0.440) meanTEM* (0.365, 0.132) SSD** (− 0.441, 0.312)
smallEVP** (− 0.431, 0.330), meanRHU** (0.593, 0.560), 

SSD** (− 0.575, 0.423), maxTEM** (0.410, 0.217), 
extWIN** (− 0.402, 0.362)

Chengde minRHU** (0.480, 0.317), 
minTEM** (0.686, 0.640) SSD** (− 0.447, 0.216)

smallEVP** (− 0.407, 0.214), meanRHU** (0.696, 0.530), 
SSD** (− 0.596, 0.51), extWIN** (− 0.422, 0.369), dir_

maxWIN** (− 0.379, 0.333), minTEM** (− 0.412, 0.244)

Zhangjiakou SSD** (− 0.488, 0.325)
meanRHU** (0.510, 0.354), 

SSD** (− 0.334, 0.08), 
minTEM** (0.424, 0.386)

minRHU* (0.431, 0.350)
SSD** (− 0.468, 0.497), meanRHU** (0.565, 0.455), 

minTEM* (0.352, 0.306), extWIN** (− 0.423, 0.508), 
dir_maxWIN* (− 0.362, 0.441)

Xingtai meanRHU** (0.483, 0.377) maxPRS* (− 0.372, 0.282), 
dir_extWIN** (0.401, 0.166) SSD* (− 0.409, 0.302) meanRHU** (0.554, 0.455), SSD** (− 0.553, 0.410)

Hengshui
smallEVP** (− 0.478, 0.550), 
meanRHU** (0.514, 0.580), 

meanWIN** (− 0.494, 0.480)
meanRHU* (0.444, 0) meanRHU* (0.470, 0.234) smallEVP** (− 0.437, 0.237), minRHU** (0.518, 0.333), 

SSD** (− 0.697, 0.343), extWIN** (− 0.560, 0.288)

Langfang meanRHU* (0.409, 0.387), 
extWIN* (− 0.407, 0.558) minTEM** (0.484, 0.289)

meanRHU** (0.470, 0.394), 
SSD** (− 0.458, 0.273), 

extWIN** (− 0.498, 0.361)
smallEVP** (− 0.515, 0.301), meanRHU** (0.659, 0.606), 

SSD** (− 0.697, 0.593), extWIN** (− 0.560, 0.527)

Cangzhou meanRHU** (0.579, 0.414), 
meanWIN** (− 0.467, 0.457) SSD (NA, 0.246) meanRHU (NA, 0.081) meanRHU** (0.492, 0.432), minRHU** (0.535, 0.414), 

SSD** (− 0.582, 0.51)

Table 2.  Seasonal correlations and causality between individual meteorological factors and PM2.5 
concentration for different cities. **Correlation is significant at the 0.01 level (2 tailed); *Correlation is 
significant at the 0.05 level (2 tailed). The first value in the brackets presents the correlation coefficient between 
the meteorological factor and PM2.5 concentration. The second value presents the quantitative influence of 
individual meteorological factors on local PM2.5 concentration (ρ value), whilst the feedback effects of PM2.5 
on these meteorological factors are not listed here. For each cell in Table 2, only strongly correlated factors are 
listed. If there are several strongly correlated variables (e.g. meanWIN and maxWIN), which belong to the same 
meteorological category, then only the one with the largest correlation coefficient is listed. NA indicates that no 
significant correlation exists between the meteorological factor and PM2.5 concentration.
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SSD and PM2.5 concentration in Cangzhou in summer) whilst correlation analysis cannot. Additionally, due to 
interactions between different meteorological factors, the value of correlation coefficients cannot interpret the 
quantitative influence of individual meteorological factors on PM2.5 concentration. Instead, the ρ value from 
CCM method is designed to understand the coupling between two variables by excluding influences from other 
factors. Through comparison, the value of the correlation coefficient for some meteorological factors is notably 
different from the ρ value for these meteorological factors. A large correlation coefficient for one meteorological  
factor may correspond to a much smaller ρ value from the CCM analysis (e.g. the correlation and causality 
between smallEVP and PM2.5 concentration in Beijing in winter).

Although some limitations exist, correlation analysis provides valuable reference for understanding the rela-
tionship between PM2.5 concentration and meteorological factors. Firstly, the CCM method cannot directly indi-
cate positive or negative causality between two variables. In this case, the correlation coefficient (with “+ ” or “− ”) 
provides researchers with a possible way to understand the causality direction. Secondly, even if the correlation 
coefficient is not an indicator of quantitative causality, it can be employed as a qualitative indicator for under-
standing the interactions between PM2.5 concentration and meteorological factors. Based on Table 2, it is noted 
that except for very few mirage correlations, meteorological factors strongly correlated with PM2.5 concentration, 
also have a causality influence on PM2.5 concentration. If the research objective is to simply extract meteorologi-
cal factors that influence PM2.5 concentration and the analysis of quantitative influences is not required, then the 
correlation analysis can be an alternative approach (with a small possibility of mirage correlations) for analyzing 
the qualitative relationship between PM2.5 concentration and individual meteorological factors.

Figure 3. Some illustrative CCM results to demonstrate the causality between meteorological factors and 
PM2.5 concentration in Beijing. ρ: predictive skills. L: the length of time series. A xmap B stands for convergent 
cross mapping B from A, in other words, the causality influence of variable B on A. For instance, PM2.5 xmap 
meanRHU stands for the causality influence of meanRHU on PM2.5 concentration. ρ indicates the predictive 
skills of using meanRHU to retrieve PM2.5 concentration.
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To properly demonstrate the influence of different meteorological factors on local PM2.5 concentration, a wind 
rose was produced for each city through R programming. Firstly, a histogram featuring ρ value of each meteoro-
logical factor was produced. Next, according to the maximum of ρ value of each meteorological factor, the range 
of y axis was decided. Finally, a wind rose was made by transforming the histogram into polar-formed graph. 
Thus, seasonal wind rose maps that feature the causality influence (ρ value) of individual meteorological factors 
on PM2.5 concentration in the Jing-Jin-Ji region are shown as Fig. 4.

Compared with Table 2, Fig. 4 presents seasonal influences of individual meteorological factors on local PM2.5 
concentration using easily understandable maps. According to these wind rose maps, some notable characteris-
tics can be found:

a PM2.5 concentration in winter is notably higher than that in other seasons. Accordingly, the number of mete-
orological factors that influence PM2.5 concentration in winter is more than that in other seasons. Further-
more, the quantitative influence (ρ value) of meteorological factors on PM2.5 concentration in winter is much 
stronger than that in other seasons. On the other hand, PM2.5 concentration in summer is the lowest and there 
are fewer meteorological factors that influence PM2.5 concentration than in other seasons. The meteorological 
influences on PM2.5 concentration in summer are also smaller than other seasons. This phenomenon is con-
sistent with strong coupling between PM2.5 concentration and meteorological factors, as explained above. The 
higher PM2.5 concentration, the stronger influences it exerts on meteorological factors. In turn, corresponding  
meteorological factors can have a stronger feedback effect on PM2.5 concentration.

b There is no meteorological factor that consistently influences PM2.5 concentration across seasons. In summer, 
the PM2.5 concentration is the lowest and there are very limited meteorological factors that influence PM2.5 
concentration notably. The meteorological factor, temperature (especially minTEM), which has little influ-
ence on PM2.5 concentration in other seasons, plays a dominant role in influencing PM2.5 concentration in 
summer. In winter, PM2.5 concentration is the highest and there are many meteorological factors that signif-
icantly influence PM2.5 concentration. It is difficult to extract one dominant influential meteorological factor 
for PM2.5 concentration, as Humidity, SSD and Wind work together to exert significant influences on PM2.5 
concentration in winter.

c The correlation between some meteorological factors (temperature, wind and humidity) and air quality in big 
cities in China has been well discussed by previous studies14. However, the role of radiation is not considered 
fully. As shown in Fig. 4, SSD exerts notable influences on PM2.5 concentration in all seasons, especially in 
winter. As a result, more emphasis should be given on understanding the role of radiation in influencing local 
PM2.5 concentration.

Discussion
Although the CCM method proved the causality between PM2.5 concentration and individual meteorological 
factors, it did not explain why these variables were interacted. To better understand meteorological influences on 
PM2.5 concentration and its feedback effects, we attempt to explain the mechanisms of some typical bidirectional 
coupling.

Wind, humidity and SSD are the most influential meteorological factors for PM2.5 concentration in winter. 
Herein, we take the three factors as example to briefly explain underlying interactions between meteorological 
factors and PM2.5 concentration.

Negative bidirectional coupling between wind and PM2.5 concentration. On one hand, winds, 
especially strong winds blow airborne pollutants away and reduce PM2.5 concentration effectively. On the other 
hand, high PM2.5 concentration, especially a quickly rising PM2.5 concentration brings the atmospheric envi-
ronment to a comparatively stable status, which prevents the form of winds and reduces the wind speed in 
smog-covered areas.

Positive bidirectional coupling between humidity and PM2.5 concentration. higher humidity 
causes more vapors attached to the Particulate Matter (PM) and significantly increases the size and mass con-
centration of PM, namely the hygroscopic increase and accumulation of PM2.5

36. On the other hand, the larger 
mass and higher concentration makes it difficult for PM2.5 to disperse and leads to a stable polluted atmospheric 
environment, which is not favorable for the vapor evaporation and further increases the environmental humidity.

Negative bidirectional coupling between SSD and PM2.5 concentration. Previous studies7,9 have 
proved that organic carbon (OC) is an important component for PM2.5, and atmospheric photolysis could occur 
on OC to reduce PM2.5 concentration. Therefore, longer SSD has a negative influence on PM2.5 concentration. On 
the other hand, SSD is a general indicator of cloudiness (https://en.wikipedia.org/wiki/Sunshine_duration). The 
more cloud, the less SSD is recorded by the ground observation station. By analogy, serious smog (thick black fog) 
caused by high PM2.5 concentration notably blocked radiation emitted to the ground and thus the PM2.5 concen-
tration has a negative feedback effect on the SSD.

High PM2.5 concentration in the Jing-Jin-Ji region makes the improvement of air quality a top priority for cen-
tral and local governments. Taking Beijing for instance, we explain why and how to employ meteorological means 
for improving air quality. A series of traffic and industrial restriction regulations has been proposed in recent 
years and the air quality in Beijing has been improved significantly. However, PM2.5 concentration in Beijing 
remains much higher than standard recommended by the WHO. In this case, as well as economic and admin-
istrative means, growing emphasis should be given on improving air quality through meteorological means. 

https://en.wikipedia.org/wiki/Sunshine_duration
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Meanwhile, some scholars suggested that meteorological factors were external driving forces whilst the exhaust 
of traffic and industry pollutants was the fundamental reason for high PM2.5 concentration. Therefore, adjusting 
meteorological factors was not the essential and most effective approach for mitigating local PM2.5 concentration.

Although these arguments all make sense, based on findings of our previous work22 and this research, enhanc-
ing air quality through meteorological means can be highly effective. Chen, Z. et al.22 found that air quality in 
Beijing experienced frequent sudden changes throughout a year. During Jan 8th, 2014 to Jan 7th, 2015, there 
were more than 180 days that experienced notable air quality change (air quality index difference, Δ AQI ≥  50). 
Considering that the amount of traffic and industry induced exhaust is unlikely to change significantly on a 
daily basis, meteorological influences on daily PM2.5 concentration are crucial. This research further supports 
this hypothesis. The smog weather, resulting from high PM2.5 concentration, occurs most frequently in winter. 
Meanwhile, according to Table 2 and Fig. 4, the coupling between meteorological factors and PM2.5 concentration 
is the strongest in winter.

In addition to influence PM2.5 concentration directly, individual meteorological factors can indirectly influ-
ence PM2.5 concentration by interacting with other meteorological factors. Taking the wind factor for instance. 
in winter, three meteorological factors, humidity, wind and radiation (SSD) all strongly influence PM2.5 concen-
tration in Beijing. As well as the direct influence (ρ >  0.5), the wind factor influences local PM2.5 concentration 

Figure 4. Seasonal influences of individual meteorological factors on PM2.5 concentration for different 
cities within Jing-Jin-Ji region. The size of the wind rose petal in the legend is decided by the maximum 
ρ value, 1.0. And the size of the wind rose petal on the map represents the actual ρ value of the specific 
meteorological influences on local PM2.5 concentration. The maps were drawn by the software of ArcGIS 
version 10.2, http://www.esri.com/software/arcgis/arcgis-for-desktop.

http://www.esri.com/software/arcgis/arcgis-for-desktop
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through some indirect mechanisms. Through correlation and causality analysis, quantitative interactions between 
wind and other factors in winter were summarized as follows:

a The correlation coeffienct between maxWIN and SSD was 0.508** and the quantitative influence of maxWIN 
on SSD (ρ value) was 0.362. So wind factor has a strong positive influence on SSD. (The mechanism for the 
positive influence of wind on SSD may not be evident, so a brief explanation is given here. As introduced 
above, SSD is the general indicator of cloudiness. The fewer clouds, the higher SSD is. Since the wind, espe-
cially strong wind, effectively disperses clouds, it notably increases SSD for the region as well).

b The correlation coeffienct between maxWIN and meanRHU was − 0.639** and the quantitative influence of 
maxWIN on meanRHU (ρ value) was 0.576. So the wind factor has a strong negative influence on RHU.

c The correlation coeffienct between maxWIN and smallEVP was 0.633** and the quantitative influence of 
maxWIN on smallEVP (ρ value) was 0.602. So the wind factor has a strong positive influence on EVP.

The changing wind factor leads to the change of HUM, SSD and EVP conditions, which further influence 
local PM2.5 concentrations accordingly. As shown in Table 2, the correlation coefficient between SSD and PM2.5 
concentration in winter was − 0.715**, and the quantitative influence of SSD on PM2.5 concentration was 0.577 
(ρ value), indicating the strong negative influence of SSD on PM2.5 concentration. By analogy, the correlation 
coefficient between meanRHU and PM2.5 concentration in winter was 0.759** and the quantitative influence of 
meanRHU on PM2.5 concentration was 0.738 (ρ value), indicating the strong positive influence of RHU on PM2.5 
concentration. The correlation coefficient between smallEVP and PM2.5 concentration in winter was − 0.494** 
and the quantitative influence of EVP on PM2.5 concentration was 0.287 (ρ value), indicating the comparatively 
strong negative influence of EVP on PM2.5 concentration.

According to the strong influences of wind factor on local PM2.5 concentration and strong interactions 
between wind factor and other meteorological factors, which also exert notable influences on PM2.5 concentra-
tion, the change of wind condition can be a promising meteorological mean for improving local air quality. By 
analogy, the change of SSD, RHU, EVP, Precipitation and other meteorological factors can also lead to significant 
change of local PM2.5 concentration.

In spite of the dominant role of energy conservation and emission reduction in improving local air quality, the 
significant influence of meteorological factors on PM2.5 concentration should be given enough emphasis. More 
research should be conducted to understand the complicated mechanism how different meteorological factors 
influence local PM2.5 concentration comprehensively. Meanwhile, researchers and decision makers should work 
together to design and employ feasible meteorological means, which may adjust local humidity, wind, precipita-
tion or so forth, for improving local and regional air quality.

Materials and Methods
Data sources. The data of PM2.5 concentration are acquired from the website PM25.in. This website col-
lects official PM2.5 data published by China National Environmental Monitoring Center (CNEMC) and provides 
hourly air quality information for all monitoring cities. Before Jan 1st, 2015, PM25.in publishes data of 190 moni-
toring cities. Since Jan 1st, 2015, the number of monitoring cities has increased to 367. By calling specific API pro-
vided by PM25.in, we have collected hourly PM2.5 data for these target cities since Jan 8th, 2014. The daily PM2.5 
concentration for each city was calculated by averaging hourly PM2.5 concentration measured at all available local 
observation stations. The meteorological data for each city are obtained from the China Meteorological Data 
Sharing Service System (http://data.cma.cn/)s. The meteorological data provided by this website are compiled 
through thousands of observation stations across China. The meteorological observations include precipitation, 
temperature, wind speed, humidity and so forth. For this research, we obtained meteorological data for each city 
from Jan 1st, 2014 to Dec 31st, 2014. Based on the available PM2.5 and meteorological data, the study period for this 
research was set from Jan 8th, 2014 to Dec 31st, 2014.

Methods
This research mainly aims to quantify the causality influence of individual meteorological factors on local PM2.5 
concentration in the Jing-Jin-Ji region. Firstly, Pearson correlations between a set of meteorological parameters 
and local PM2.5 concentration are examined. As introduced, interactions between different meteorological fac-
tors are complicated and it can be highly difficult to quantify the influence of individual meteorological factors 
on PM2.5 concentration through correlation analysis. Therefore, correlation analysis works to preliminarily filter 
some meteorological factors that are not correlated with PM2.5 concentration and provide information for the 
following comparison. Meteorological factors correlated with PM2.5 concentration do not necessarily influence 
local air quality. Instead, some correlations may result from the underlying relationship between these factors and 
one agent factor37. To quantify the causality influence of individual meteorological on PM2.5 concentration and 
examine the performance of correlation analysis in complicated atmospheric environment, a robust approach for 
quantitative causality analysis is required.

Sugihara et al.37 suggested that mirage correlations might not be detected using correlation analysis. To detect 
the causality in complex ecosystems, Sugihara et al.37 proposed a convergent cross mapping (CCM) method. 
Different from Granger causality (GC) analysis38 that can be problematic in systems with weak to moderate cou-
pling, the CCM algorithm is suitable for identifying causation in ecological time series. To examine the reliability 
of the CCM method under different situations, Sugihara et al.37 conducted a series of simple model experiments 
and field experiments, proving that the CCM approach effectively detects mirage correlation and reveals under-
ling causality.

http://data.cma.cn/
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Since there are underlying interactions between individual meteorological factors, individual meteorologi-
cal factors influence local PM2.5 concentration through complicated mechanisms. Furthermore, compared with 
Granger causality and forward-only dynamic time-warping (DTW), CCM method considers feedback relation-
ship and thus reveals bidirectional causality39. Since heavily concentrated PM2.5 may also have a feedback effect on 
local meteorology, the CCM method is highly suitable for detecting potential bidirectional interactions between 
PM2.5 concentration and meteorological factors.

In this research, only several parameters need to be set for running this algorithm: E (number of dimensions 
for the attractor reconstruction), τ (time lag) and b (number of nearest neighbors to use for prediction). The value 
of E can be 2 or 3. A larger value of E produces more accurate convergent maps. The variable b is determined by 
E (b =  E +  1). A small value of τ leads to a fine-resolution convergent map, yet requires much more processing 
time. Through a diversity of experiments, it was noted that the adjustment of these parameters simply affected 
some details of convergent maps whilst the general shape and information of curves remained unchanged. This 
indicates that the CCM method is not sensitive to manual setting of parameters and can extract reliable causality 
between different variables. In this research, to acquire optimal presentation effects of convergent cross maps, the 
value of τ was set as 2 days and the value of E was set 3.
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