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Skeletal muscle transcriptome in healthy aging
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Age-associated changes in gene expression in skeletal muscle of healthy individuals reflect

accumulation of damage and compensatory adaptations to preserve tissue integrity. To

characterize these changes, RNA was extracted and sequenced from muscle biopsies col-

lected from 53 healthy individuals (22–83 years old) of the GESTALT study of the National

Institute on Aging–NIH. Expression levels of 57,205 protein-coding and non-coding RNAs

were studied as a function of aging by linear and negative binomial regression models. From

both models, 1134 RNAs changed significantly with age. The most differentially abundant

mRNAs encoded proteins implicated in several age-related processes, including cellular

senescence, insulin signaling, and myogenesis. Specific mRNA isoforms that changed sig-

nificantly with age in skeletal muscle were enriched for proteins involved in oxidative

phosphorylation and adipogenesis. Our study establishes a detailed framework of the global

transcriptome and mRNA isoforms that govern muscle damage and homeostasis with age.
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As older populations continue to expand worldwide, there
is growing urgency to discern the underlying biological
mechanisms that drive the deleterious manifestations of

aging, including disease susceptibility and functional impair-
ments. The study of biomarkers associated with healthy aging in
the absence of overt disease may help uncover mechanisms of
biological aging, including the accumulation of damage and
intervening homeostatic mechanisms. A first step in this process
is to produce detailed catalogs of molecular parameters that
change systematically over the lifespan in a population of very
healthy individuals.

The Genetic and Epigenetic Signatures of Translational Aging
Laboratory Testing (GESTALT) study of the National Institute
on Aging–National Institutes of Health (NIH) was designed to
collect and analyze epigenetic, transcriptomic, and proteomic
biomarkers from multiple tissues (including the muscle) from
healthy individuals dispersed over a wide age range1. The specific
goal of the study reported here is to elucidate differences in the
transcriptomic network of the skeletal muscle as a function of age.
Earlier large-scale studies identified changes in gene expression
associated with skeletal muscle aging and acute exercise in well-
defined populations using microarrays2,3. Other studies have also
identified genomic and proteomic signatures associated with
skeletal muscle aging4–7. However, no previous study has col-
lected this information from very healthy individuals over a wide
age range enrolled according to strict clinical and functional
criteria.

To overcome some of these limitations, and to replicate and
complement information collected in previous studies, we per-
formed an RNA-sequencing (RNA-seq) analysis from skeletal
muscle biopsies gathered from 53 healthy individuals of ages
ranging from 22 to 83 years old. We used the data to compre-
hensively analyze changes in gene expression and isoforms that
occur with aging. Some of our results identify basic biological
mechanisms of aging, such as cellular senescence and insulin
signaling. Other results confirm previous findings in the litera-
ture, in some cases, for genes whose function in the muscle and
in aging is not well understood. Elucidation of the mechanisms
that drive changes in the expression of these genes with aging
and a stronger knowledge of their physiological functions are
critical for understanding both damage accumulation as well as
strategies of biological resilience with aging, which could serve as
targets for interventions. We postulate that imbalances in these
same mechanisms and compensatory strategies are likely to cause
debilitating pathologies of aging muscle, including frailty and
sarcopenia.

Results
Participant characteristics. Skeletal muscle biopsies were
obtained from 53 very healthy GESTALT participants (22–83
years, median= 52 years), who were defined as very healthy
based on strict inclusion criteria developed by the Clinical
Research Unit of the National Institute on Aging8 (see “Meth-
ods”). The majority of our cohort was Caucasian (n= 38) and
male (n= 33), and completed at least a high school education
(n= 30) (Supplementary Fig. 1a). In spite of the strict inclusion
criteria, there were significant (p < 0.05) differences in waist cir-
cumference (cm), fitness (VO2 max, ml/kg/min), fasting glucose
(mg/dL), 400 m walking time (s), and knee strength (Nm)
between younger (≤52 years) and older (>52 years) participants
(Supplementary Fig. 1a).

RNA (human Ensembl genes (ENSG)) and isoform (human
Ensembl transcripts (ENST)) detection. Prior to studying age-
related changes in the human skeletal muscle transcriptome, we

determined the average number of protein-coding and noncoding
RNAs (ENSGs) that were reliably detected using the Ensembl
hg19 v82 (September 2015) database. On average, 24,453 (ranging
from 16,203 to 36,119) RNAs were detected per sample in our
study population, among which 15,291 (ranging from 11,517 to
18,966) were protein-coding RNAs and 9162 (ranging from 4686
to 17,339) were noncoding and other types of RNAs (Supple-
mentary Fig. 1b). By “other types,” we mean the biotypes that are
not specifically mentioned as bona fide “protein-coding,” and
which cannot be categorized well. Similarly, on average, 66,633
(ranging from 42,928 to 110,124) mRNA isoforms were detected
per sample in our study population, among which 27,908 (ranging
from 20,954 to 40,371) were protein-coding isoforms and 38,075
(ranging from 21,768 to 69,753) were noncoding and other types
of isoforms (Supplementary Fig. 1c). Overall, roughly 85% of all
detected RNAs and 84% of all detected isoforms were identified in
the Ensembl hg19 v82 (September 2015) database, underscoring
the reliability of our data (Supplementary Fig. 1b, c). In this study,
we define ENSGs as genes/RNAs and ENSTs as transcripts/
isoforms.

Analysis of RNA (ENSG) expression profiles in GESTALT
participants. An overview of the sample preparation and analy-
tical approaches used in this study is provided (Fig. 1a). Linear
regression analysis identified 664 RNAs that were over-
represented (p < 0.01, positive β-values for age) and 57 RNAs that
were underrepresented (p < 0.01, negative β-values for age) in
older compared to younger individuals (Fig. 1b). Together, the
standard and zero-adjusted negative binomial models (see
“Methods”) identified 854 RNAs that were overrepresented and
65 RNAs that were underrepresented with older age (Fig. 1b). Of
note, the directionality of RNA age associations was highly con-
sistent between the two models. Overall, 506 RNAs were sig-
nificantly (p < 0.01) associated with age from both the linear and
negative binomial models; of these, 483 RNAs had higher
expression with older age and 23 RNAs had lower expression
with older age (Fig. 1c). Moreover, eight of the top ten RNAs with
the lowest p-values overlapped between the two models, under-
scoring the robustness of these findings. A heat map of the
expression levels of these 506 shared RNAs with age is shown
(Fig. 1d), with the 23 underrepresented RNAs clustered at the
bottom (blue to yellow rows with increasing age). Only a 37-year-
old donor and an 80-year-old donor did not cluster with the
study population. As the medical records of these participants did
not suggest any possible cause for exclusion and the overall trends
of expression level with age were conserved, all data for these
participants were maintained in our analysis.

Top RNAs (ENSGs) displaying differential gene expression in
the skeletal muscle with age. For in-depth analysis and valida-
tion, we focused on the top 20 RNAs most related to aging,
ranked by the lowest p-value, which included a few noncoding
RNAs, including pseudogene-encoded RNAs and antisense
RNAs. The names, biotypes (protein-coding or noncoding),
associated functions, and β-values for age identified by the linear
model are listed (Figs. 2a and 3a). Linear regression plots for the
top ten RNAs within these groups with positive and negative
β-values for age are shown in Figs. 2b and 3b, respectively.

Our analysis found age-associated transcripts that have never
been reported in the literature. Specifically, cyclin-dependent kinase
inhibitor 2B (CDKN2B) mRNA (cyclin-dependent kinase inhibitor
p15INK4b, which arrests the cell cycle by inhibiting cyclin-
dependent kinase (CDK) 4 activity and is implicated in cellular
senescence9) was the top age-related transcript, followed by IRS2
mRNA (insulin receptor substrate 2, involved in insulin signaling

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22168-2

2 NATURE COMMUNICATIONS |         (2021) 12:2014 | https://doi.org/10.1038/s41467-021-22168-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


and lipid metabolism in the skeletal muscle10,11), NR2F2 mRNA
(nuclear receptor subfamily 2 group F member 2, important for
myogenesis and skeletal muscle development12), and LPP mRNA
(LIM domain containing preferred translocation partner in lipoma,
implicated in smooth muscle differentiation13), all of which had
significantly (p < 0.01) higher expression in older age.

Our analysis also confirmed RNA (ENSG) expression patterns
with aging, previously identified in the literature, including
FAM83B (Family with Sequence Similarity 83 Member B, involved
in hypoxia response14), C12orf75 (chromosome 12 Open Reading
Frame 75, implicated in insulin signaling and energy metabolism15),
SKAP2 (Src Kinase-Associated Phosphoprotein 2, which regulates
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sarcomere function16), CRIM1 (Cysteine-Rich Transmembrane
Bone Morphogenetic Protein Regulator 1, implicated in smooth
muscle contractility17), CFAP61 (Cilia and Flagella-Associated
Protein 61, highly abundant in old skeletal muscle18), FEZ2
(Fasciculation and Elongation Protein Zeta 2, participating in
fasciculation and axonal elongation6), LGI1 (Leucine-Rich Glioma-
Inactivated 1, differentially expressed in frail compared to healthy
individuals18), and MYLK4 (Myosin Light Chain Kinase Family
Member 4, necessary for contraction, motility, and cell growth19–21)
mRNAs (Figs. 2a, b and 3a, b, and Supplementary Figs. 2a, b and
3a,b). These mRNAs were found to be associated with skeletal
muscle aging (including C12orf75 and LGI1 mRNAs) and with
exercise (including C12orf75 and CFAP61 mRNAs) in previous
studies performed in different populations, and using different
technologies6,9,22,23.

Linear regression plots for the RNAs (ENSGs) ranked 11–20
with positive and negative β-values for age (Supplementary
Fig. 4), the top 20 RNAs identified by the negative binomial
model with positive and negative β-values for age (Supplementary
Figs. 2a and 3a), and negative binomial regression plots for the
top 20 RNAs with positive and negative β-values for age are
included (Supplementary Figs. 2b, 3b, and 5). Among the top 20
overrepresented RNAs identified by the linear and negative
binomial models (Fig. 2a and Supplementary Fig. 2a), there was
an overlap of 13 RNAs, of which 12 were protein-coding RNAs.
Similarly, among the top 20 underrepresented RNAs obtained by
both models (Fig. 3a and Supplementary Fig. 3a), there were 15
RNAs shared, of which 12 were protein-coding RNAs. Overall, 39
distinct protein-coding RNAs were identified among our four top
20 lists (Supplementary Fig. 6).

To validate our most significant results, we used reverse tran-
scription followed by real-time, quantitative PCR (RT-qPCR)
analysis. Validation was limited to a few individuals at the two
ends of the age distribution (20–34 years vs. 65–79 years) for
whom muscle RNA was still available. Eight RNAs that were
highly associated with aging in our study, as well as in previous
literature, were selected for validation. Four of the eight RNAs
(ENSGs) selected for validation [FAM83B (p= 0.0472), LGI1
(p= 0.0283), NR2F2 (p= 0.0278), and C12orf75 (p= 0.0163)
mRNAs] had significantly higher expression in the old (80+
years) compared to the young (22–34 years) (Fig. 4 and
Supplementary Table 1). Expression levels of CDKN2B, CRIM1,
IRS2, and SKAP2mRNAs were also higher in the older age group,
although not significantly, possibly due to the limited sample size
(n= 5).

Proteomic and pathway analyses. Next, we considered whether
differential abundance of these RNAs (ENSGs) in older skeletal
muscle was reflected in differences at the protein level. For this

analysis, we selected mRNAs for which we had proteomic data,
obtained from the same skeletal muscle using a shotgun liquid
chromatography-mass spectrometry method1 that yielded 4281
proteins. In agreement with previous reports, we found that the
correlation coefficients of mRNAs and their corresponding
expressed proteins showed a symmetrical, quasi-normal dis-
tribution around approximately zero, with more values above
than below zero24 (Fig. 5a). Similarly, adjusted regression models
were used to estimate the β-coefficients for age for the 4281
mRNAs, for which corresponding proteomic data were available
(age-protein-β vs. age-mRNA-β; Fig. 5b gray dots), and separately
for 122 mRNAs whose β-coefficients showed significant associa-
tion (p < 0.01) with age (Fig. 5b red dots). Interestingly, there was
a significant positive correlation between the β-coefficients,
although with substantial noise. Then, the abundance of 122
mRNAs and their respective proteins was explored in the heat
map analysis shown in Fig. 5c, with the correlation distribution in
Supplementary Fig. 7a. As a comparison, we repeated these
analyses for a randomly selected sample of 122 mRNAs. This
analysis showed far less correlation with their corresponding
proteins (Supplementary Fig. 7b).

By Kyoto Encyclopedia of Genes and Genomes (KEGG) annota-
tion, the top positively correlated protein–mRNA pairs were found
involved in glycolysis/gluconeogenesis (e.g., PGK1, TPI1 (Triose-
phosphate Isomerase 1), PFKFB2 (6-Phosphofructo-2-Kinase/
Fructose-2,6-Biphosphatase 2), and MYOZ2) and metabolism
(e.g., PGK1 and LDHA (Lactate Dehydrogenase A)). Sarcomere
proteins such as ANK3, PDLIM, and TNNT3 (troponin T3, fast
skeletal type) also showed high protein–mRNA correlations,
whereas Histone protein H2A.Z showed the strongest negative
correlation (Fig. 5c inset). By functional annotation, 16 proteins
were annotated as a muscle function, of which 15 were positively
correlated with their respective mRNA levels (Supplementary
Fig. 7c). Finally, quantitative proteomic data were available for 14
out of the top 39 mRNAs (ENSGs) showing differential expression
with age; among these, four were overrepresented and 10 were
underrepresented with age (Supplementary Fig. 6). Of the 14
mRNAs (ENSGs), 10 displayed significant (p < 0.05) correlations
between protein abundance and age (Supplementary Fig. 8). Nine
of these ten proteins displayed significant (p < 0.05) correlations
with mRNA abundance. Four of these nine proteins are involved in
carbohydrate metabolism, namely OXCT1 (3-Oxoacid CoA-
Transferase 1, implicated in energy production from ketone
bodies25), LDHA (involved in anaerobic glycolysis26), PFKFB2
(encoding a heart isozyme27), and TPI1 (which catalyzes the
isomerization of glyceraldehyde 3-phosphate and dihydroxyace-
tone phosphate28). Three of the nine proteins are also direct
constituents of the contractile system, namely MYL1 (Myosin
Light Chain 1, expressed in fast skeletal muscle and associated with
myopathy29), TNNT3 (which influences muscle contractility and

Fig. 1 Methodology overview, model overlap, and heat map of significant changes in RNA (ENSG) levels. a Flowchart of sample preparation (orange)
and analytical methods (green to gray) used in this study. b Volcano plots capture all significant (p < 0.01 from two-sided Wald test, unadjusted) RNAs
identified by our models: linear model including all RNAs, standard negative binomial model including only RNAs with all non-zero CPB values, and zero-
adjusted negative binomial model including only RNAs with at least one value of zero CPB. Red and blue points indicate significant RNAs with positive and
negative β-values for age, respectively. Black points denote RNAs with nonsignificant β-values for age. c Venn diagram displaying the overlap between all
RNAs significantly associated with aging identified by the linear (blue) and negative binomial (yellow) models (overlap shown in brown). Black denotes
total significant RNAs, whereas red and blue values represent significant RNAs with positive and negative β-values for age, respectively. d Heat map
representing the expression levels of the 506 significant RNAs shared between the linear and negative binomial models with age. Row-wise z-scores were
calculated and color-coded to display changes in RNA expression with increasing age (22–83 years old). Light yellow and dark blue bars indicate RNAs with
very low and very high expression levels, respectively, at a particular age. In addition, a correlation-based distance method was used to cluster the RNAs
obtained from the linear model with positive and negative β-values for age. RNAs with positive β-values are shown in the top of the heat map, containing
RNAs with low to high expression (yellow to blue rows) with increasing age. Similarly, RNAs with negative β-values are shown on the bottom of the heat
map, containing RNAs with high to low expression (blue to yellow rows) with increasing age.
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development30,31), and TPM1 (Tropomyosin 1, which modulates
actin–myosin interactions32) (Fig. 5d). Similar to previous studies,
and in spite of the fact that the effect of age on mitochondrial
protein representation is higher than any other class of proteins,
mRNAs encoding mitochondrial proteins did not show the highest
correlation with their respective proteins33.

Of the 506 RNAs (ENSGs) significantly associated with age,
478 were found in the Ingenuity Pathway Analysis (IPA)
database. IPA identified 27 biological pathways that were
significantly (p < 0.05) associated with aging, with adipogenesis
being the most dysregulated. Next, we investigated the expression
patterns of the input genes annotated to this pathway. Expression
levels of 12 out of the 132 genes in the adipogenesis pathway were

significantly changed with age (Supplementary Fig. 9, labeled
purple).

Differential transcript usage with age. To further explore changes
in transcripts (ENSTs) that occur in the skeletal muscle with aging,
we first identified specific splice variants of skeletal muscle proteins
that were differentially altered with aging. For this initial analysis, we
focused on genes whose RNAs (ENSGs) were among the four top 20
lists (Figs. 2a and 3a, and Supplementary Figs. 2a and 3a) with
significant association with aging. We then tested for associations
between differential transcript usage (DTU, see “Methods”) and age
as a continuous variable using linear regression, and found changes

Rank RNA Ensembl ID 
(common name)

P-value Beta Associated Functions & Characteristics
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1 ENSG00000147883 (CDKN2B) 5.55E-08 0.0328 Aging9, p15 tumor suppressor22, aneurysm formation63

2 ENSG00000168143 (FAM83B) 9.92E-08 0.0343 Hypoxia response pathway14, aging, skeletal muscle weakness18

3 ENSG00000235162 (C12orf75) 1.99E-06 0.0419 Energy metabolism, insulin signaling15, aging, skeletal muscle weakness18

4 ENSG00000108231 (LGI1) 2.63E-06 0.0284 Aging, skeletal muscle weakness18, limbic encephalitis84, epilepsy85

5 ENSG00000005020 (SKAP2) 5.01E-06 0.0218 Sarcomere function and regulation, higher expression in older subjects16

6 ENSG00000150938 (CRIM1) 8.4E-06 0.0208 Skeletal muscle aging16, smooth muscle contractility17, CNS development86

7 ENSG00000089101 (CFAP61) 9.63E-06 0.0320 High expression in old skeletal muscle, aging, skeletal muscle weakness18

8 ENSG00000185551 (NR2F2) 1.15E-05 0.0160 Myogenesis, skeletal muscle development12, aging23, muscular dystrophy87

9 ENSG00000145012 (LPP) 1.29E-05 0.0135 Smooth muscle differentiation13, cell migration and proliferation88

11 ENSG00000196482 (ESRRG) 2.09E-05 0.0196 Type I muscle fiber development, estrogen signaling34, obesity susceptibility35

12 ENSG00000185950 (IRS2) 2.71E-05 0.0189 Insulin signaling10, lipid metabolism in skeletal muscle11, longevity in mice89

13 ENSG00000171055 (FEZ2) 3.07E-05 0.0190 Fasciculation, axonal elongation, skeletal muscle aging6

14 ENSG00000168769 (TET2) 3.3E-05 0.0092 Smooth muscle plasticity90, skeletal myogenesis91, DNA demethylation92

15 ENSG00000185760 (KCNQ5) 3.35E-05 0.0165 Potassium channel subunit93

16 ENSG00000115380 (EFEMP1) 3.74E-05 0.0254 Early aging in mice70, lymph node metastasis, angiogenesis94

17 ENSG00000132464 (ENAM) 4.03E-05 0.0147 Tooth enamel formation95

18 ENSG00000181690 (PLAG1) 4.6E-05 0.0263 Higher expression in older subjects16, bovine fetal development and body size39

19 ENSG00000123836 (PFKFB2) 4.74E-05 0.0225 Heart isozyme27

20 ENSG00000138439 (FAM117B) 5.10E-05 0.0161 Sarcoidosis susceptibility96, candidate for early onset myocardial infarction97
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10 ENSG00000264151 1.43E-05 0.0397 lincRNA

a

b

Fig. 2 Top 20 significant (p < 0.01) RNAs (ENSGs) identified by linear regression with positive β-values for age. a Linear model p-values (two-sided
Wald test, unadjusted) and β-values, and RNA characteristics obtained from literature review, are shown. RNAs that failed to have at least ten samples
with CPM values above −3 were removed. b Linear plots representing log2(CPM) values with age for the top ten RNAs ranked by the lowest p-value
(two-sided Wald test, unadjusted)36,37,84–96.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22168-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2014 | https://doi.org/10.1038/s41467-021-22168-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in 1005 RNAs (and their ~1100 splice variants) significantly (p <
0.01) associated with age. For each of the identified genes, we
compiled a list of splice variants already reported in the literature
that were also detected in our RNA-seq analysis. Among these, we
searched for evidence of variants that changed systematically with
aging and found that five splice variants were identified with sig-
nificant (p < 0.01) changes in DTU with age. These variants were
transcribed from four genes: CFAP6118, ESRRG (Estrogen-Related
Receptor Gamma, important for type-1 muscle fiber development,
estrogen signaling, and obesity susceptibility34,35), TET2 (Tet
Methylcytosine Dioxygenase 2, involved in myogenic differentiation
of skeletal myoblast cells and muscle age-related decline in
mice36–38), and PLAG1 (Pleiomorphic Adenoma Gene 1, known to

be more highly expressed in older humans16,39) (Fig. 6a and Sup-
plementary Fig. 10). Linear regression lines for both the significant
and nonsignificant age associations of all identified mRNA splice
variants in these four genes are plotted in Fig. 6a, b. The expression
levels of three out of these five splice variants were significantly (p <
0.01) higher with older age (Supplementary Fig. 11). In some cases,
we found dissimilar trends in DTU with age on the percentage and
log2(TPM+ 1) scales. For example, the DTU of a splice variant of
PLAG1 mRNA (ENST00000423799) on the percentage scale was
lower with older age, as indicated by a negative β-value (Supple-
mentary Fig. 10b), whereas the differential levels of this splice variant
on the log2(TPM+ 1) scale was virtually constant with older age,
indicated by a near-zero slope (Supplementary Fig. 11). To extend

Rank RNA Ensembl ID 
(common name)

P-value Beta Associated Functions & Characteristics

1 ENSG00000134333 (LDHA) 0.0003 -0.0222 Porcine energy regulation, glycogen metabolism, and glycolysis of skeletal muscle98

2 ENSG00000197872 (FAM49A) 0.0008 -0.0154 Increased proteomic expression with age in mice99, dementia100

3 ENSG00000140416 (TPM1) 0.0010 -0.0222 Modulates actin-myosin interactions32

4 ENSG00000111669 (TPI1) 0.0012 -0.0154 Glycolysis enzyme, energy generation for muscle cells in chickens101

5 ENSG00000170290 (SLN) 0.0018 -0.0156 Inhibits rat sarcoplasmic Ca2+-ATPases102, thermogenesis103, muscle performance104

6 ENSG00000130595 (TNNT3) 0.0019 -0.0175 Skeletal muscle contractibility30, porcine muscle development, tropomyosin binding31

7 ENSG00000139656 (SMIM2) 0.0020 -0.0331 Potential indicator of physical activity105

8 ENSG00000145949 (MYLK4) 0.0024 -0.0250 Aging, weakness18, contraction19, motility20, TGF-beta pathway21, circadian rhythms106

10 ENSG00000183785 (TUBA8) 0.0035 -0.0180 Intracellular transport of macromolecules and cytoskeletal support107

13 ENSG00000180209 (MYLPF) 0.0047 -0.0185 Fast and slow skeletal muscle development29, lower in old caprine skeletal muscle108

14 ENSG00000173436 (MINOS1) 0.0060 -0.0123 Mitochondrial function and cristae organization109

18 ENSG00000166343 (MSS51) 0.0071 -0.0131 Skeletal muscle-specific modulator of cellular metabolism110

20 ENSG00000168530 (MYL1) 0.0088 -0.0115 Expressed in fast-type muscle14

9 ENSG00000257542 0.0031 -0.0173 Olfactory receptor pseudogene

11 ENSG00000270136 0.0036 -0.0136 MINOS1 readthrough gene (nonsense-mediated decay)

12 ENSG00000232407 0.0039 -0.0482 Peptidylprolyl isomerase A pseudogene

15 ENSG00000227258 0.0061 -0.0233 SMIM2 antisense RNA

16 ENSG00000184844 0.0062 -0.0285 Cytochrome c, somatic pseudogene

17 ENSG00000234281 0.0062 -0.0202 LANCL1 antisense RNA

19 ENSG00000256364 0.0084 -0.0139 MLEC antisense RNA
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Fig. 3 Top 20 significant (p < 0.01) RNAs (ENSGs) identified by linear regression with negative β-values for age. a Linear model p-values (two-sided
Wald test, unadjusted) and β-values, and RNA characteristics obtained from literature review, are shown. RNAs that failed to have at least ten samples
with CPM values above −3 were removed. b Linear plots representing log2(CPM) values with age for the top ten RNAs ranked by the lowest p-value (two-
sided Wald test, unadjusted)97–108.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22168-2

6 NATURE COMMUNICATIONS |         (2021) 12:2014 | https://doi.org/10.1038/s41467-021-22168-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


this analysis further, we looked at the genes that did not change
significantly with age in either the linear or negative binomial model
and found two transcripts that changed significantly with age (in
opposite directions) from the DTU data (Supplementary Fig. 12a).
Out of 890 such genes, we selected SELENOF (Selenoprotein F,
encoding an mRNA that increases with age and is a target of
microRNA mmu-mir-136, which decreases with age in skeletal
muscle40), and SLC47A1 (Solute Carrier Family 47 Member 1,
encoding a protein that contributes to the tissue distribution and
excretion of many drugs and is widely expressed in skeletal muscle41)
for plotting (Supplementary Fig. 12b–d), selected based on absolute
β-values for the transcripts. These findings suggest that the relative
contribution of different splice variants to the expression of a certain
gene may be as biologically meaningful as the total quantity.

Differential exon usage with age. As splice variants are gener-
ated by differential exon usage, we determined the level of dif-
ferent exons used by counting the number of reads aligned to
each exon, followed by differential exon usage analysis using the
DEXSeq package42. There were 163 RNAs (ENSGs) with statis-
tically significant (false discovery rate (FDR) < 0.1) differences in
exon usage between young (20–34 years) and old (80+ years)
individuals. There were 17 RNAs that showed both significant
differential exon usage between young and old participants, and
significant correlation of DTU with aging (Supplementary
Fig. 13a). For these RNAs, a spectral ribbon plot was created to

display changes in exon usage with age (Supplementary Fig. 13b).
Next, we created transcriptome-wide UCSC browser tracks and
specifically investigated these 17 RNAs. Among them, two
examples were selected to illustrate age-related differential exon
usage: SMIM11A mRNA (Small Integral Membrane Protein 11A,
of unknown function) and RXYLT1 mRNA (Ribitol Xylosyl-
transferase 1, associated with Walker–Wahlburg syndrome and
muscular dystrophy–dystroglycanopathy43,44). The UCSC brow-
ser coverage plots (read counts per million, CPM) and the age-
related exonic expression levels identified by DEXSeq analysis
show exons splicing in or out with age (Fig. 7 and Supplementary
Fig. 14). We found that exon 11 (labeled purple in the gene
model) was completely lost or significantly (p < 0.01) reduced in
the SMIM11A mRNA of older individuals (80+ years) compared
to younger (20–34 years) individuals (Fig. 7). Similarly, we found
that exon 9 (labeled purple in the gene model) was spliced in or
had significantly (p < 0.01) higher expression in the RXYLT1
mRNA when comparing old to young participants (Supplemen-
tary Fig. 14). Interestingly, the significantly differentially spliced
exon of SMIM11A mRNA (ENST00000399292) is a 3′-untrans-
lated region with binding sites for 35 RNA-binding proteins,
including ELAVL1 (ELAV-like RNA-Binding Protein 1, also
known as Hu antigen R or HuR, which is highly expressed
in many cancers and implicated in controlling mRNA turnover
and translation), MOV10 (Moloney Leukemia Virus 10, an
RNA helicase), UPF1 (Up-Frameshift Suppressor 1 Homolog, a
protein involved in mRNA nuclear export and surveillance, and
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Fig. 4 Validation of RNA (ENSG) expression patterns with age using RT-qPCR analysis. Relative expression levels of five young (20–34 years) and five
old (65–79 years) participants were calculated relative to GAPDH mRNA levels, and were compared using a two-sided Kruskal–Wallis test. Of the eight
RNAs selected for analysis, statistically significant changes in expression with age were identified for FAM83B (p= 0.0472), LGI1 (p= 0.0283), NR2F2
(p= 0.0278), and C12orf75 (p= 0.0163) mRNAs, denoted by a red asterisk. All p-values are unadjusted. Error bars represent mean ± SEM.
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Fig. 5 Significant (p < 0.05) downstream protein abundance and log2(CPM) correlations. a Distribution of 4281 protein–RNA correlation coefficients.
b Scatterplot of the age β-coefficients for the protein–RNA matches limited to the 122 mRNAs significantly associated with age (p-value from two-sided
Wald test, unadjusted). c Heat map of 122 mRNAs significantly associated with age and their correlations with proteins. The mRNA with the strongest
negative correlation (H2AZ) is shown in the inset (p-value from two-sided Wald test, unadjusted). d Among all the RNAs in the four top 20 lists, ten RNAs
were identified to have statistically significant correlations between relative protein abundance and age (red and blue points indicate mRNAs with positive
and negative correlations, respectively). Of these ten RNAs, nine had statistically significant correlations between relative protein [log2(Protein
Abundance)] and RNA abundance [log2(CPM)] (p-values from two-sided Wald test, unadjusted).
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Fig. 6 Differential transcript usage analysis for top RNAs (ENSGs). Among the RNAs in the four top 20 lists, CFAP61, ESRRG, TET2, and PLAG1 mRNAs
were identified to have splice variants with statistically significant changes in differential transcript usage with age. a Change in differential transcript usage
for all significant variants of the four mRNAs (all p < 0.05 from two-sided, unadjusted Wald tests). b Change in differential transcript usage for all
nonsignificant variants of the four RNAs, provided for comparison (all p > 0.05 from two-sided, unadjusted Wald tests).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22168-2 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2014 | https://doi.org/10.1038/s41467-021-22168-2 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


nonsense-mediated mRNA decay), and FUS (Fused in Sarcoma,
a protein involved in pre-mRNA processing and mRNA
export)45,46 (Supplementary Fig. 15a). Many of these proteins
bind to multiple sites along this exon and are known to regulate
RNA abundance and stability (Supplementary Fig. 15b). Further

analysis of SMIM11A and RXYLT1 mRNAs showed that their
absolute abundance did not change significantly (p < 0.01) with
age (Supplementary Fig. 16a–d).

Gene set enrichment analysis (GSEA)47 was conducted using the
5325 RNAs (ENSGs) with at least one significantly changing splice
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variant with age. GSEA identified six significantly (p < 0.05)
upregulated pathways in older (80+ years) compared to younger
(20–34 years) participants: oxidative phosphorylation, adipogenesis,
G2/M checkpoint, MTORC1 signaling, fatty acid metabolism, and
ultraviolet response (Supplementary Fig. 17).

Finally, we compared the genes associated with human muscle
aging from several past studies, namely Melov et al.48, Phillips
et al.2, Sood et al.3, and Timmons et al.49, as well as genes induced
by exercise, and we found a considerable overlap (Supplementary
Fig. 18). In particular, RNAs (ENSGs) expressed from two genes
were identified by all five studies including the current study
(LGI1 and FEZ2), 11 were identified by four out of five studies
(CAMTA1, COL4A5, KLF5, CYP1B1, USP54, CTH, PLAG1,
NT5C2, TPI1, PFKFB2, and UNC13C), 44 were identified by
three out of five studies, and 228 were identified by two out of five
studies. Considering all five studies, our findings were replicated
for 285 transcripts, whereas 82 transcripts identified as sig-
nificantly changing with age in our study were replicated in at
least one other study (Supplementary Fig. 18a, b). The overlap
between transcripts that changed with exercise in Phillips et al.2

and Keller et al.50, and those that changed with aging in our study
shows eight RNAs associated with aging in our study, which were
impacted by exercise in both prior studies (expressed from genes
TSPAN2, SKAP2, CAV1, NID1, JAM2, EDNRA, ABCG1, and
GLCCI1) and 56 RNAs impacted by exercise by at least one of
these two studies (Supplementary Fig. 18c, d).

Discussion
In this study, we used RNA-seq data obtained from muscle
biopsies collected from a group of individuals dispersed over a
wide age range, who were established to be very healthy based on
a strict enrollment criteria to explore transcriptomic changes that
occur in healthy aging. Our aim was to ascertain transcriptional
changes that occur with aging, without the potentially con-
founding effects of the ongoing diseases.

We found appreciable overlap between the 506 RNAs (ENSGs,
containing 476 gene symbols) found in our study and prior
microarray analyses that identified transcripts associated with
muscle aging and exercise status (Supplementary Fig. 18). This
comparison was important, as microarray analysis can be highly
sensitive and quantitative, and can complement RNA-seq analysis,
which offers other advantages, such as detection of previously
unknown transcripts. We found that 82 age-associated transcripts
identified in our study had already been linked to muscle aging in
previous studies, namely FAM83B, C12orf75, LPP, SKAP2, CRIM1,
FEZ2, LGI1, and MYLK4 mRNAs3,6,9,22,23,49. In addition, eight
transcripts also identified in our study were differentially regulated
with frailty and were reversed by physical activity (TSPAN2, SKAP2,
CAV1, NID1, JAM2, EDNRA, ABCG1, and GLCCI1 mRNAs)2,9.
The replication of these findings using different methods and in a
highly selective healthy population strongly suggests that the
encoded proteins are profoundly involved in skeletal muscle aging
and raises the possibility that when these changes are overt, they
may accompany the development of frailty.

Many of the transcripts (ENSTs) identified in our study as
associated with aging encode proteins that are implicated in
mechanisms of muscle maintenance. FAM83B is a member of the
FAM83 protein family, characterized by the presence of a DUF1669
domain, which is implicated in a myriad of cellular processes
through the regulation of casein-kinase 1, including wingless-related
integration site (Wnt) signaling, which is imperative for muscle
repair and maintenance51.

C12orf75 (also known as OCC1) has been identified as a pri-
mary Wnt signaling regulator, although the specific mechanism is
still unclear52, and C12orf75 mRNA was found to be over-
represented in the quadriceps muscles of patients with chronic
pulmonary diseases compared to controls15.

LPP is mostly expressed in the cytoskeleton of striated muscle
(heart and skeletal muscle) and contributes to mechanoreception,
sensing of cross-binding activity, and mitochondrial signaling.
Myocyte contraction regulates the production of muscle LIM
proteins (MLPs, including LPP) and their nuclear import. In the
nucleus, MLPs activate multiple myogenic transcription factors,
such as myoblast determination protein 1 and myogenin. In the
cytoplasm, MLPs regulate autophagy, modulate the assembly of
macromolecular complexes along sarcomeres and the cytoskele-
ton, and crosslink actin filaments into bundles53. Through these
mechanisms, MLPs contribute to muscle mass maintenance and
continuous repair. Consistent with these findings, elevated MLP
levels were reported in skeletal myopathies, such as facioscapu-
lohumeral muscular dystrophy, nemaline myopathy, and limb
girdle muscular dystrophy. The specific cause of LPP dysregula-
tion with aging is unknown, but it may reflect the need to
upregulate repair mechanisms in the muscle that has accumulated
damage during the aging process.

SKAP2 modulates immunity54, influences sarcomere function
and regulation, and was found to be elevated in muscle cells of
older human subjects16. Upregulation of SKAP2 was identified in
previous studies of muscle aging, both in vivo and in vitro.
Microdamage likely accumulates with aging in myofibers and
triggers repair by overexpressing integrins at the site of the
insult55,56. Integrins signal for macrophage adhesion, migration,
and chemotaxis, and stimulate the remodeling of the macrophage
cytoskeleton, thereby contributing to changes in cell shape,
motility, and directionality57,58. SKAP2 modulates macrophage
responses to integrin signals and affects the efficiency of repair
mechanisms. Therefore, overexpression of SKAP2 with aging may
be a marker of active repair in response to damage accumulation.
Of note, skeletal muscle SKAP2 mRNA was recently found
among a handful of transcripts that monitor a midlife metabolic
switch in humans unrelated to the Target of Rapamycin
complex pathway49.

CRIM1 is essential for embryonic heart and endothelial cell
development and homeostasis in the coronary vasculature, but its
role in skeletal muscle physiology and aging is unknown59. FEZ2
acts as a cargo transport adaptor in kinesin-mediated movement
and, through this mechanism, has important roles in axonal
bundling and elongation, autophagy, and apoptosis6,60. These

Fig. 7 Changes in the differential exonic usage of SMIM11A mRNA in young (20–34 years, n= 12) compared to old (80+ years, n= 5) age groups.
a Red and blue bars represent the average exon usage for all 17 exons of SMIM11A mRNA in the young and old groups, respectively. DEXSeq analysis
identified one exonic region (E011) that significantly changed in abundance between the age groups (pink in the gene model). The average exonic usage in
this region is higher in the young age group and lower in the old age group. Of the seven variants of SMIM11A mRNA, two have statistically significant
changes in expression continuously with age according to our linear model. Linear model p-values (two-sided Wald tests, unadjusted) are displayed for
these variants. The horizontal axis below the variant models denotes the positions in the genome. b Ages of participants in the young (red) and old (blue)
age groups are shown on the vertical axis. UCSC browser tracks indicate that the exons displaying differential expression (location on each transcript
identified by red bar) identified in our DEXSeq analysis are more expressed in the young age group than in the old age group, indicated by the presence of
larger blue peaks in younger participants. UCSC browser tracks support our DEXSeq findings.
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activities are potentially important to support continuous rein-
nervation in response to denervation that is essential for preser-
ving muscle homeostasis with aging. The rise in FEZ2 levels with
age in skeletal muscle suggests an attempt to counteract the loss
of motor units and supports the notion that FEZ2 plays a role in
age-related sarcopenia16. Interestingly, elevations in physical
activity and testosterone treatment reduce FEZ2 levels, resulting
in an upregulation of IGF-1 and increased muscle anabolism61.
MYLK4 phosphorylates the regulatory light chain of myosin and
plays a vital role in muscle development; polymorphisms of this
gene have been associated with increased muscularity in cows62.
Given that knowledge of the functions of these proteins is limited,
especially in the skeletal muscle and aging, their deeper investi-
gation is essential to elucidate the causes leading to age-related
sarcopenia.

Our study also confirmed several age-associated mRNAs
(ENSGs) encoding proteins with predicted roles in muscle aging
reported by Phillips et al.2, including CDKN2B, IRS2, and CRIM1
mRNAs. The overrepresentation of the CDKN2B mRNA with
aging is particularly interesting, as the encoded protein, also
known as the p15 tumor suppressor22, inhibits cell proliferation,
has been associated with cellular senescence23, is a major hall-
mark of aging, and has been implicated in p53-dependent smooth
muscle cell apoptosis63. The traditional marker of cellular
senescence, p16 (CDKN2A), was not identified in the human
muscle, although it increases relatively frequently in inter-
muscular and intramuscular adipose tissue64.

IRS2 is strongly associated with insulin resistance to glucose
uptake and lipid metabolism in the skeletal muscle, as well as type
2 diabetes11,65, but is also involved in skeletal muscle growth and
metabolism via its downstream effector molecules Akt and
AMPK66. IRS2 mRNA expression levels decline in conditions of
insulin resistance and, at least in a mouse model, account for the
high risk of myocardial dysfunction associated with chronic
insulin resistance and diabetes67. Whether decline in IRS2 also
negatively affects muscle function, independent of its substrate
uptake functions, is unknown. Although there is abundant epi-
demiological and experimental evidence that insulin resistance
increases with aging, humans over the age of 90 years have less
insulin resistance than might be expected and centenarians are
surprisingly insulin-sensitive, suggesting that healthy aging and
extreme longevity are strongly connected with the avoidance
of glucose intolerance and diabetes68. The consistently high levels
of IRS2 transcripts in older compared to younger participants
may be due to the fact that the strict selection criteria for
“very healthy” used in this study selected older individuals that
had escaped major chronic diseases, including cardiovascular
pathology, cancer, and diabetes, and therefore did not become
glucose intolerant. High IRS2 mRNA levels in the older age group
of these healthy and highly functional individuals is also con-
sistent with the hypothesis that compromised insulin signaling
plays a role in the development of sarcopenia and frailty66,69.

CRIM1 has been implicated in pelvic smooth muscle con-
tractility in mice17 and skeletal muscle aging in humans, where its
expression levels were elevated6. Other examples of mRNAs with
higher expression in older age include PLAG1 mRNA16,39 and
EFEMP1 mRNA (EGF-Containing Fibulin Extracellular Matrix
Protein 1, which induces early aging in mice70). Based on the
strong connection of these known genes to muscle physiology, we
propose that all 506 significant (p < 0.01) RNAs obtained by both
the linear and negative binomial models appear robustly involved
in healthy skeletal muscle aging.

IPA was used to identify specific biological mechanisms asso-
ciated with the 506 significant (p < 0.01) RNAs (ENSGs) found by
both models. Similar to Phillips et al.2, we identified several sig-
nificantly enriched pathways linked to the top 506 differentially

abundant RNAs. The most significant pathway associated with
this subset of genes, adipogenesis, did not show directionality of
regulation with age. However, it is widely known that aging is
associated with increased adiposity within the muscle tissue. Of
interest, some of our top mRNAs implicated in adipogenesis,
including SOX9 mRNA (SRY-Box 9, necessary for avoiding ske-
letal malformation) and SIRT1 mRNA (Sirtuin 1, which influ-
ences skeletal muscle differentiation, cellular senescence, and
aging), encode proteins with essential roles in skeletal develop-
ment, inflammation, cellular senescence, and aging45.

After analyzing changes in total RNA, further analyses were
aimed at understanding whether specific mRNA splice variants
among the RNAs (ENSGs) in the 4 top 20 lists (Figs. 2a and 3a, and
Supplementary Figs. 2a and 3a) were significantly associated with
aging. In particular, we aimed at understanding whether the relative
contribution of different splice variants in a specific gene changed
systematically with aging.

DEXSeq and linear regression analyses identified SMIM11A and
RXYLT1 mRNAs as having significant (p < 0.01) changes in exon
usage and splice variant usage with age. The biological under-
pinnings of these age-related changes are unclear, but changes in
alternative splicing with aging have already been suggested from
proteomic studies showing that skeletal muscle proteins that
belong to the splicing machinery are massively overexpressed with
aging and significantly underexpressed in response to physical
activity1,71. Consistent with these results, we found that the group
of genes identified as having at least one splice variant changing
with aging was enriched for proteins related to oxidative phos-
phorylation, adipogenesis, and MTORC1 signaling. Based on these
findings, we propose that alternative splicing is an adaptive
mechanism aimed at counteracting the loss of efficiency of oxi-
dative phosphorylation that is often observed with aging and
restored by physical activity. This hypothesis should be explored
in future studies.

Our study has a number of features that provide valuable
contributions to the literature. We cataloged muscle tran-
scriptomes from a human population dispersed over a wide age
range, who were confirmed to be healthy based on very strict
inclusion criteria. We used state-of-the-art RNA-seq technology
that has not been previously used to study skeletal muscle in a
human population of this size. To identify RNAs that system-
atically change with aging in healthy skeletal muscle, we per-
formed statistical analyses using both linear and negative
binomial regression models, and integrated both analyses. Thus,
we could identify transcripts whose abundance change homo-
geneously or exponentially with aging. It is likely that other
meaningful age-related patterns of transcript change exist that
could not be detected by our analysis (e.g., early- or late-stage
changes). However, detecting these changes with a sufficient
degree of confidence would have required a larger sample size and
this should be addressed in future studies. Of note, the two sta-
tistical models used in this study identified considerably more
RNAs with positive β-values than negative β-values for age, which
is commonly observed when analyzing proteomic and tran-
scriptomic data. We validated eight highly significant RNAs
identified in our study by performing RT-qPCR analysis for a
number of key transcripts and confirmed the directionality of the
changes observed by RNA-seq and proteomic analyses. Unfor-
tunately, we did not have enough tissue samples to perform a
more extensive validation.

In conclusion, our study replicated the findings of multiple
prior studies performed in different populations and with dif-
ferent technologies (Supplementary Fig. 18), but also found other
transcripts for genes whose implications in the aging process have
not been previously investigated. We found evidence that some
specific splice variants change systematically with aging, and that
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this age-associated trend is not necessarily limited to mRNAs that
change overall with aging. We note that changes in splice variants
with aging tend to cluster in proteins that are involved in oxi-
dative phosphorylation, lipid metabolism, and MTORC1 regula-
tion, raising the possibility that alternative splicing of these genes
may be compensatory to the decline of mitochondrial function
with aging. These findings are particularly meaningful, because
they are devoid of the potentially confounding effects of disease,
as we studied a larger group of very healthy, older individuals.
However, recruiting such a study population is challenging and
some limitations intrinsic to the limited sample size, such as
nonlinear changes in the expression and a more comprehensive
identification of age-related splicing events, should be considered
in future, larger studies. Elucidating the mechanisms that link
these transcripts to aging will provide valuable insights into the
pathophysiology of age-related sarcopenia and will uncover tar-
gets for preventive and therapeutic interventions.

Methods
Study population. Skeletal muscle biopsies were obtained from very healthy
GESTALT participants using the methods outlined in Ubaida-Mohien et al.1.
Participants were excluded from the study if they consumed medication for chronic
illness, trained professionally, had a body mass index ≥ 30 kg/m2, or were diag-
nosed with cognitive damage, a physical impairment, or a major disease. The
Clinical Research Unit of the National Institute on Aging developed these criteria
based on medical history, physical exams, and blood tests evaluated by a trained
nurse practitioner72. Muscle RNA-seq data obtained from the left vastus lateralis of
53 participants over a large age range (22–52 years, n= 28; 53–83 years, n= 25)
was used for this study. All participants underwent a consenting process that
entailed a detailed description of the study, including potential risks. All partici-
pants signed an informed consent (provided in Supplementary Information) to
participate in the study. The study protocol was approved by the NIH Institutional
Review Board (provided in Supplementary Information) and complied with all
ethical regulations for research with human subjects.

Sample preparation and sequencing. After RNA was extracted from the skeletal
muscle biopsies, cDNA libraries were prepared and analyzed (Fig. 1a). Total RNA
was isolated in QIAcube, Qiagen, cDNA was synthesized using the NuGen Ovation
v2 system, and Illumina libraries were generated with the TruSeq ChIP Library
Preparation Kit (Sets A [IP-202-1012] and B [IP-202-1024]). RNA was sequenced
using the Illumina HiSeq 2500 sequencing system at a depth of > 80 million single-
end reads. Out of the 57,773 RNAs in the Ensembl hg19 v82 (September 2015)
database, we identified, on average, 24,453 (ranging from 16,203 to 36,119) RNAs
at a coverage depth of ≥10 reads.

Alignment and quality control. After sequencing, output data in the form of
FASTQ files (combination of FASTA sequences with corresponding quality data)
was cleaned using cutadapt (v2.7)73. Quality was checked using the fastqc program
(v0.11.8)74. Reads were aligned using STAR Aligner (v2.4.0j), a high-throughput
alignment software capable of mapping full-length RNA sequences and discovering
non-canonical splices and fusion transcripts75. BAM files obtained as the output
from the STAR alignment were then processed using featureCounts (v1.4.6-p5)
from the Subread package (v1.6.4)76, to count reads to various genomic features
such as exons, transcripts (splice variants), and genes (composite model of all splice
variants). Further data filtering and statistical analyses were conducted using
RStudio (version 1.2.1335) and multiple R libraries.

Regression models and visualization. All RNAs that were not expressed across
any of the participants (total 568) were removed from the regression analysis
(57,773–568= 57,205 remaining). To analyze RNA (ENSG) expression levels
continuously with age, read counts for 57,205 RNAs were converted to log2-
transformed CPM using the edgeR package (multiple versions – 3.22.5)77. This
log2(CPM) transformation was implemented for normalization. Next, linear
regression models were built for each RNA using the MASS package (v7.3-51.5)78.
For each RNA, we also built a negative binomial regression model, a method
commonly used to analyze count data (non-negative integer values). Moreover,
given that RNA-seq data mostly follow a negative binomial distribution79, we
employed an alternate strategy, as the negative binomial distribution requires input
of integer values ≥ 0. To address this obstacle, all read counts were instead con-
verted to normalized counts per billion (CPB)80 and then rounded to the nearest
integer for negative binomial regression using glm.nb from the MASS package.
Rounding was completed after converting to CPB, rather than CPM, to minimize
noise. As most CPM values were only single- or double-digit integers, rounding
these small numbers would have introduced much larger error. In addition, we

incorporated a zero-adjustment in the negative binomial models for RNAs with
one or more values of zero CPB using hurdle from the pscl package (v1.5.2)81.
Standard zero-inflation was not used, as our data included only structural (true)
zeros and no sampling (random) zeros. Both the linear and negative binomial
models included only age and sex as covariates. Of the 57,205 RNAs, there were
544 RNAs with excess zero counts removed from the negative binomial model, in
which 203 of these RNAs contained CPB values of zero in > 50 samples. Over-
abundance of zeros prevented model construction. An additional 13 RNAs were
removed due to very low expression levels (all median CPB < 630). P-values and β-
values from both models were extracted, sorted, and compared to identify RNAs
with the most significant changes in expression with age. Only RNAs with at least
ten log2(CPM) values of ≥−3 were included in our linear model results. Similarly,
only RNAs with at least ten CPB values of ≥125 were included in our negative
binomial model results. Both of these thresholds translate to 10 reads of RNA per
80 million total aligned reads for an individual and were implemented to combat
very low expression levels and noise.

Next, volcano plots were created to visualize the distribution of RNAs (ENSGs)
with statistically significant (p < 0.01) expression patterns with age. A conservative
p-value threshold of 0.01 was used to obtain only RNAs with the most significant
changes in expression with age. Volcano plots were generated for the linear and
negative binomial model results, in which red and blue points indicate significant
RNAs with positive and negative β-values for age, respectively. Two separate
volcano plots were created to display the standard and zero-adjusted negative
binomial model results. The shared RNAs between the linear and negative
binomial models were used for further analysis. A heat map was created using
heatmap.2 from the gplots package (v3.0.1.1)82 to visualize the expression level
changes of these significant (p < 0.01) RNAs using the standard complete linkage
(hierarchical) clustering method. Row-wise z-scores were calculated for each RNA
and color-coded based on the expression level across age, in which yellow and blue
bars represent RNAs with low and high expression, respectively, at a particular age.

The top 20 significant (p < 0.01) RNAs (ENSGs) shared by both models with
positive and negative β-values for age were studied at a greater depth. We explored
the functions and characteristics of these top RNAs through literature review, to
identify musculoskeletal processes and other related biological mechanisms found
to be associated with these RNAs in previous major studies. GeneCards (v4.12)45

was also used to explore RNA and protein functionality. Linear and negative
binomial plots were generated to display the expression patterns of these highly
significant (p < 0.01) RNAs as a function of aging. In addition, median read CPB
within the five age groups were calculated and included in each negative binomial
plot, denoted by red asterisks.

Validation by RT followed by real-time qPCR analysis. We validated a subset of
the top 20 significantly changed RNAs identified by both regression models using
RT-qPCR analysis. These eight highly significant (p < 0.01) RNAs obtained from
the linear model with positive β-values for age were selected based on literature
review. For each RNA, relative expression levels of five young participants (20–34
years) were compared to five old participants (65–79 years) using the
Kruskal–Wallis test. Relative expression levels were normalized to levels of the
GAPDH mRNA, encoding the housekeeping protein GAPDH. We used a non-
parametric test, because our limited sample size (n= 5) in each age group pre-
vented us from assuming relative expression levels originated from the same
underlying population. We were constrained to a small sample size and limited
amounts of RNA sample obtained from each muscle biopsy. Therefore, we were
unable to expand the RT-qPCR validation in this study. We also recognize that
using GAPDH mRNA, which is commonly employed for normalization, is a
limitation of this study due to its role in glycolysis, an age-modulated metabolic
pathway. This shortcoming may account for our low validation rate. A complete
list of primers used for RT-qPCR, including names and sequences, is provided
in Supplementary Information.

Proteomic analysis. Using the 4281 proteins reported by Ubaida-Mohien et al.1,
we performed correlation analysis with the corresponding mRNAs (ENSGs). In
further analysis, 122 age-associated mRNAs were correlated with their respective
proteins and correlation coefficients were measured. A heat map of correlations
between these mRNAs and proteins was generated using the Corrplot (v0.84)
library in R (v3.6.1). A random set of 122 mRNAs and their corresponding 122
proteins were chosen for random analysis. We then selected the four top 20
transcript lists to identify RNAs with statistically significant (p < 0.05) correlations
between relative protein abundance and age. Correlations between relative protein
abundance and log2(CPM) helped us to evaluate relationships between tran-
scriptional and translational changes in expression. This also allowed us to
emphasize the biological importance of the RNAs changing most significantly
with age.

Pathway analysis. We conducted IPA (summer 2019 release) to explore the
biological processes associated with the significant (p < 0.01) RNAs (ENSGs)
obtained from both regression models. For this analysis, input genes were matched
to annotated pathways (e.g., the KEGG adipogenesis pathway is annotated with 132
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genes). Input genes that were matched to the pathways were counted and the
significance of the pathways was measured by calculating z-scores based on input
RNA p-values and β-values for age from linear regression, and the activated state, a
predetermined subset of the most active genes in a pathway. After correcting for
technology and tissue bias, adipogenesis remained the most significantly changed
pathway identified by IPA.

Splice variant and exon usage analyses. Next, we investigated which specific
forms of the top RNAs (ENSGs) identified by both models with positive and
negative β-values for age were most significantly associated with healthy skeletal
muscle aging. All splice variants (ENSTs) considered were obtained from the
Ensembl hg19 v82 (September 2015) database. Kallisto (v0.44) software was used to
find transcripts per kilobase million (TPM) values of 196,354 splice variants,
associated with the 57,205 total RNAs analyzed previously. These TPM values were
converted to log2-normalized transcripts per million [log2(TPM+ 1)]. Instead of
assessing absolute splice variant expression patterns with age, splice variant reads
for each participant were converted into a percentage of the participant’s total
variant counts for each top RNA. This percent change method was used to
determine how DTU changed with age. Afterwards, linear regression models were
built and plotted using the ggplot2 package (v3.2.1)83 to visualize how the pro-
portions of variant reads changed with respect to all other variants of each sig-
nificant RNA (ENSG) with age. All p-values and β-values were extracted to obtain
candidate splice variants (ENSTs) involved in healthy skeletal muscle aging. In this
exploratory step, a less conservative p-value threshold of 0.05 was used for all splice
variant analysis. In addition, for each significant splice variant identified, a linear
model was constructed and plotted to display its expression in read CPM with age.

We also used the DEXSeq package (v1.26)42 to investigate changes in
differential exon usage between young (20–34 years, n= 12) and old (80+ years, n
= 5) participants. This strategy allowed us to identify major skipped exons. Data
were converted to bed files for DEXSeq analysis. Here, a more stringent FDR-
adjusted p-value threshold of 0.1 was used to obtain the most significant candidate
RNAs showing group-wise differences in exon usage among their splice variants. In
parallel, we also assessed splice variant (ENST) expression patterns with age using
linear regression and a p-value threshold of 0.01, and compared these findings to
our DEXSeq results. A conservative p-value threshold of 0.01 was used, as
correction for multiple testing (Benjamini–Hochberg) drastically reduced the
number of significant transcripts, likely due to the small sample size (n= 53). Of all
the shared RNAs, two RNAs with highly significantly differentially expressed splice
variants were selected for further analysis. These expression levels were visualized
using the UCSC Genome Browser, to determine whether age-related changes in
exon expression within respective regions corresponded to the regions identified in
our DEXSeq analysis.

Lastly, GSEA (MSigDB v6.2)47 was conducted to explore the biological
pathways associated with the RNAs (ENSGs) with at least one significantly
changing splice variant with age, obtained from linear regression. For this analysis,
we again compared young (20–34 years, n= 12) and old (80+ years, n= 5)
participants.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All RNA-seq data used to generate Figs. 1–3, 6, and 7, and Supplementary Figs. 2–5 and 9–
17 are deposited in GEO (GSE164471), and data obtained from the Ensembl hg19 v82
(September 2015) database can be located here: ftp://ftp.ensembl.org/pub/grch37/release-82.
The mass spectrometry proteomics data used to generate Fig. 5 and Supplementary Figs. 6–8
have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository
with the dataset identifier PXD011967. Additional data inquiries or requests can be directed
to the corresponding author [L.F.]. Source data are provided with this paper.

Code availability
All R code used for this study is available upon request from the corresponding author [L.F.].
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