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BACKGROUND: We have demonstrated for the first time that a novel human AlkB homologue, ALKBH3, contributes to prostate cancer
development, but its clinical and biological roles in lung cancer remain unclear.
METHODS: Expression of both mRNA and protein of PCA-1 was examined by RT–PCR and western blotting. We also assessed
association with senescence and in vivo ALKBH3 treatment on orthotopic tumour cell inoculation, and analysed it clinicopathologically.
RESULTS: We have since found novel biological roles for ALKBH3 in human lung cancers, particularly in adenocarcinoma. Our
immunohistochemical analysis of human adenocarcinomas and squamous cell carcinomas of the lung not only showed overexpression
of ALKBH3 in these tumours but the percentage of cells positive for ALKBH3 also correlated statistically to recurrence-free survival in
adenocarcinoma. Knockdown of ALKBH3 by siRNA transfection induced expression of p21WAF1/Cip1 and p27Kip1 in the human lung
adenocarcinoma cell line A549, resulting in cell cycle arrest, senescence and strong suppression of cell growth in vitro. In vivo, peritoneal
tumour growth and dissemination was inhibited in nude mice, previously inoculated with the A549 cell line, by intraperitoneal injection
of ALKBH3 siRNA þ atelocollagen, as demonstrated by the reduction in both number and diameter of tumours developing in the
peritoneum.
CONCLUSION: We suggest that ALKBH3 contributes significantly to cancer cell survival and may be a therapeutic target for human
adenocarcinoma of the lung.
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A number of investigators are engaged in examinations of the clinical,
pathological and biological characteristics of both small-cell and non-
small-cell lung cancers (NSCLC); yet more than 60 000 people die of
lung cancer every year and the 5-year survival rate for patients with
the disease remains about only 15% (Alberg et al, 2007; Toyoda et al,
2008). Adenocarcinoma accounts for approximately 70% of NSCLC,
and the recent increases in the number of cases indicate an urgent
need to develop not only better treatment but also improve methods
of early diagnosis. The epidermal growth factor receptor (EGFR) has
recently been scrutinised as a potential target in lung adenocarcinoma
therapy because of its overexpression in and association with poor
prognosis of many solid tumours (Meert et al, 2002; Hirsch et al,
2003). The development of EGFR inhibitors gefitinib and erlotinib
initially showed dramatic effects in the treatment of lung adenocarci-
noma; however, tumours frequently acquire resistance to the drugs,
resulting in treatment failure (Sharma et al, 2007; Linardou et al,
2009).

DNA alkylation damage repair mechanisms are known to be
controlled by six genes (tag, ogt, ada, alkA, aidB and alkB). Among
them, ada, alkA, aidB and alkB are induced on exposure to a

sublethal dose of alkylating agents, called the adaptive response
(Sedgwick and Lindahl, 2002). In Escherichia coli , the alkB gene
product was identified as protein to carry out DNA repair by
oxidative demethylation (Kataoka et al, 1983; Dinglay et al, 2000;
Falnes et al, 2002; Trewick et al, 2002; Aas et al, 2003; Sedgwick
et al, 2007), and repairs both DNA and RNA methylation (Falnes
and Rognes, 2003; Falnes et al, 2007). Eight AlkB homologues
(ALKBH), designated hABH1 to hABH8, have since been identified
in human tissues (Tsujikawa et al, 2007). In previous studies on
prostate cancer conducted in our lab, we isolated a highly
expressed protein that we originally designated as prostate cancer
antigen-1 (PCA-1) (Konishi et al, 2005). We further characterised
this protein in terms of its effects on prostate cancer cell survival
and invasion through modulation of the discoidin domain receptor
1 (DDR1) (Di Marco et al, 1993; Vogel, 1999; Curat and Vogel, 2002;
Ongusaha et al, 2003; Shimada et al, 2008). AlkB homologue-3 thus
seems to participate in a wide range of biological functions involving
survival and invasion of cancer cells.

In this study, we found not only overexpression of ALKBH3 in
lung adenocarcinoma cells but also a correlation between
expression profile and recurrence-free survival (RFS). In addition,
ALKBH3 silencing through siRNA transfection effectively induced
cellular senescence and growth suppression of lung adenocarci-
noma cells both in vivo and in vitro. AlkB homologue-3 may thus
join EGFR as both a new molecular target in cancer therapeutics
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and as another useful clinicopathological marker in the manage-
ment of human non-small-cell lung cancer.

MATERIALS AND METHODS

Cell culture

The non-small-cell lung cancer cell line A549, originating from a
human lung adenocarcinoma, and RERF-LC-AI, originating from a
human squamous cell carcinoma, were purchased from RIKEN Bio
Resource Center (Tsukuba, Ibaraki, Japan) and cultured in RPMI
supplemented with 10% fetal bovine serum.

Antibodies and preparation of antisera

Antibodies to caspase-3 were supplied by PharMingen (San Diego,
CA, USA), those to caspase-8 by Medical and Biological Labora-
tories Co., Ltd. (Nagoya, Japan), to caspase-9 by Cell Signaling
Technology (Cambridge, MA, USA) and to actin by Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA). Anti-ALKBH3 antisera
were raised in rabbits against the synthetic peptide of ALKBH3
(peptide sequence NKQKSKYLRGNRNS) as an antigen. Aliquots
of 0.5 mg peptide were emulsified in equal volumes of Freund’s
Complete Adjuvant and injected s.c. at several sites into each
rabbit. Antiserum was prepared and the relative reactivity of the
antisera evaluated against the synthetic peptide by ELISA; those
antisera showing high titres were affinity-purified using SulfoLink
(Pierce Biotech, Rockford, IL, USA).

Preparation of cell lysates and western blotting analysis

We resolved the cell lysates from A549 in SDS polyacrylamide gels
and transferred them onto polyvinylidene difluoride membranes
(Millipore, Bedford, MA, USA), which were blocked in 5%
skimmed milk at room temperature for 1 h. The membranes were
then incubated with each of the antibodies described in the
previous section for 1 h, followed by incubation with horseradish
peroxidase-conjugated anti-mouse or anti-rabbit IgG (Amersham
Pharmacia Biotech, Piscataway, NJ, USA). We detected peroxidase
activity on X-ray films using an enhanced chemiluminescence
detection system.

siRNA transfection of ALKBH3

Transfections were carried out using the Lipofectamine system
(Invitrogen, Tokyo, Japan) in accordance with the manufacturer’s
protocol. We seeded 2� 106 cells from each lung cancer cell line in
60 mm dish plates and transfected them with either 100 nmol l�1 of
control RNA (Santa Cruz Biotechnology) or ALKBH3 siRNA. AlkB
homologue-3 siRNA duplexes, generated with 30-dTdT overhangs
and prepared by Qiagen (Tokyo, Japan), were chosen against the
following DNA target sequences for ALKBH3: 50-TACCACTGCTA
AGAGCCATCTCC-30 and 50-ACCTGCTGAGGTTCTTTGAACAC-30.

Tissue samples and immunohistochemistry

We obtained 86 specimens of human lung adenocarcinoma and 46
specimens of lung squamous cell carcinoma from patients at Nara
Medical University Hospital. All patients provided informed
consent before collection of specimens. Some patients received
post-operative chemotherapy; however, no alkylating reagents
such as cyclophosphamide, ifosfamide, melphalan and busulfan
were administered.

The sections were incubated with the primary antibodies to
ALKBH3 at 1 : 100 dilution for 16 h at 41C and the reactions were
visualised using a Histofine kit (Nichirei, Tokyo, Japan) with
diaminobenzidine as the chromogen, followed by haematoxylin
counterstaining. The intensity of immunohistochemical staining

was evaluated at 100� magnification (Table 1). No chemo- or
radiation treatments had been performed before resection. The
sections were fixed and paraffin embedded first. We investigated
lung adenocarcinoma and squamous cell carcinoma diagnosed
with certainty at Nara Medical University Hospital.

Cell cycle analysis

We performed cell cycle analyses by flow cytometry as previously
described (Shimada et al, 2003), and compared a change in the cell
count in each period. All experiments were conducted at least
thrice in duplicate.

In vivo ALKBH3 treatment on orthotopic tumour cell
inoculation

A549 (2� 106) or RERF-LC-AI cells suspended in 100ml medium
were instilled into the intraperitoneal cavity of 5-week-old male
BALB/c nude mice. All mice were purchased from Charles River
Japan, Inc. (Kanagawa, Japan). At 7 and 14 days after the cell
inoculation, we injected either control RNA or 10mmol l�1 of the
ALKBH3 siRNAþ atelocollagen (Atelogene, Koken Co., Ltd, Tokyo,
Japan) mixture into groups of 11 mice. All mice were killed 28 days
after injection into the intraperitoneal cavity. Tumour response was
evaluated by measurement of maximum tumour diameter and
number of tumours formed in the peritoneum and liver.

Reverse transcription – PCR

Using the OneStep RT– PCR kit (Qiagen), we extracted total RNA
from the homogenised A549 cell line using Trizol reagent and
subjected it to reverse transcription–PCR (RT–PCR). PCR conditions

Table 1 Clinicopathologic characteristics in lung adenocarcinoma and
squamous cell carcinoma

Adenocarcinoma Squamous cell carcinoma

Gender
Male 45 39
Female 41 7

Age
o70 41 12
70p 45 34

Median 71 years
range 48–91

Median 75 years
range 56–88

Tumour diameter
o30 mm 55 24
30 mmp 31 22

Stage
IA 46 22
IB 21 12
IIA 5 6
IIB 3 5
IIIA 11 1
IIIB 0 0
IV 0 0

Vascular invasion
(+) 26 8
(�) 60 38

P-factor
(+) 21 14
(�) 65 32

Total 86 46
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were 951C for 30 s, 55– 601C for 30 s and 721C for 1 min through a
total of 30 cycles. The PCR primer sequences for ALKBH3 were
50-AGATGTACTGGTTCCCTGGC-30 (sense) and 50-CCTCACGGA
ACACATGGTAG-30 (antisense). For glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), the primers used were 50-ACCACAGT
CCATGCCATCAC-30 (sense) and 50-TCCACCACCCTGTTGCT
GTA-30 (antisense). The PCR products were analysed on 1.5%
agarose gel and visualised by ethidium bromide staining.

Statistical analysis

Data were statistically analysed using the Student t-test or, for non-
parametric analysis, the Kruskal–Wallis test. Survival analyses for
biochemical recurrence were evaluated using the Kaplan–Meier
method and the log-rank test. Results were considered significant
at Po0.05.

RESULTS

Expression of ALKBH3 in human NSCLC

Before we began the larger study, we initially performed a limited
survey of the expression profile of ALKBH3 using four samples
each of small-cell lung cancer, adenocarcinoma and squamous cell
carcinoma (Figure 1). Immunohistochemical results showed that
ALKBH3 was highly expressed in 75% of both adenocarcinoma
and squamous cell carcinoma samples, but expressed to a lesser
degree in only 25% of small-cell carcinomas. On the basis of these
initial results, we examined the relationship between ALKBH3
expression and selected clinicopathological parameters in 132
surgical specimens of NSCLC, comprised of 86 human lung
adenocarcinomas and 46 squamous cell carcinomas, in more detail
(Table 1). Of those specimens, 50% of adenocarcinomas and 56.5%
of squamous cell tumours demonstrated X30% of cells immuno-
positive for ALKBH3 (Figures 2A and B). In lung adenocarcinoma
only, ALKBH3 positivity was also statistically associated with
recurrence-free survival and with factors such as gender, tumour
stage and degree of pleural invasion (P-factor) (Figure 2C); these
associations did not hold for squamous cell carcinoma (data not
shown).

ALKBH gene silencing and cell survival

At the beginning of the experiment, we evaluated RNA expression
of ALKBH3 by real-time RT–PCR analysis as demonstrated in the
following figures, but the results were not completely consistent
with immunohistochemical data. AlkB homologue-3 protein in
human lung-cancer cells may be stabilised by a posttranscriptional
and/or post-translational mechanism including ubiquitin–protea-
some signals. To confirm, we checked whether ALKBH3 was
downregulated by siRNA transfection by both RT–PCR and
western blotting in this study.

In the human lung adenocarcinoma cell line A549 RT–PCR and
western blotting data showed that ALKBH3 gene expression was
significantly reduced by transfection with 100 nM siRNA (Qiagen)
for 72 h (Figure 3A). As demonstrated in Figure 3B and C, ALKBH3
gene silencing induced cell cycle arrest at the G1 phase, resulting in
inhibition of cell growth.

Gene silencing through siRNA transfection: senescence
and apoptosis

Cell cycle arrest is known to induce cytotoxicity, including cellular
senescence and apoptosis. After silencing ALKBH3 by siRNA
transfection, A549 cells were found to be senescent using the
cellular senescence marker, SA-b-gal (Figure 4A), and we detected
induction of p27 and p21 in a time-dependent manner (Figure 4B);
however, apoptosis was not induced as evidenced by propidium

iodide staining, and cleavage in caspases 3, 8 and 9 were not
observed after ALKBH3 gene silencing (data not shown). It
therefore appears that, in human lung adenocarcinoma cells,
ALKBH3 knockdown inhibits cell survival, presumably through
p21/p27-mediated cell cycle arrest at G1, followed by cellular
senescence.

In vivo effects of ALKBH3 gene silencing on tumour
growth

To study the effects of ALKBH3 gene silencing in vivo, we
constructed an animal model of intraperitoneal inoculation of
A549 and RERF-LC-AI cells using nude mice. At 7 and 14 days
after intraperitoneal injection of cancer cells, control siRNA or
ALKBH3 siRNA was intraperitoneally injected in the presence of

Figure 1 Immunohistochemical detection of ALKBH3 in lung adeno-
carcinoma, squamous cell carcinoma and small-cell carcinoma. (A) sample
of adenocarcinoma. (B) sample of squamous cell carcinoma. (C) sample of
small-cell carcinoma. Immunohistochemical results showed that ALKBH3
was highly expressed in adenocarcinoma and squamous cell carcinoma, but
less expressed in small-cell carcinoma.
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atelocollagen as described in Materials and Methods. After 28 days,
all mice were killed and tumour masses on/in the peritoneum and
liver were removed and measured (Figures 5A and B). As shown
in Figure 5C, the numbers of tumours formed in the peritoneum
in our nude mouse model were significantly decreased in mice
receiving ALKBH3 siRNA compared with mice receiving control
siRNA. To validate our findings, we examined whether ALKBH3
gene silencing in vivo affects squamous cell carcinoma using the
human lung squamous cell carcinoma cell line RERF-LC-AI, but
no significant differences in tumour formation were observed
between the two groups injected with either ALKBH3 siRNA or
control RNA (data not shown). The results were thus in-line with
clinicopathological data, both in adenocarcinoma and squamous
cell carcinoma.

DISCUSSION

We originally detected ALKBH3 expression in the prostate, and
were able to demonstrate that a number of molecules associated
with ALKBH3 were involved in cancer metastasis or resistance to
anticancer drugs. In this study, we show that ALKBH3 has
important roles in the survival and progression of human NSCLC
cells, both in vitro and in vivo. We also tried to clarify whether
ALKBH3 influences cell cycle progression and survival in human
lung carcinoma.

Eight mammalian AlkB homologues (ALKBH1-8) are currently
identified (Kurowski et al, 2003). Furthermore, in 2007, the FTO
(fat mass and obesity associated) gene was found to encode a
functional homologue of AlkB (Gerken et al, 2007; Sanchez-Pulido
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and Andrade-Navarro, 2007), and two more genes, TET1 and TET2
(Tahiliani et al, 2009; Ito et al, 2010), suggested possibility as a
similar mechanism.

ALKBH2 and ALKBH3 share the ability of E.coli AlkB to directly
reverse nucleic acid damage in vitro (Falnes et al, 2002; Trewick
et al, 2002), and we reported in a recent study that ALKBH8 has
important roles in the survival and progression of human
urothelial carcinoma both in vitro and in vivo (Shimada et al,
2009). The AlkB family of genes is one of several that control repair
of the cytotoxic damage generated in both ssDNA and RNA by

SN2-alkylating agents; the in vivo function of ALKBH3 is still
unclear, but it has also been shown to repair DNA and RNA
basepair lesions (Dinglay et al, 2000; Aas et al, 2003). Alkylation of
DNA, RNA and proteins results in induction of cytotoxic and
mutagenic DNA damage, most of which is subject to excision and
postreplication repair. It is well known that, in response to DNA
damage, activation of either p16/Rb, p19/p53/p21 or PTEN/p27
can initiate or enhance cellular senescence (Chu et al, 2008),
resulting in growth reduction and inhibition. DNA damage elici-
ted in response to extracellular stresses, including exposure to
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blotting. They were induced in a time-dependent manner. **Po0.05.
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chemotherapeutic drugs, can exhibit significant antitumour effects
by inducing senescence, often termed premature senescence
(Robles and Adami, 1998; Schmitt et al, 2002; Ricci and Zong,
2006); current chemotherapeutic drugs such as irinotecan,
daunorubicin, hydroxyurea, retinoic acid and the previously
described gefitinib are closely associated with cellular senescence
through their cytotoxic effects (te Poele et al, 2002; Hotta et al,
2007). Cyclin-dependent kinase inhibitors and certain genes such
as p16INK4a, p21WAF1/CIP1, p27KIP1 and p53 have important roles in
induction or maintenance of senescence by inhibiting the cell cycle
progression at G1 arrest (Sherr and Roberts, 1999; Adams, 2009).
Cisplatin induces cell cycle arrest through the p16/p53-dependent
pathway in combination with increased expression of the p53
downstream effector p21, and induces characteristics of senescence
rather than apoptosis. We examined whether cell death induced by
ALKBH3 silencing could also be due to apoptosis, but cleavages of
PARP and caspases 3, 8 and 9 were not observed, leaving us to
infer that senescence was the underlying cause of growth
inhibition and death. Senescence has been shown to be involved
in antitumour effect by various anticancer agents and by ionising
radiation (Wainwright et al, 2001; Han et al, 2002; Mansilla et al,
2003). In this study, we evaluated the role of ALKBH3 in cancer cell
survival, but not in the sensitivity to anticancer drugs including
alkylating reagents. Knockdown experiments using siRNA revealed
that ALKBH3 contributes to lung adenocarcinoma cell growth
through accelerating G1/S transition. As generally accepted, cancer
cells arrested at G1 phase are much more sensitive to DNA
damaging reagents; therefore, ALKBH3 may be one of the key
molecules that determine chemotherapeutic efficacy in lung
adenocarcinomas. We further examine whether ALKBH3 gene
overexpression or downregulation affects chemo- or radiosensi-
tivity. However, the surgical specimens were not exposed to
chemotherapeutic drugs.

We found that silencing ALKBH3 through siRNA transfection
significantly inhibited cell growth in human NSCLC in vitro and
in vivo and that, in culture, p21 and p27 were upregulated following
ALKBH3 knockdown. We know that p21 binds to CDK2, inhibiting
kinase activity in various types of cancer cells and inducing cell
cycle arrest at G1 with subsequent cellular senescence (Sherr and
Roberts, 1995, 1999; Chang et al, 2000). p21 protein or mRNA is
regulated at both the transcriptional and posttranscriptional levels.
Among the transcription factors that increase p21 mRNA levels are
Sp1, Sp3, E2Fs, STATs and AP2; in addition, p21 transcription is
upregulated in response to DNA damage and to p53-mediated
tumour suppressor signals (Gartel and Tyner, 1999). p27, on the
other hand, inhibits the catalytic activity of CDK4, also resulting
in cell cycle arrest at G1 – and eventual senescence – through
phosphorylation of Rb protein (Sherr and Roberts, 1995;
Alexander and Hinds, 2001). However, we did not find significant
modulation in A549 cells of either p53 or Rb protein in response to
ALKBH3 gene silencing (data not shown). Of course, we acknowl-
edge the possibility that any DNA damage occurring after ALKBH3
silencing in lung adenocarcinoma cells may induce transcriptional
factors other than p53/Rb that upregulate both p21 and p27, and

we cannot deny the possibility that the ubiquitin–proteasome
protein degradation pathway may be partly involved in p21, p27
induction.

Immunohistochemistry clearly showed that ALKBH3 was highly
expressed in human NSCLC, both in adenocarcinomas and in
squamous cell carcinomas, but ALKBH3 expression profiles
correlated, in a statistically significant manner, to recurrence-free
survival only in cases of adenocarcinoma, implicating ALKBH3
expression as a useful diagnostic and prognostic factor for
adenocarcinoma outcome. At present, it is unclear to us as to
why ALKBH3 would be more highly expressed in non-small-cell
cancers than in small-cell lung carcinomas, although, in studies by
other investigators, high ALKBH3 expression has been detected in
adenocarcinomas of other organs, such as prostate and colon
(Tasaki M et al, manuscript in preparation), which, therefore,
raises the possibility that expression may be associated specifically
with glandular epithelial tumourigenesis. The different environ-
mental and genetic backgrounds of tumours may also explain
expression variation; squamous cell carcinoma is highly associated
with smoking history and male gender, whereas adenocarcinomas
frequently show EGFR mutations and occur more often in women.
Cancer location in terms of tumour microenvironment may also
have a role – adenocarcinomas tend to be located in the peripheral
lung, whereas squamous cell carcinomas arise preferentially from
hilar regions. The presence and percentage of ALKBH3-positive
cells might offer a meaningful way to predict/detect cancer
recurrence at an earlier stage; moreover, targeting therapy to the
ALKBH3 gene might markedly improve the clinical outcome for
patients with adenocarcinoma. There is precedence in that
mutations in both ras and EGFR in NSCLC have recently been
used in the clinical setting to predict outcome; in fact, patients
whose tumours show K-ras mutations, with or without increased
EGFR copy number, have been shown to have a 496.5% chance of
disease progression (Massarelli et al, 2007; Kalikaki et al, 2008).
However, EGFR and ras mutations are not a common feature of
many tumours; our data strongly suggest that ALKBH3 would be
an important marker and target in a wide range of cancers.

In summary, ALKBH3 is overexpressed in NSCLC and has an
important role in carcinogenesis. ALKBH3 gene silencing inhibits
cancer cell survival, and targeted downregulation, as was carried
out in our in vivo study by injection of a siRNA and atelocollagen
cocktail, could be a novel clinical tool for lung cancer therapy. Our
immunohistochemical analysis further suggests that the ALKBH3
expression profile of tumours may be a predictive factor for
tumour recurrence of adenocarcinoma, in particular, and may also
join EGFR mutational analysis as a marker for sensitivity to
chemoradiation.
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