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Gene Expression Programming (GEP), a variant of Genetic Programming (GP), is a

well established technique for automatic generation of computer programs. Due to the

flexible representation, GEP has long been concerned as a classification algorithm for

various applications. Whereas, GEP cannot be extended to multi-classification directly,

and thus is only capable of treating an M-classification task as M separate binary

classifications without considering the inter-relationship among classes. Consequently,

GEP-based multi-classifier may suffer from output conflict of various class labels, and the

underlying conflict can probably lead to the degraded performance in multi-classification.

This paper employs evolutionary multitasking optimization paradigm in an existing

GEP-based multi-classification framework, so as to alleviate the output conflict of each

separate binary GEP classifier. Therefore, several knowledge transfer strategies are

implemented to enable the interation among the population of each separate binary task.

Experimental results on 10 high-dimensional datasets indicate that knowledge transfer

among separate binary classifiers can enhance multi-classification performance within

the same computational budget.

Keywords: gene expression programming, evolutionary multitasking, classification, genetic programming,

evolutionary computation

1. INTRODUCTION

Classification is a fundamental and active research topic in data mining. Various real-world
applications involving medical diagnosis, image categorization, credit approval, and etc., are
covered by classification techniques. Formally, in a classification task, a classifier is to assign a class
label k to the given input data Xi with features X1

i , X
2
i , ..., X

N
i after being trained by data X1, X2, ...,

XM , where N andM represent the number of the features and the sample size, respectively. In this
paper, we focus on the multi-classification problems in which the number of the candidate values
for class labels is larger than two.

Generally, machine learning methods involving Neural Networks (Krizhevsky et al., 2012),
Random Forests (Breiman, 2001), Support Vector Machine (Chang and Lin, 2011), and etc.,
are applied to solve the multi-classification problems. Considering the issue of the curse of
dimensionality, many evolutionary algorithms (EA) have been utilized to assist aforementioned
machine learning methods to tackle high-dimensional datasets, including Artificial Bee Colony
(ABC) (Hancer et al., 2018), Particle Swarm Optimization (PSO) (Xue et al., 2012; Tran et al.,
2018), and Genetic Programming (GP) (Chen et al., 2017). To be specific, these population-based
algorithms can evolve individuals with a fitness function with respect to the machine learning
classifier, and therefore can be conducted in either single-objective or multi-objective fashion. By

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.01396
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.01396&domain=pdf&date_stamp=2020-01-17
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jinghuizhong@gmail.com
https://doi.org/10.3389/fnins.2019.01396
https://www.frontiersin.org/articles/10.3389/fnins.2019.01396/full
http://loop.frontiersin.org/people/799395/overview
http://loop.frontiersin.org/people/729331/overview


Wei and Zhong Knowledge Transfer for GEP-Based Classification

searching effective feature subsets and limiting the subset size
using EAs, the classifier can be trained in a more efficient way
and the classification results can be more interpretable.

Unlike other population-based algorithms that must be
implemented with a given machine learning classifier, GP is
capable of completing both feature selection and classification
independently owing to its tree structure. By converting the
tree structure of GP into a string structure, Gene Expression
Programming (GEP) (Zhong et al., 2017), a variant of GP, enjoys
the same benefit as GP of independent classification ability
with additional power of controlling bloat issue by restricted
string length (Ferreira, 2002). With the automatic construction
capability, GEP-based methods have emerged to show high
effectiveness on symbolic regression (Cheng and Zhong, 2018;
Huang et al., 2018; Zhong et al., 2018b), time series prediction
(Zuo et al., 2004), knowledge discovery (Zhong et al., 2014),
and etc.

Although GP and GEP can construct classification rules
independently and have been prevailing in a plethora of
applications involving spectral image categorization (Rauss
et al., 2000), radar imagery recognition (Stanhope and Daida,
1998), medical diagnosis (Gray et al., 1996), credit approval
(Sakprasat and Sinclair, 2007), and etc., they cannot be directly
applied to multi-classification. To adapt GP and GEP to
multi-classification, most researchers are devoted to manually
configuring some contrived rules to achieve collision avoidance
of class labels, thereby combining the results of multiple binary
classifiers. In Muni et al. (2004), a novel evolutionary operator
is designed to guide the population, and a meta-heuristic rule
is supplied to iteratively remove output collision of different
binary classifiers. To avoid output collision, the order, that
the varying binary classifiers come into effect for prediction,
can also be redesigned according to the accuracy and the
reciprocal training samples (Zhou et al., 2003). Moreover, the
well-established multi-objective techniques can also enhance
the multi-classifiers by maintaining a pareto front of binary
classifiers by considering precision, recall, and classification rule
size, and employing negative voting to avoid output collision
numerically (Nag and Pal, 2015). Notably, any individual in
population of aforementioned GP and GEP can only be a binary
classifier, hence it is still unnatural to extend these algorithms
to multi-classification in despite of explorations in past few
years. Furthermore, since nearly all the GP-based and GEP-based
multi-classification methods straightforwardly depend on binary
classifiers, it is fitness function and combining strategy of binary
classifiers that relatively matter in the algorithmic design.

As discussed above, existing GP and GEP methods for multi-
classification generally adopt contrived rules to avoid output
collision of binary classifiers, and a crucial cause for output
collision is the separate training process for each binary classifier,
which potentially degrades the performance of multi-classifiers.
In fact, intuitively, a classification rule trained by binary classifiers
of one class can hopefully be utilized by another class as a
rule component that can to some extent boost its own binary
classification performance through recognizing the pattern
of negative samples. According to the consideration above,
this paper takes into account the Evolutionary Multitasking

paradigm (Gupta et al., 2015, 2017; Ong and Gupta, 2016;
Bali et al., 2019) to facilitate the multi-classification avoiding
output collision of binary classifiers by enhancing the knowledge
transfer among multiple binary classifiers. Equipped with the
capability of latent genetic transfer, Evolutionary Multitasking
can resolve many optimization problems simultaneously by
enabling the knowledge transfer among different problems
through the unified chromosome representation. In control of
the synergies of searching space for varying optimization tasks
(Gupta et al., 2016a,b; Da et al., 2018; Zhou et al., 2018),
Evolutionary Multitasking, which can be easily employed on
existing population-based algorithm (Feng et al., 2017; Chen
et al., 2018; Liu et al., 2018; Zhong et al., 2019), have shown
promising results on a vast number of cases in multi-objective
optimization (Gupta et al., 2016c; Feng et al., 2018), symbolic
regression (Zhong et al., 2018a), capacitated vehicle routing
problems (Zhou et al., 2016), expensive optimization tasks (Min
et al., 2017), and can be extended to a large scale version (Chen
et al., 2019; Liaw and Ting, 2019) to enable some more scalable
applications in the future. The methodology of Evolutionary
Multitasking paradigm naturally fits the multi-classification
problem, by treating each binary classification problem as an
optimization task within certain function evaluations. Notably,
concerning the multi-classification as Evolutionary Multitasking
problem does not require a design for unified representation
as the canonical Multifactorial Evolutionary Algorithm (MFEA)
(Gupta et al., 2015) does, since each binary classification
task (optimization task) in this scenario shares the same
solution representation.

For canonical GP, knowledge transfer especially for
Evolutionary Transfer Learning, has been widely investigated
in past few years. Generally, two sorts of strategies prevails
for knowledge transfer in canonical GP, modularization and
initialization (O’Neill et al., 2017). For modularization, fitter
canonical GP individuals in source domain can be evaluated
and extracted as new function units in the GP population
in the target domain (O’Neill et al., 2017), which eliminates
the uncommon features between source domain and target
domain. For initialization that is a really simple and direct
way, GP individuals of higher fitness value in source domain
and their subtrees often serve as the initial individuals and
favorable components to select (Muller et al., 2019). Initialization
techniques also include the knowledge transfer with respect
to the feature importance. Using the ranks and fitness value
of population in the source domain problems to vote for each
feature, relatively fair feature importance can be obtained to
guide the evolution of the target domain problems (Ardeh et al.,
2019). Whereas, most relevant researchers have focused on the
Evolutionary Transfer Learning, where one or several source
problems are applied to assist the target problems, rather than the
Evolutionary Multitasking, in which various problems are solved
simultaneously with the same priority. Moreover, the existing
works mainly rely on experiment design related to individual
structure of canonical GP, so it is possible that the same strategies
may not work in some variants of canonical GP. Therefore, as an
important variant of canonical GP, GEP, with a string structure
which is distinct from that of GP, should be investigated with
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FIGURE 1 | The encoding tree for mathematical expression.

some similar knowledge transfer techniques of Evolutionary
Multitasking that is more general than Evolutionary Transfer
Learning, for more potential promising possibilities. In this
paper, GEP methods with different variation operators are
employed with corresponding knowledge transfer techniques
to show the effectiveness and the limits of the Evolutionary
Multitasking methods in multi-classification, based on an
existing multi-classification framework designed for GEP.

The rest of this article is organized as follows. Section 2
introduces a GEP-based multi-classification framework that the
experimental study is based on. The canonical Evolutionary
Multitasking paradigm, MFEA, is described briefly in section
3. The proposed knowledge transfer strategies are presented
in section 4, followed by the experimental study in section 5.
Eventually, the conclusions are drawn in section 6.

2. GEP MULTI-CLASSIFICATION
FRAMEWORK

AccGEP (Zhou et al., 2003) is a well designed GEP-based
algorithm for multi-classification. Hence, considering the
prevalence and the maturity of this framework, this article will
employ AccGEP to serve as the baseline method for the study
of knowledge transfer. In this section, the basic concept and the
algorithmic details of GEP will be presented, followed by the
introduction of AccGEP.

2.1. GP and GEP
As a member of evolutionary algorithms, GP generally considers
each solution for optimization problem as an individual of the
whole population, in which the evolution of the algorithm is
driven by variation operators encompassing mutation operators,
crossover operators, and selection operators (Poli et al., 2008)
among the individuals, like most meta-heuristic algorithms.

Different from other population-based methods, the
representation of each individual of GP is a mathematical
expression encoded by a tree, where input variables are

FIGURE 2 | The encoding string for mathematical expression.

represented by leaf nodes, and the function operators like
“−” and “sin,” are represented by intermediate nodes having
offspring size of the same value with corresponding operands.
For instance, Figure 1 depicts an individual that is encoded by
mathematical expression, 2A exp(A) − A + cos(B − A), in GP
population. For this mathematical expression, given the specific
values of A and B, the output of the individual can be decoded
in a bottom-up fashion to the root node of the representation
tree. In canonical GP, the mutation, crossover, selection variation
operators are applied to search for the more effective tree
structures, thereby yielding the acceptable individuals with the
satisfactory fitness values.

Distinct from canonical GP, GEP owns a string-based
structure for each individual. Illustrating the same mathematical
expression with the encoding tree of Figure 1, the string-based
structure of GEP individual can be depicted as Figure 2, where
the encoding tree is encoded by the string structure in a
breadth-first-search traverse way. As illustrated by Figure 2, each
individual of GEP population is composed of two parts, head
part and tail part. In GEP, both the function units and terminal
(i.e., variable) units constitute the head part of the string, while
no function units but only the terminal units occur in tail
part. During the evolution process of GEP, each string-based
individual maintains a fixed length for both the head part and
the tail part. Precisely speaking, a predefined constraint should
be exerted on the length of head part(h) and the length of tail
part(l) that:

l = h · (u− 1)+ 1 (1)

where u amounts to the maximum operand of the function unit,
so as to guarantee that the encoded mathematical expression is
complete (Poli et al., 2008). Furthermore, due to the breath-first-
search traverse encoding mechanism, it is possible that some of
the nodes saved in the string structure will not be utilized to
encode mathematical expression.

2.2. AccGEP for Multi-Classification
With the capability of constructing mathematical expression,
GEP-based algorithms is able to solve regression problems
naturally, and can tackle binary classification issues by posing
threshold values on regression tasks. For multi-classification
problems, like most GEP-based classifiers, AccGEP, employed
one-against-all (Aly, 2005) learning method, that is, treating an
M-classification problem asM binary classification tasks. In one-
against-all strategy, each binary classification problem is adopted
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to decide the data samples whether or not belong to a specific
class, according to the fittest rule in the GEP population as follow:

{

Xi ∈ Classj,GEP(Xi) > 0
Xi /∈ Classj,GEP(Xi) ≤ 0

. (2)

Algorithm 1: Covering Strategy

Input: E+ (set of positive examples), E− (set of negative examples)
Output: H (A set of GEP-based rules)

1: /* Initialization */
2: H← ∅
3: Lmin ←+∞ (minimum description length obtained)
4: LH ← 0 (current description length)
5: Ltheory ← 0 (theory bits)
6:

7: /* Learning */
8: Repeat

9: Learn a rule R to cover the positive samples in E+
10: E+ ← E+−{s | s can be covered by R}
11: /* Pruning */
12: Ltheory ← Ltheory+ number of bits for encoding R
13: Lexception(H) ←number of bits for encoding current

exceptions
14: LH ← 0.5 · Ltheory + Lexception(H)
15: If (LH < Lmin) Then
16: H← H ∪ {R}
17: Else

18: Termination
19: /* Update */
20: If (Lmin > LH) Then
21: Lmin ← LH
22: Until E+ == ∅

To deal with the complex feature spaces in multi-classification
(Zhou et al., 2003), AccGEP applied the covering strategy to learn
multiple rules for each binary classification problem. As shown
in the algorithm 1, for each binary classification issue, AccGEP
is designed to exploit a rule set that can cover all the positive
data samples, and each rule in the rule set should be learnt by
GEP and the according positive sample set with some criteria in
each iteration. To be specific, the fitness function of each rule is
designed as follow:

Fitness(R) =

{

0, Pre < 0
Pre · exp(Rec− 1), Pre ≥ 0

. (3)

where Pre, Rec represent the precision and recall in binary
classification, respectively. Generally, Pre is computed as the ratio
of true positive samples and predicted positive samples, while
Rec is computed as the ratio of true positive samples and all
positive samples. However, since the positive sample set, E+
in algorithm 1, shrinks in each iteration, a new formula for
computing Pre is presented in AccGEP to better take advantage
of the distribution information:

Pre = (
TP

TP + FP
−

P

P + N
) ·

P + N

N
(4)

FIGURE 3 | The flow chart for post pruning of AccGEP framework.

where TP, FP, P, N, stand for the number of true positive
samples, false positive samples, all positive samples in
training set, all negative samples in training set of binary
classification, correspondingly.

In order to allay the structural risks, the minimum description
length principle in information theory is employed as a pruning
technique for early stopping. As indicated in algorithm 1, L(H)
stands for the description length of the current rule set, H. The
learning process is terminated when the description length of rule
set no longer declines. Moreover, Lexception and Ltheory amount to
the bits for encoding the error of the rule set, and the bits for
encoding the rule set itself. The computation formula of the two
description length are defined as follow:

{

Lexception(H) = log2(C
FP
TP+FP)+ log2(C

FN
TN+FN)

Ltheory(H) = log2(Nc)
∑s

i=1 L(Ri)
. (5)

where TP, FP, TN, FN, Nc, s, L(Ri), represent true positive
samples, false positive samples, true negative samples, false
negative samples, the number of distinct symbols applied in GEP,
the number of the current rules, the valid length of individual for
rule Ri, accordingly.

Having obtained multiple decision rules for each binary
classification, a post-pruning technique is employed to combine
the rules to yield the final results of multi-classification.
Generally, as depicted in Figure 3 the combining strategy consists
of steps as follow:

• Evaluation: In evaluation process, all the active rules in the rule
set should be evaluated according to the fitness function as well
as the existing samples in the training set.
• Sorting: In sorting process, all the active rules in the rule set

should be sorted based on the fitness values.
• Selecting: In selecting process, the rule with the highest fitness

value is selected, then it is moved into an ordered rule set. For
the original rule set, the selected rule is removed.
• Update: In updating process, all the samples covered by the

selected rule in selecting process will be removed as well.
• Default Class: With remaining samples and remaining rules

that are able to cover any sample, AccGEP will proceed with
the cycle from step 1 to step 4 as illustrated in Figure 3.
Otherwise, the iteration will terminate and a default class label

Frontiers in Neuroscience | www.frontiersin.org 4 January 2020 | Volume 13 | Article 1396

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wei and Zhong Knowledge Transfer for GEP-Based Classification

is decided, so as to avoid the scenario when all the rules will
reject a new example. In general, the default class label will
be set as the one that has most samples in the remaining
sample set at the end of the algorithm cycle introduced above.
Nevertheless, when there is a tie in the sample count in the
remaining sample set or the remaining sample set is empty,
the default class label can be determined randomly.

Through post-pruning process, AccGEP can attain an ordered
rule set as well as a default class label. Subsequently, in the
prediction phase for testing data, each testing sample belonging
can be determined by the first rule that covers it in the ordered
rule set. If a testing sample is rejected by all the rules, then the
default class label will be assigned.

3. MULTIFACTORIAL EVOLUTIONARY
ALGORITHM

Inspired by the bio-cultural multifactorial inheritance, MFEA
(Gupta et al., 2015), a typical Evolutionary Multitasking
algorithm, is designed to fully exploit the potential of
population-based algorithm to solve several optimization issues
simultaneously. By introducing variables including factorial rank
r, skill factor τ , scalar fitness φ, MFEA can enable the knowledge
transfer among varying problems through a unified solution
representation. Initially, all the initial solutions in the population
should be evaluated across all the target problems. Subsequently,
each individual will be assigned with a skill factor τ to indicate
the task in which it has the most promising result. At length, the
skill factor τ is determined by the factorial rank r of an individual
across all the tasks as τ = argj min(rj), and then the scalar fitness

φ can be computed accordingly by φ = 1
rτ
. In order to improve

the algorithm efficiency, in the subsequent evolution process,
each individual will be only evaluated for the optimization task
of its skill factor. By enabling the associative mating (Gupta et al.,
2015), the skill factor of a certain individual can possibly undergo
the variation.

With the techniques of assortative mating and selective
evaluation for knowledge transfer, MFEA basically can comply
with the similar work flow with the conventional Evolutionary
Algorithms. In general, themain steps ofMFEA can be illustrated
as follow:

• Initialization: To start with, an initial population, P, is
produced in MFEA. Then, all the individuals should be
evaluated under all the problems, thereby getting the
corresponding τ , φ, r.
• Assortative Mating: In each generation, the offspring will

be generated through the conventional genetic operators
including mutation and crossover. In MFEA, a control
parameter, rmp, is applied to indicate the probability of the
crossover between two individuals of different skill factor
τ , which is concerned as a process of knowledge transfer.
Otherwise, the crossover for parents of the same τ , or the
mutation upon a single parent, is implemented.
• Selective Evaluation: Having generated an offspring population

O, those individuals that undertake the crossover of different

skill factor have undetermined τ . Intuitively, the skill factor
of an individual should be set randomly based on the values
of its parent. For those offsprings that merely undergo the
casual crossover or mutation operator, skill factor will simply
imitate their parents, known as a cultural transmission process
(Gupta et al., 2015). Subsequently, the whole population will
only be evaluated according to their best tasks. Aside from the
optimization task τ , the fitness value of an individual for other
problems should be assigned with ∞, in order that the true
factorial ranks r would not be affected.
• Population Update: At the end of each generation, the skill

factors and the scalar fitness of hybrid populationO∪P should
be re-evaluated to maintain only the individuals owning the
best scalar fitness.

As discussed in section 1, an essential trigger for output
collision in multi-classification is the separate training process
of each binary classifier. Intuitively, binary classifier for different
class labels might share some common structures and even
some influential features. Based on the consideration above,
it is believed that the latent genetic transfer attribute in
Evolutionary Multitasking can enhance the performance of the
existing GEP-based classifier by enabling the interaction among
binary classifiers.

4. PROPOSED ALGORITHM

In this section, an Evolutionary-Multitasking-based classification
method using GEP (EMC-GEP) is proposed. First, the general
framework of the algorithm architecture is given. Then different
knowledge transfer strategies for distinct GEP variation operators
are discussed in section 4.2.

4.1. Framework
As portrayed by Figure 4, the whole algorithm can be divided
into four sections. First, theM-classification problem is degraded
as M binary classification through One-Against-All learning.
Then, each binary classification will be concerned as an
optimization task that is tackled by each subpopulation, POP,
that owns an archive, A. During the iterative evolution, all
the subpopulation will undergo the variation operator as well
as knowledge transfer. As depicted in Figure 4, the evolution
process of each subpopulation include three parts: evolution
within own subpopulation, knowledge transfer from its own
archive, and knowledge transfer from the other archives. Notably,
after each evolution iteration, the archive of each subpopulation
will be updated as well. After the evolution process, the whole
population can obtain various classification rules for each binary
classification problem. With these learnt classification rules,
the rules combination process (i.e., the post-pruning process
depicted in section 2 and Figure 3), can combine all the binary
rules to yield an ordered rule set (as well as a default class label
as explained in section 2), so as to resolve the M-classification
problem eventually. Each section will be detailed as follows.
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FIGURE 4 | The general flow chart for the EMC-GEP framework.

4.1.1. One-Against-All Strategy
One-Against-All is a casual strategy that treats the M-
classification as M separate binary classification problems. As
a variant of Error-Coding Output Codes (ECOC) (Dietterich
and Bakiri, 1994), One-Against-All strategy is computationally
efficient, compared with other ECOC-based strategies. Based on
One-Against-All strategy, EMC-GEP will learn multiple rules
for each binary classification problem, which is the same as the
covering strategy of AccGEP as algorithm 1, thereby enhancing
the robustness and stability of the classification framework.

4.1.2. Paradigm in Multi-Population
In this article, the MFEA paradigm is implemented in a
multi-population fashion as illustrated in Figure 4, with each
subpopulation focusing on one optimization task. Since the
canonical paradigm simply evolves the population as a whole
encompassing all the target tasks and only one individual is
reserved for each task in each iteration, it is possible that
the collected information for each task is scant to guide the
population to evolve. Moreover, the original framework ofMFEA
have only one control parameter rmp (Gupta et al., 2015) to
enable the assortative mating for individuals of the unified
representation, but such a framework cannot facilitate more
flexible and extensible operation based on the population. Hence,
based on discussion of Chen et al. (2018), Gong et al. (2019),
and Liu et al. (2018), multi-population mechanism is employed
to improve the stability of the MFEA paradigm and to enable
more flexible operation on both sub-population and mixed-
population (Chen et al., 2018).

For each task, a population, POP, is maintained along with
an archive, A. Population, POP, is maintained to enable the

flexible population-based operations and variation operators.
Archive, A, is used to record some successful individuals of the
corresponding POP, in order that those successful individuals
hopefully can transfer their valuable solution components to
its own POP or other POP in later knowledge transfer phase.
Similar with the POP, each archive A will be updated according
to the reciprocal subpopulation. Initially, each archive A should
be initialized randomly. Then, after each evolution iteration, the
individuals in population and the individuals in archive will be
both sorted. With certain archive replacement probability, arp,
the individuals in archive will be replaced by some individuals
in population. Notably, the archive size is strictly smaller than
that of population. Hence, with larger arp, the archive tends
to resemble the fittest individuals in current population, while
with smaller arp, more successful individuals in the searching
history can be recorded, thereby enhancing the diversity of the
archive individuals. Specifically, the archive update mechanism is
illustrated as algorithm 2. It is notable that the fittest individual
for each population may not be stored in the archive. The
rationale behind this idea is intuitive. Generally, the archive is
used to update two sorts of populations, its own population
and other populations. To update its own population, the fittest
individual is not necessarily stored in the archive since the self
population expects more randomness and history information
from the archive. To update other populations, although the
fittest individual may own the most useful information in its
own problem context, the synergies between the source archive
and target population is uncertain. Therefore, we apply a loosely
organized update archive to store both the good individuals and
historical individuals to provide a more comprehensive transfer
for other populations.
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Algorithm 2: Archive Update

Input: POPi, Ai, arp, n(size of Ai)
Output: Ai

1: /* Sorting */
2: Sorting population POPi according to the fitness value
3: Sorting archive Ai according to the fitness value
4:

5: /* Update */
6: j← 0
7: For j < nDo

8: If (rand(0, 1) < arp) Then
9: Ai,j← POPi,j
10: (Ai,j, POPi,j amount to the j-th individual in

Ai, POPi)
11: j← j+ 1
12: End For

13: Return Ai

4.1.3. Evolution Process
Distinct from previous works on knowledge transfer in multi-
population (Chen et al., 2018; Liu et al., 2018), where the
evolutionary operator is directly employed on two different
populations, this paper utilizes the archive as the group of
representative individuals of each population for knowledge
transfer. As depicted in Figure 4, the evolution process of EMC-
GEP involve three sections, self evolution (i.e., POPi ← POPi),
self transfer (i.e., POPi ← Ai), cross transfer (i.e., POPi ← Aj).
The reason why self transfer is adopted in this paper is that, some
useful solution components may not be fully exploited and may
be forgotten by the subpopulation. Therefore, it is believed that
the knowledge transfer from the “former” subpopulation toward
the current subpopulation may help as cross knowledge transfer.

Generally, MFEA paradigm employs a probability variable
rmp to control the mutual knowledge transfer for individuals of
distinct skill factors (Gupta et al., 2015). Whereas, in this paper,
a step-wise transfer control mechanism is applied to enable a
more stable knowledge transfer process like (Da et al., 2018).
As illustrated in algorithm 3, the transfer process is launched
whenever the iteration count t can be divided by a certain transfer
interval δ. Unlike those methods that try to adaptively select
a similar task to transfer (Chen et al., 2019), as a preliminary
study, this paper simply randomly selects an archive Aj for each
subpopulation POPi, where imay not necessarily differ from j due
to the discussion above.

It is notable that, same with covering strategy of AccGEP
in algorithm 1, EMC-GEP also learns multiple rules for each
binary classification task, and consistently the number of each
binary classfication rules for distinct tasks can be different.
Hence, it is possible that some binary classification tasks are
still searching for the rules to cover the positive samples, while
other tasks may already terminate. In this special circumstance,
those archives, of which the reciprocal population’s learning
process has terminated, will still remain for knowledge transfer
of those active population, and will undergo no changes during
the evolution.

Algorithm 3: Evolution with Knowledge Transfer

Input: POP1, POP2, ..., POPM ,A1,A2, ...,AM , δ (transfer interval)
Output: New Population and New Archives

/* Preparation */
t← 1
Generate initialM population randomly.
InitializeM archive with corresponding population.
/* Evolution */
While ending condition not satisfied Do

/* Searching */
For each subpopulation POPi Do

If t % δ == 0 Then
/* Transfer */
k← rand(1,M)
POPi ← Transfer(POPi, Ak)

Else

Self Evolution
End For

/* Updating */
For each archive Ai Do

Ai ← Update(POPi,Ai) as Algorithm 2
End For

t← t + 1
EndWhile

4.1.4. Rules Combination Using AccGEP
After the evolution process for those population aiming at
varying binary classification tasks, we can obtain a vast number
of classification rules, among which multiple rules are utilized
for the same binary classification issue. To avoid output conflict,
a combination phase is necessary for analyzing these rules. In
this paper, EMC-GEP will adopt the same strategy as the post-
pruning phase in AccGEP, which has already been specifically
explained in Figure 3 and section 2.2.

4.2. Knowledge Transfer
The knowledge transfer has been investigated in various
population-based algorithms, and the investigation mainly
concentrated on the chromosome representation (Zhou et al.,
2016; Zhong et al., 2018a), and the problem similarity (Da et al.,
2018; Chen et al., 2019). However, in this paper, the problem
representation for each binary classification problem does not
require redesign, and we tend to select the archive randomly
to assist the target task. The vital concern of our study is that,
most knowledge transfer research highly depends on the data
structure, and the efforts on GEP-based method are insufficient
to supply a brief understanding of knowledge transfer effect on
GEP. Hence, to add to a preliminary insight, this paper tries to
employ knowledge transfer operations on different evolutionary
operators in GEP.

4.2.1. GEP With Canonical Variation Operator
Originally, the variation operators of GEP include mutation
operator and crossover operator (and sometimes rotation
operator) based on the string structure in Figure 2. Considering
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the data structure, the variation operator that really matters in
knowledge extraction of the canonical GEP is crossover operator,
since crossover operation can extract a continuous segment of
an individual, and it is believed that the continuous segment can
serve as useful genetic material for some classification problems.

To be specific, in GEP, crossover operator involves two
operations, single-point crossover and two-point crossover.
For single-point crossover, the crossover operation of GEP
individuals resemble the behavior of Genetic Algorithm. Due
to the breath-first-search encoding style of GEP, the forward
part of crossover can serve as a skeleton of an expression tree.
Taking the expression tree in Figure 1 as an example, the first
four operators, “+,” “−,” “cos,” “∗,” in a combination as first four
nodes in a string-based individual, can construct a basic skeleton
of the whole mathematical expression, which can be regarded as
a form of transferable knowledge. For two-point crossover, the
skeleton of an expression tree can also be extracted in the same
way as one-point crossover. Moreover, with more segmented
structure, the two-point crossover can hopefully extract the useful
structure of an individual more flexible by enabling cutting out
the intermediate string section of GEP individual.

To achieve the knowledge transfer through crossover
operator, whenever knowledge transfer is launched in algorithm
3, the two parents of a crossover operator should be selected
in target population POPi and the source archive Ak separately.
Aside from the selection choice, the crossover operation remains
unchanged in other respects.

4.2.2. GEP With DE-Based Variation Operator
Besides the conventional evolutionary operators, some
variants of GEP methods can employ DE-based operators by
transforming the string construction process into a continuous
optimization method, which is highly extensible and has
shown promising capability in applications like symbolic
regression (Zhong et al., 2015).

In general, individuals in Differential Evolution (DE) (Storn
and Price, 1997) should undergo mutation operation, where
each element in individual will be replaced, in certain
probability, by some random element added to a scaled
difference element (Storn and Price, 1997). There are various
mutation strategies frequently applied in the literature involving
“DE/rand/1,” “DE/current-to-best/1,” “DE/best/1,” In this paper,
as in Zhong et al. (2015), “DE/current-to-best/1” is employed as
defined follow:

vi,g = xi,g + Fi · (xbest,g − xi,g)+ Fi · (xr1 ,g − xr2 ,g) (6)

where v, x, F, i, g, r1, r2, stand for new element, original element,
mutation control parameter, individual index, dimension index,
the first random index, and the second random index,
accordingly. To apply the DE-based operator in GEP, SLGEP
(Zhong et al., 2015) can transform the difference operation in
equation 6 into a matching binary operator as:

ψ(a, b) =

{

1, a 6= b
0, a = b

. (7)

Then subsequently, the mutation operation of DE in equation 6
can be changed into a probability computation process:

φ = 1− (1− F · ψ(xbest,j, xi,j)) ∗ (1− F · ψ(xr1 ,j, xr2 ,j)) (8)

where the probability φ is adopted to control mutation operation
of a specific node on position j in string structure representation
in Figure 2. That is, when a random value in [0,1] is smaller
than corresponding φ, then the node in the reciprocal position
should be replaced by a newly sampled node, where the new
node is sampled by the frequency record of all the nodes in
the population as Zhong et al. (2015). The evolution process in
SLGEP can be conluded as algorithm 4.

Algorithm 4: Evolution Process of SLGEP

Input: F, r1, r2, x1, x2, ..., xM ,CR (replacement probability),
k(mandatory mutation index)
Output: New Population

For each individual xi Do

/* Variation */
For each dimension xi,j Do

Compute probability φ based on equation 8
If (rand1(0, 1) < CR OR j == k) AND
rand2(0, 1) < φ Then

ui,j ← “Frequency-based Assignment”
(Zhong et al., 2015)

Else

ui,j ← xi,j
End For

/* Selection */
If f (ui) < f (xi) Then

xi ← ui
End For

To achieve knowledge transfer based on the DE-based
operator in SLGEP, similar to the strategy for canonical operator,
this paper simply selects the individuals in archive to complete
the computation process in the DE-based operator. The core
computation part in DE-based operator is equation 8. According
to the transfer paradigm Transfer (POPi,Ak) in algorithm 3,
for computation of φ, xbest,j, xr1 ,j, xr2 ,j are selected from external
archive Ak, and xi,j is selected from population POPi. Notably,
the “Frequency-based Assignment” in the original work is
grounded on the frequency record of each sort of node in
the whole population, which can also concerned as a form of
useful knowledge especially for feature selection. Resembling
the feature-wise knowledge transfer in Ardeh et al. (2019), this
paper also enables the transfer of the node frequency by applying
the frequency record of the archive Ak upon the individual
assignment in population POPi.

5. EXPERIMENTAL STUDY

To verify the assumption that the proposed techniques
can hopefully allay the conflict of each binary classification
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TABLE 1 | Data information with dimension size, sample size, and class size.

Index Name Features Samples Classes

1 DLBCL-A 661 141 3

2 DLBCL-B 661 180 3

3 Armstrong-2002 2,063 62 3

4 Lapointe-2004 1,625 69 3

5 Alizadeh-2000 2,116 72 4

6 Wine 13 178 3

7 Lung Cancer 56 32 3

8 Urban Land Cover 148 675 9

9 TOX-171 5,748 171 4

10 GLA-BRA-180 49,151 180 4

problem, the comparative studies on 10 high-dimensional multi-
classification datasets for distinct GEP operators with their
according transfer strategy are conducted. Aside from the direct
comparative results, a relatively detailed discussion is also
provided for a deeper insight on the effectiveness of knowledge
transfer from various “source archives.” The comparison among
the proposed method, K Nearest Neighbor, and Decision Tree
is also provided. For all the experimental studies, the results are
yielded by 30 independent trials, and theWilcoxon sign-rank test
(Wilcoxon, 1992) with α = 0.1 is performed to check for the
significant difference of the experiment results.

5.1. Parameter Settings
Nearly all the fundamental settings of EMC-GEP are based on
the original recommended settings of AccGEP in Zhou et al.
(2003). In detail, the function set includes {+, -, *, /, Sqrt,
IF}. The terminal set totally depends on the given classification
problems, in addition to a list of constants, {1, 2, 3, 5, 7}. As
for the algorithmic parameters, the chromosome length, the
population size and the maximum iteration are 100, 1,000, and
1,000 respectively. The operator probability is set to 0.02 for
mutation, and 0.8 for crossover in which 0.4 for one-point
crossover, and 0.4 for two-point crossover.

Furthermore, for the DE-based GEP, SLGEP, Automatically
Designed Function (ADF) in Zhong et al. (2015) has been
removed to ensure the consistency as the AccGEP framework.
The function set, terminal set, chromosome length, population
size, maximum iteration should be set as the same settings as
AccGEP, as aforesaid. In terms of the DE-based evolutionary
operators introduced in section 4.2.2, the mutation factor, F,
crossover factor,CR, and themandatory index k, are all generated
randomly according to their corresponding domain.

The original parameters of EMC-GEP only involve the archive
replacement parameter, arp, as well as the transfer interval, δ. In
this study, based on the empirical trials of the authors, arp and δ
are set to 0.8 and 10 reciprocally for a preliminary study.

5.2. Experiment Data
The experiment datasets in the comparative study are mainly
high-dimensional low sample size data as illustrated in Table 1,
involving those datasets of which the dimension and sample

TABLE 2 | Accuracy comparison between AccGEP and EMCGEP under distinct

operators.

Data

index

AccGEP-GA EMCGEP

-GA

AccGEP

-DE

EMCGEP

-DE1

EMCGEP

-DE2

1 72.9 (4) 71.6 (5)= 75.1 (3) 77.4 (1)+ 75.6 (2)=

2 74.4 (4) 72.8 (5)= 78.9 (2) 81.4 (1)+ 78.9 (2)=

3 77.2 (5) 81.1 (3)+ 78.9 (4) 83.9 (1)+ 83.3 (2)+

4 58.2 (4) 46.5 (5)− 61.7 (2) 60.6 (3)= 62.9 (1)=

5 53.8 (4) 60.0 (1)+ 56.3 (3) 55.0 (5)= 60.0 (1)+

6 94.9 (2) 86.8 (5)− 90.4 (4) 93.2 (3)+ 95.0 (1)+

7 48.8 (2) 47.5 (4)= 48.8 (2) 40.0 (5)− 52.5 (1)+

8 74.4 (2) 75.0 (1)= 72.2 (5) 74.1 (3)+ 73.8 (4)+

9 50.0 (4) 48.6 (5)= 55.6 (2) 56.7 (1)= 52.6 (3)−

10 58.9 (5) 59.3 (4)= 63.7 (2) 63.1 (3)= 64.7 (1)=

Average

rank

3.6 3.8 2.9 2.6 1.8

The bold values stand for the best performance across all the methods upon a given

dataset.

size are both moderately small, thereby embodying the
performance of EMC-GEP compared with the original method
in diversified circumstances.

Among these datasets, Urban Land Cover (Johnson and Xie,
2013) is a categorization dataset for image information, and
Wine (Aeberhard et al., 1992) is a widely used multi-classification
dataset. Moreover, we also adopt some bio-information data
involving DLBCL-A (Hoshida et al., 2007), DLBCL-B (Hoshida
et al., 2007), and Lung Cancer (Hong and Yang, 1991). Complex
gene expression data, encompassing Alizadeh-2000 (Alizadeh
et al., 2000), Lapointe-2004 (Lapointe et al., 2004), Armstrong-
2002 (Armstrong et al., 2001), TOX-171 (Kwon et al., 2012),
and GLA-BRA-180 (Sun et al., 2006), are employed as well for a
more comprehensive comparison. In this article, for each dataset,
75% of data serves as training data, while 25% of data serves as
testing data.

5.3. Comparison Results
5.3.1. Comparison With AccGEP
As depicted in Table 2, five methods are utilized to analyze
the 10 datasets to give a brief intuition about the performance
of each strategy. For AccGEP-GA, GEP with GA operator
(i.e., mutation operator and crossover operator as discussed
above) is implemented under AccGEP framework. Accordingly,
EMCGEP-GA is based on the AccGEP-GA with additional
knowledge transfer for crossover. On the other hand, AccGEP-
DE is the implementation of GEP with DE operator (i.e.,
“Current-to-Best” and “Frequently-based Sampling”) under the
AccGEP framework. More precisely, EMCGEP-DE1 is based on
AccGEP-DE with additional knowledge transfer for “Current-
to-Best,” while EMCGEP-DE2 is grounded on EMCGEP-
DE1 with extensive knowledge transfer for “Frequently-
based Sampling.”

In Table 2, the fundamental data is the accuracy of the
multi-classifier in percentage, and the rank number is included
in the parenthese to give the relative order for performance of
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these methods, to supply a brief intuition of the comparison.
As for the significance test, “+,” “=,” “−,” represent our
method is significantly better than the original method, has
no significant difference with the original method, and is
significantly worse than the original method, with Wilcoxon
sign-rank test (Wilcoxon, 1992) at α = 0.1. To clarify, the
test for EMCGEP-GA is conducted to compare with AccGEP-
GA, and the tests for EMCGEP-DE1 and EMCGEP-DE2 are
conducted to compare with AccGEP-DE. In this way, the
effectiveness of knowledge transfer on each component can be
clearly investigated.

At length, for knowledge transfer on canonical GEP operators,
there is no significant difference between AccGEP-GA and
EMCGEP-GA. Even for the average rank among those five
algorithms, AccGEP-GA and EMCGEP-GA share the similar
rank number. This result can be attributed to the ambiguous
structure of GEP. Albeit in GP-based knowledge transfer study,
the segments of the expression tree serve as the useful structure
to different problems, the knowledge transfer of GEP string
segments is in a higher level. Since the active structure is the
expression tree, the transfer upon the encoding string tends
to be more indirect and more ambiguous. Hence, considering
two best results in Table 2, although the idea of “abstract
knowledge transfer” is intuitively promising, the algorithmic
details still require more careful designs. For instance, in each
evaluation of GEP individual, a great portion of the string may
be the inactive area during decoding, thus the segment-based
knowledge transfer somehowmay be a cost of time resources, and
then it is no wonder why the transfer process cannot enhance the
classification accuracy in limited evaluations.

Conversely, the knowledge transfer on DE-based operators
basically can attain significantly better results compared with
AccGEP-DE. Notably, the average rank of DE-based GEP is
apparently better than canonical GEP. Moreover, the average
ranks of EMCGEP are also better than the baseline method
AccGEP-DE. To elaborate the results, the knowledge transfer
upon “Current-to-Best” can possibly lead to the exploration
toward the valuable operator in other binary classification
of the GEP population, thereby avoiding lasting reliance on
mutation operators when stuck in local minima. To be specific,
instead of transferring knowledge by the segment structure
in EMCGEP-GA, the basic transfer ingredient in EMCGEP-
DE is gene, which can more efficiently change the solution
structure. Since when the target position in GEP individual
is active, then a new injected gene can hopefully change the
whole structure of the original individual, which can explore
the searching space effectively when the evolution process is
stuck in the local minima. Grounded on EMCGEP-DE1, the
knowledge transfer on feature, “Frequently-based Sampling,”
highly depends on the problem dimension. For those datasets
with extremely high dimension like gene expression data,
data 3 and data 10, transfer on feature to some extent will
make no difference due to the complex distribution and the
limited evaluations. But according to its average rank (1.8)
compared with that of EMCGEP-DE1 (2.6), the feature transfer
is still a promising avenue for knowledge transfer mechanism if
adopting more detailed rules and employing more well-allocated
computational resources.

TABLE 3 | Accuracy comparison with DT, KNN, and EMCGEP under distinct

operators.

Data index Decision

tree

K Nearest

neignbor

EMCGEP-

DE1

EMCGEP-

DE2

1 76.0 (2) 87.2 (1) 77.4 (3) 75.6 (4)

2 75.8 (4) 83.2 (1) 81.4 (2) 78.9 (3)

3 80.3 (4) 88.8 (1) 83.9 (2) 83.3 (3)

4 70.8 (1) 66.3 (2) 60.6 (4) 62.9 (3)

5 74.1 (2) 85.1 (1) 55.0 (4) 60.0 (3)

6 93.7 (2) 68.4 (4) 93.2 (3) 95.0 (1)

7 45.0 (3) 61.5 (1) 40.0 (4) 52.5 (2)

8 76.9 (1) 44.4 (4) 74.1 (2) 73.8 (3)

9 56.9 (2) 62.9 (1) 56.7 (3) 52.6 (4)

10 58.7 (4) 71.0 (1) 63.1 (3) 64.7 (2)

Average rank 2.5 1.7 3.0 2.8

The bold values stand for the best performance across all the methods upon a given

dataset.

5.3.2. Comparison With Other Classifiers
In Table 3, EMCGEP-DE1, EMCGEP-DE2 are employed to
compare with DT and KNNunder the given datasets. Specifically,
DT and KNN are implemented with scikit-learn (Pedregosa et al.,
2011) in python with default settings.

As depicted in Table 3, although the Evolutionary
Multitasking paradigm can enhance the performance of the
existing AccGEP that searches rules based on evolutionary
algorithms, the performance of the proposed EMCGEP is
still limited compared with DT and KNN. Specifically, the
classification results of DT are comparable with those of
EMCGEP-DE1 and EMCGEP-DE2. Since DT and EMCGEP
are both designed to construct rules according to given data in
a non-parametric fashion, the behavior of these methods seem
similar. However, KNN generally outperforms the proposed
EMCGEP. One of the significant causes can be the intrinsic
problem in GP methods, that the rule construction tend to be
complex and unstable under high dimension scenario. Although
GEP can alleviate the bloating issue of GP to some extent, the
“evolutionary” behavior still makes the method unstable and
even random. Nevertheless, like in data 6 and data 8, KNN
sometimes is also unreliable confronting with data with certain
distribution compared with EMCGEP.

5.4. Further Discussion
Grounded on the experiment results above, EMCGEP-DE1
and EMCGEP-DE2 can attain significantly better performance
compared with the baseline method. Therefore, to provide
a deeper insight into the working mechanism of knowledge
transfer upon the “Current-to-Best” operator and the
“Frequently-based Assignment” operator, this section tries
to offer a more comprehensive and detailed discussion for the
factors contributing to the higher-quality solutions.

In Figures 5, 6, four sub-figures are given to illustrate a
specific evolution process of a binary classification problem a
given class in data 2 (i.e., DLBCL-B). To be specific, the first
sub-figure depicts the evolution of the best individual in the
binary classification population. The rest sub-figures illustrate
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FIGURE 5 | Degrees of assistance to class 1 from various “source domains” in EMC-GEP-DE1.

FIGURE 6 | Degrees of assistance to class 3 from various “source domains” in EMC-GEP-DE2.
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the fitness enhancement from the archive Aj of each class. To
clarify, the fitness enhancement here indicates the improvement
of the fitness value of population POPi after the transfer process
Transfer (POPi,Aj), which can be also concerned as the assistance
from archive Aj of class j to the population POPi. Since the
transfer interval δ is configured as 10 and the maximum
iteration is 1,000, the maximum visible iteration of these
sub-figures is 100.

In Figure 5, for data 2 (i.e., DLBCL-B), the best fitness
variation process of the first binary classifier of class 1 is provided,
along with the fitness enhancement from each source archive
Aj in each transfer iteration. In the first sub-figure, a relatively
good behavior of the convergence tendency of the class-1 binary
classification is indicated, since the evolution can achieve the
stepwise decrease in the fitness value so as to avoid the local
optima. Generally, the self transfer process (i.e., POPi ←
Ai), can imitate the process of the self evolution of the given
population, (i.e., POPi ← POPi), and the archive from class
1 does offer relatively stable transfer performance in the first
several iterations as well as the continuous enhancement in
the last 30 iteration. Furthermore, as depicted in the Figure 5,
compared to the class 1, archive of class 2 can also supply a
satisfying improvement in early 20 iterations, and the archive of
class 3 can offer a stable support from iteration 20 to iteration
60 to help the target population get higher-quality solution
when trapped in the local optima, thereby potentially enhancing
the performance of the binary classifiers in POP1. Hence, in
EMCGEP-DE1, it can be concluded that the transfer operation
upon the operator “Current-to-Best” is capable of achieving
performance enhancement by self transfer process, POPi ← Ai,
and the cross transfer process, POPi ← Aj.

Similarly, as for the transfer operation upon the “Frequency-
based Sampling,” the strategy also can offer a satisfying
convergence trend as depicted in Figure 6. There are several
stepwise fitness improvements for the convergence curve in the
first sub-figure in Figure 6. In the very first improvement in
iteration 18, three archives can offer similar support considering
the fitness enhancement from each class. Whereas, in terms of
the improvement in iteration 70, the abrupt change in class 2
and class 1 played the predominant factors for helping binary
classifiers of class 3 to escape from the local minima. This change
elaborates our assumption that, transfer process can possibly
enhance the original self evolution phase. It is notable that, in
this scenario, the cross transfer of class 1 and class 2 both can
offer more effective and stable fitness enhancement compared
to the self transfer from class 3, which indicates the promising
potential of knowledge transfer for multi-classification. However,
the limit of Evolutionary Multitasking is also clear from the
discussions above. Since it is uncertain which knowledge source is
more beneficial for the current target population according to the

unstable scale of fitness enhancement illustrated in Figures 5, 6,
so that it is hard to design elaborated and accurate algorithm for
the given problems by Evolutionary Multitasking.

6. CONCLUSION

In this paper, knowledge transfer strategies upon canonical
GEP operator and DE-based GEP operator are employed to
alleviate the output conflict for multi-classification problem.
In the proposed framework, a stepwise transfer is adopted to
enable the segment-based transfer, DE-based transfer, as well
as the feature transfer. The comparison results indicate that
the DE-based transfer along with feature transfer generally can
obtain significantly better performance compared to the baseline
methods. Albeit the segment-based transfer for canonical GEP
in this study can make no difference, some of the results and
attributes of segment-based transfer still can make it special and
promising, so that we concluded that this high-level transfer
mechanism still require more algorithmic concern in detail.
Although it is believed that knowledge transfer can enhance the
existing multi-classifier, the Evolutionary Multitasking cannot
tackle the intrinsic drawbacks like the randomness of the
evolutionary classifiers. Furthermore, it is hard to capture the
exact behavior of knowledge transfer for the evolution process,
which makes it hard to design an elaborated and precise
algorithm pipeline. Hence, it is deemed that both limits of
Evolutionary Multitasking remain to be investigated and entails
further discussion.
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