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ABSTRACT

Objectives: Chronic obstructive pulmonary disease (COPD) phenotypes cover a range of lung abnormalities. To

allow text mining methods to identify pertinent and potentially complex information about these phenotypes

from textual data, we have developed a novel annotated corpus, which we use to train a neural network-based

named entity recognizer to detect fine-grained COPD phenotypic information.

Materials and methods: Since COPD phenotype descriptions often mention other concepts within them (pro-

teins, treatments, etc.), our corpus annotations include both outermost phenotype descriptions and concepts

nested within them. Our neural layered bidirectional long short-term memory conditional random field

(BiLSTM-CRF) network firstly recognizes nested mentions, which are fed into subsequent BiLSTM-CRF layers,

to help to recognize enclosing phenotype mentions.

Results: Our corpus of 30 full papers (available at: http://www.nactem.ac.uk/COPD) is annotated by experts with

27 030 phenotype-related concept mentions, most of which are automatically linked to UMLS Metathesaurus

concepts. When trained using the corpus, our BiLSTM-CRF network outperforms other popular approaches in

recognizing detailed phenotypic information.

Discussion: Information extracted by our method can facilitate efficient location and exploration of detailed in-

formation about phenotypes, for example, those specifically concerning reactions to treatments.

Conclusion: The importance of our corpus for developing methods to extract fine-grained information about

COPD phenotypes is demonstrated through its successful use to train a layered BiLSTM-CRF network to extract

phenotypic information at various levels of granularity. The minimal human intervention needed for training

should permit ready adaption to extracting phenotypic information about other diseases.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is “a common, pre-

ventable, and treatable disease that is characterized by persistent re-

spiratory symptoms and airflow limitation that is due to airway

and/or alveolar abnormalities usually caused by significant exposure

to noxious particular gases.”1 It is rapidly becoming one of the ma-

jor causes of morbidity and mortality worldwide.2 COPD is a multi-

factorial and heterogeneous disease and not every patient responds

to all available drugs.3–5 Due to the high prevalence and heterogene-

ity of COPD, improved deep phenotyping strategies are required.

Such in-depth phenotyping can pave the way for personalized treat-

ment regimens,6 ensuring that the most suitable therapies are pro-

vided.7,8 A phenotype can be broadly defined as “any observable

characteristic of an organism,”9 while a COPD phenotype can be

more specifically defined as “a single or combination of disease

attributes that describe differences between individuals with COPD

as they relate to meaningful outcomes (symptoms, exacerbations, re-

sponse to therapy, rate of disease progression, or death).”10 Identify-

ing such phenotypes (also described as phenotypic traits) allows

grouping of patients according to their prognostic and therapeutic

characteristics.10 Early classification of the COPD subtype will facil-

itate superior healthcare provision and early intervention where it is

most required—for example, patients with rapid disease progression

or frequent exacerbations.

Various textual sources constitute vital sources of COPD evi-

dence, by providing information about phenotypes, characteristics,

and treatment regimens. Although pinpointing relevant information

in large, heterogeneous text repositories can be time-consuming,

applying text mining (TM) techniques to semantically analyze these

repositories11 can significantly reduce the time needed by clinicians

and researchers for tasks such as finding relationships amongst con-

cepts (eg, genotype-phenotype,12,13 gene-disease,14–16 and disease-

phenotype17,18), diagnosis categorization19 or recruiting patients for

trials and studies.20,21 To enhance automatic semantic analysis of

COPD-related text, the contributions of this article are two-fold:

1. We have created a novel corpus of 30 full-text articles, anno-

tated by experts with named entities relating to COPD pheno-

types. The fine-grained annotation scheme aims to account for

the potentially complex, nested nature of phenotype descrip-

tions. We automatically enrich the annotations with links to

UMLS Metathesaurus concepts. The corpus is freely available

(http://www.nactem.ac.uk/COPD) to stimulate development of

named entity recognition (NER) tools for COPD phenotypic in-

formation.

2. We demonstrate the utility of the corpus by using the expert-

added annotations to train a high-performance neural network-

based entity recognizer, which exploits nested annotations to ac-

curately detect detailed information relating to COPD pheno-

types.

The potential complexity of COPD phenotype descriptions, and

how our annotation scheme handles them, is exemplified in Figure 1,

where the phrase elevation of pulmonary arterial pressures is identi-

fied as a phenotype, and is assigned the category TestOrMeasureRe-

sult, since it describes the outcome of a measurement. Analyzing the

internal structure of this phenotype reveals the specific measurement

undertaken (pulmonary arterial pressures) and anatomical entity in-

volved (pulmonary artery). Our annotations correspond to both

complete phrases that constitute COPD phenotypes and other types

of concepts frequently mentioned within them, and/or within their

context. Such embedding (nesting) of shorter entity mentions within

longer (outermost) phenotype descriptions is fairly common (29%

of our corpus annotations are embedded).

The detailed nature of our annotations aims to facilitate the de-

velopment of automated tools supporting the exploration of COPD

phenotypic information in text from multiple perspectives. This will

allow not only the location and categorization of COPD pheno-

types, including those identified through tests, or those constituting

risk-raising individual behaviors (eg, smoking) but will also permit

detailed investigations about the nature of these phenotypes, includ-

ing finding those affecting specific anatomical locations, or those

concerning different results of specific tests. Furthermore, our en-

richment of the annotations by applying an automatic normalization

method helps to link different ways of mentioning the same concept.

This can facilitate search at the concept level, such that searching for

the condition dyspnea would also retrieve documents mentioning

shortness of breath.

To demonstrate the full potential of the corpus for developing

NER tools, our neural network-based method is specifically

designed to recognize nested and outermost entities. In particular,

information about nested mentions is used to improve the accuracy

of outermost phenotype recognition, without external knowledge

resources. To our knowledge, this is the first attempt to apply such

an approach to detecting phenotypic information.

RELATED WORK

Annotated corpora
Several existing annotated corpora contain entity annotations rele-

vant to phenotype recognition, including biomedical abstracts or

articles,22–24 medical case reports,25 and clinical records.26,27 Cer-

tain corpora are also annotated with relations between disorders

and other types of concepts.28,29 For example, the phenotype phrase

upper lobe emphysema may be split into Condition (emphysema)

and Locus (upper lobe), linked by a has_location relation.28 Such

fine-grained analyses allow the potentially complex structure of phe-

notypes to be exploited to perform more targeted queries, for exam-

ple, to locate all phenotypes affecting a particular body part. While

in most cases, annotations corresponding to phenotypes have rather

coarse-grained labels, like Disease, Disorder, or Problem, a more

fine-grained annotation scheme for phenotypes of congestive heart

failure (CHF)30 distinguishes Causes, Risk Factors, Non-traditional

risk factors, and Signs and symptoms.

The annotations in several corpora23,26,31,32 link each annotated

entity to a unique concept identifier in a domain-specific terminolog-

ical resource. Some such resources cover a wide range of medical

and biomedical concepts,33,34 while others are specialized for dis-

eases and/or phenotypes.35–37 These links can facilitate the develop-

ment of normalization methods,31,38–41 which automatically assign

a concept identifier in a given terminological resource to each entity,

to link together variant concept mentions.

Figure 1. Example of a phenotype that includes other concepts nested

within it.
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Named entity recognition for COPD
Previous approaches to phenotype NER have included dictionary-

based lookup,42–45 possibly coupled with rules to improve accuracy

and/or to handle the potentially complex structure of phenotype

descriptions.46–50 Whilst some such approaches perform poorly on

phenotype recognition,51 an optimized combination of the outputs

of these methods can be beneficial.52 However, combining or replac-

ing rules with machine learning (ML) tends to achieve superior per-

formance.53–55

Conventional ML approaches such as conditional random fields

(CRFs) have been applied to many NER tasks, including detecting

CHF phenotypes30 and recognizing nested entities.56–58 CRF-based

models generally require humans to perform feature engineering for

each new task, to determine the optimal set of textual features for

predicting entities. Features include semantic information from

domain-specific terminological resources or the output of linguistic

processing tools, which can be time-consuming to apply to huge

document collections.

Recently, however, representational methods have improved

phenotype extraction performance59–61 by using word embeddings,

which remove the need for hand-crafted feature engineering, linguis-

tic processing or terminological resources,62,63 and character embed-

dings, which encode word morphology information.

Combined with embeddings, advanced deep learning methods

can produce high-performance NER systems.64–66 Recurrent neural

networks (RNNs)67 are effective for various natural language proc-

essing tasks,68 while specializations such as long short-term memory

networks (LSTMs)69 and gated recurrent units (GRUs)70 are partic-

ularly effective, since they introduce gating mechanisms to handle

textual contexts with long dependencies, which can be highly impor-

tant for NER.71 Bidirectional versions (eg, bidirectional long short-

term memory [BiLSTMs]) use information from both left and right

contexts, to further boost performance.72,73

In addition to “standard” NER tasks, neural network methods

have been applied to nested entity recognition.74,75 Multilayered

approaches76,77 use information about entities at a given level of

nesting to improve recognition of entities at other levels of nesting.

One of these77 uses no linguistic features, and outperforms other

methods in detecting nested entities for general language and molec-

ular biology.

METHODS

In this section, we explain the methods used in the various steps of

our work (see Figure 2 for an overview). Firstly, we describe the con-

struction and annotation of the corpus. We subsequently explain

how the expert-added annotations were enriched using an automatic

normalization method to link them to UMLS concepts. Finally, we

describe the NER methods that were applied to create a named en-

tity recognizer for COPD.

Corpus construction
Information about COPD phenotypes may occur in various docu-

ments, including clinical records and academic articles. However,

the availability of clinical record corpora is restricted, and they tend

to be US-centric.78,79 To avoid bias toward practices of a particular

country, we decided to create a corpus of scientific articles from var-

ious COPD-relevant journals. As previous work has shown that TM

tools trained on one text type can be applied to texts with different

characteristics,30,80 it is intended that tools trained on our corpus

may be adapted for phenotype extraction from clinical records.

We firstly selected COPD-relevant journals in the PubMed Cen-

tral Open Access Subset, whose titles contain the following key-

words: (chronic, obstructive, pulmonary, disease, respiratory, and

lung); this resulted in the 10 journals shown in Supplementary Ap-

pendix S1. We then retrieved all articles within these journals men-

tioning either chronic obstructive pulmonary disease or COPD (974

articles). According to limited resources and time, only a subset of

these documents could be annotated by our domain experts. We

thus attempted to select documents containing the richest and widest

COPD phenotype evidence. We firstly applied the automatic term

recognition system TerMine81 to the set of the COPD guidelines

published jointly by the American Thoracic Society and the Euro-

pean Respiratory Society.82 The automatically extracted terms were

augmented with expert-provided terms to create 1925 different

terms representing COPD phenotypes. We then selected the 30 full-

text articles with the highest numbers of unique COPD phenotype

terms. The number of unique terms in each selected document is

shown in Supplementary Appendix S2.

Annotation scheme
Our annotation scheme83 (guidelines available at: http://www.nac-

tem.ac.uk/COPD/download.php) aims to balance simplicity of ap-

plication with the ability to capture fine details about phenotypes.

Only simple text spans, rather than relationships, are annotated,

since the latter task can considerably increase annotation burden.

However, by using a detailed hierarchy of semantic labels, and

allowing entities to be nested within each other, we can capture po-

tential relationships between entities. For example, if a treatment is

mentioned within a phenotype statement (Steroid-induced skeletal

muscle atrophy), then it is likely that the phenotypic manifestation is

a side effect of the nested treatment.

Our scheme (see Table 1 and Figure 3) is inspired by 2 existing

schemes. The categories defined in 1 scheme,29 that is, Problem,

Treatment, or Test, form the core of the scheme, to identify informa-

tion about COPD phenotypes, their treatment and discovery. In-

spired by the fine-grained labels used for CHF phenotypes,30 we

introduce a hierarchy of more detailed labels under these top-level

categories; the most specific labels possible are assigned by annota-

tors. Since phenotype descriptions are typically formed from a com-

bination of different types of concepts, our scheme includes the most

common of these, for example, anatomical concepts (chronic air-

ways obstruction), proteins (alpha1 antitrypsin deficiency), qualities

(eg, decreased COPD exacerbations), and test results (eg, reduced

FEV1). These are mainly organized under an additional top-level

category, ConstituentConcept.

To increase annotation ease and efficiency, we used Argo,84 an

interoperable TM platform, to apply a pipeline of pre-existing NER

tools to preannotate the corpus with several entity types typically

mentioned within phenotypes. The annotators’ task was then lim-

ited to reviewing and editing automatically added annotations, or

adding longer, spanning annotations corresponding to more com-

plex phenotypes.

To ensure annotation quality and consistency, 6 full-text papers

were firstly annotated independently by 2 annotators with medical

expertise, and inter-annotator agreement (IAA) rates were calcu-

lated. The widely used Cohen’s kappa is not suitable here, because it

requires the total number of annotated items to be known in ad-

vance. Hence, we followed a number of other related efforts85–87 by
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calculating IAA in terms of F-score. The micro-averaged IAA rate

was 80.49% F-score, using strict conditions (ie, requiring both

annotators’ annotations to match exactly in terms of text span cho-

sen and semantic category). The main areas of disagreement con-

cerned some fine-grained categories within the Problem branch of

the scheme. In consultation with the annotators, the definitions of

these categories were reviewed, and disagreements were discussed

and resolved. Taking into account the decisions made, one of the

annotators annotated the remaining 24 papers.

Entity normalization
We automatically normalized annotated entities to unique concept

identifiers in the UMLS Metathesaurus,33 which covers all entity

types in our scheme. We chose the HYPHEN method41 because of

its flexibility, that is, it can normalize different entity types in docu-

ments with varying characteristics to different target terminological

resources.33,88

HYPHEN uses a pipeline of different techniques to generate se-

mantically consistent variations of the original entity mention and

tries to match these generated variants against existing variants

listed in the target terminological resource. The 6 techniques are:

1. Acronym/abbreviation expansion (eg, Type 2 DM! Type 2 dia-

betes mellitus).

2. Plural to singular conversion (eg, alveolar septa ! alveolar sep-

tum).

3. Generation of English equivalents of Neoclassical compounds

(eg, elevated blood leukocyte counts! elevated white blood cell

count).

4. Generation of Neoclassical equivalents of English terms (eg,

pleural inflammation! pleuritis).

5. Syntactic variation generation (eg, supplemental oxygen! oxy-

gen supplementation).

6. Synonym generation (eg, worsening pulmonary function! dete-

rioration of lung function).

Table 2 reports on the number and percentage of entities belong-

ing to each category in our corpus that are automatically normal-

ized. For each category, normalization dictionaries were created by

filtering the concepts belonging to different UMLS semantic types;

these are detailed in Supplementary Appendix S3.

As shown in Table 2, HYPHEN normalized a high percentage

(83.38%) of entity annotations in the corpus to UMLS concept identi-

fiers. Some examples of successful normalizations are shown in Table 3.

Figure 2. Workflow for annotation and detection of information relating to COPD phenotypes. COPD: chronic obstructive pulmonary disease; CRF: conditional

random field.
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HYPHEN works well in normalizing entities describing single,

straightforward concepts. Although most entity annotations possess

such characteristics, performance is lower for categories whose

annotations exhibit divergent characteristics. These include SignO-

rSymptom, whose annotations include long, detailed phrases, for

example, daily productive cough for a minimum of 3 months for a

minimum of 2 consecutive years or those mentioning multiple con-

cepts, for example, coughing and/or corticosteroid-induced osteopo-

rosis. The most problematic category, TestOrMeasureResult,

includes mentions with no corresponding UMLS concepts (eg, negative

Table 1. Descriptions, examples, and counts of each category in the COPD annotation scheme

Type Description Examples Number of concepts

Problem An overall category for any COPD indicates of con-

cern

COPD exacerbations; past pulmonary TB 2556

Condition Any disease or medical condition includes COPD

comorbidities

emphysema; pulmonary vascular disease; asthma 5119

RiskFactor A phrase signifying a patient’s increased chances of

having COPD

increased levels of the C-reactive protein; alpha1

antitrypsin deficiency

1211

SignOrSymptom An observable irregularity manifested by a COPD

patient

chronic cough; shortness of breath 2065

IndividualBehaviour A patient’s habits leading to susceptibility of having

COPD

smoking for 25 years; exercise-limited patients 194

TestResult Findings based on COPD-relevant examinations decrease in rate of lung function; FEV1 45%

predicted

685

Treatment Any medication, therapy, or treatment program inhaled corticosteroids; oxygen therapy; pulmonary

rehabilitation

4337

Test An overall category for any COPD-relevant exami-

nations or measures/parameters

spirometry, respiratory frequency, FEV1 3576

RadiologicalTest Any of the radiological tests for detecting COPD computed tomography scanning; high resolution

computed tomography

29

MicrobiologicalTest An examination of a COPD-relevant specimen complete blood count; bacterial isolates 11

PhysiologicalTest A measurement of a COPD patient’s capacity to

exercise

6-min walking distance; incremental cardiopulmo-

nary exercise testing

17

ConstituentConcept An umbrella type for elementary concepts that may

form part of a phenotype description; should only

be chosen if none of the subtypes below apply

bronchodilation; enhancement of skeletal muscle

contractility

5

AnatomicalConcept A mention pertaining to anatomical entities lung; heart; pulmonary; hepatic; respiratory airway 2616

Drug Any drug name; will mostly overlap with treatment corticosteroids; short-acting bronchodilators 2593

Protein Any protein name alpha1 antitrypsin; pro-inflammatory cytokines 820

Quality Expressions which modify or qualify any of the

concepts above

chronic; obstructed; damaged; decreased rate; en-

hanced; decreased amount

1153

Abbreviations: COPD: chronic obstructive pulmonary disease; FEV1: Forced Expiratory Volume.

Figure 3. Hierarchical entity annotation scheme for COPD phenotypic information. COPD: chronic obstructive pulmonary disease.
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pleural pressure), or those including numeric values (eg, oxygen satura-

tion level 90%), which cannot be mapped to high oxygen saturation

(C0852710) without additional processing.

Named Entity Recognition methods
We used the COPD corpus to train a named entity recognizer which

can handle multiple levels of entity nesting.77 We adopted an exist-

ing neural network architecture64 for recognizing “flat” (ie, non-

nested) named entities, to form the “building blocks” of our layered

model for nested entity recognition. In this architecture, rich repre-

sentations of word properties were obtained by combining word

embeddings89 and character-level embeddings. A combination of

BiLSTM and CRF was used to detect and classify entities.

Our approach builds upon this architecture, using a stack of

multiple BiLSTM-CRF layers, each intended to detect a subset of en-

tities. The input to each layer depends on the output of the previous

layer. The input to the first layer consists of word and character-

level embeddings for each individual word. The information about

all words in each entity detected by this layer is merged into a single

unit, whose representation combines information about each indi-

vidual word in the entity. The merged information is passed to the

next layer to aid in recognizing entities with higher levels of nesting.

This key feature of our approach aims to account for potential de-

pendencies between entities with different levels of nesting, that is,

information about entities with lower nesting levels may provide

clues about the presence of higher-level entities that include the

nested entities within them.

The method is dynamic—it stacks as many new layers as are nec-

essary to allow all nested entities to be recognized; the method ter-

minates when no entities are discovered by a newly stacked layer.

Figure 4 illustrates the model architecture, where annotations are

transformed into BIO tagging scheme labels to allow the model to

be trained. These labels identify whether each word comes at the

(B)eginning, I(nside), or (O)uside of an entity annotation. Although

more complex tagging schemes may be used, for example, BIOES,

which distinguishes words that constitute S(ingle) word entities, or

which come at the E(nd) of multi-word entities, we chose to use BIO

to avoid data sparsity problems, since some of our categories include

relatively few annotations.

Baseline models
We firstly randomly split the corpus into 3 different parts—four-

fifths for training, one-tenth for development (to tune parameters

used by the models using Bayesian optimization90), and one-tenth

for testing.

Based on previous studies,73,91 deciding on an optimal deep

learning model, and whether to combine it with CRF, appears to

be influenced by the task at hand. Using the layered architecture

outlined above, we trained and evaluated different deep learning

models using different algorithms (BiRNN, BiGRU, and BiLSTM),

both in isolation and in combination with CRF; we found that the

BiLSTM-CRF model attains the best results (see Supplementary

Appendix S4 for performance statistics and tuned hyperparameter

values).

We also compared our layered BiLSTM-CRF model to a CRF

model and a “flat” (non-layered) BiLSTM-CRF model; the results of

these experiments are shown in Table 4. We used NERSuite92 to im-

plement the CRF model, whose features include contextual informa-

tion, such as n-grams (ie, up to 3 words either side of the entity),

parts-of-speech, syntactic chunks, and word base forms.92 In con-

trast, the non-layered BiLSTM-CRF uses only word and character-

level embeddings instead of features, as described above.

Table 2. Number of entities normalized by HYPHEN

Category Total entities Number of entities normalized Percentage of entities normalized

Problem 2556 2151 83.15

Condition 5119 4969 97.07

RiskFactor 1211 942 77.79

SignOrSymptom 2065 1140 55.21

IndividualBehaviour 194 124 63.92

TestOrMesureResult 685 259 37.81

Treatment 4337 3775 87.04

TestOrMeasure 3576 2609 72.96

AnatomicalConcept 2616 2372 90.67

Drug 2593 2368 91.32

Protein 820 727 87.66

Quality 1153 1015 88.03

Total 26 925 22 451 83.38

Table 3. Sample normalization results

Entity annotation Semantic category Mapped UMLS concept

increased PVR Problem Increased pulmonary vascular resistance (C1867423)

lung failure Condition Pulmonary failure (C0948755)

left atrial AnatomicalConcept Left atrium (C0225860)

arm training Treatment Upper limb training (C0556501)

spirometric test TestOrMeasure Spirometry test (C0037981)

genetic predisposition RiskFactor Genetic susceptibility to disease (C1455997)
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Experimental settings
We conducted experiments in a single run rather than using cross-

validation, in order to minimize overfitting to the training corpus.

Our experiments evaluate performance variations of each model

when entities with different levels of nesting are considered. We con-

sider innermost entities, outermost entities, and all entities in the test

dataset. Innermost entities are the most deeply nested entities, while

outermost entities are non-nested entities. In Figure 1, elevation of

pulmonary arterial pressures is the outermost entity, while pulmo-

nary arterial is the innermost entity. Entities without nesting (eg,

dyspnea) are included in both the innermost and outermost sets.

For the CRF and non-layered BiLSTM-CRF, we train separate

models to recognize only innermost and outermost entities. In con-

trast, our layered BiLSTM-CRF is trained to recognize entities at

all levels of nesting; we evaluate its performance in recognizing

different levels of entities by considering outputs of different model

layers.

RESULTS

Table 4 shows the performance of each model. The non-layered

BiLSTM-CRF performs best for innermost entities, demonstrating

how embeddings can successfully replace the multiple linguistic fea-

tures used by the CRF. At this level, however, the layered BiLSTM-

CRF has lower performance than the non-layered BiLSTM-CRF.

For the layered model, we consider only the output of its first layer,

which is expected to recognize only innermost entities. However, er-

ror analysis revealed that there is actually not a one-to-one corre-

spondence between model layers and entity nesting levels, that is,

the first layer sometimes detects entities belonging to other (ie, not

innermost) entity levels. Conversely, higher layers of the model may

detect entities that belong to the innermost nesting level.

For outermost entities, the non-layered BiLSTM-CRF still out-

performs the CRF, reinforcing the advantages of deep learning.

However, in contrast to innermost entities, the layered BiLSTM-

CRF outperforms the non-layered model in detecting outermost en-

tities. This clearly demonstrates how the layered model’s use of in-

formation about lower-level entities improves recognition of higher-

level entities.

The higher performance of the layered BiLSTM-CRF for outer-

most entities also provides evidence that innermost entities are suc-

cessfully recognized by lower levels of the model. This is confirmed

Figure 4. Overview of the layered-BiLSTM-CRF model architecture. B-AC: B-AnatomicalConcept; B-T: B-treatment; I-T: I-treatment; B-D: B-drug; I-D: I-drug.

Table 4. Performance of different NER models at different levels of

entity nesting

Level Model P (%) R (%) F (%)

Innermost CRF 77.19 68.78 72.74a

BiLSTM-CRF 73.93 73.38 73.56a

Layered BiLSTM-CRF 69.79 70.41 70.10

Outermost CRF 73.63 66.41 69.83a

BiLSTM-CRF 75.61 67.35 71.24a

Layered BiLSTM-CRF 74.00 74.54 74.27

All CRF 75.44 67.61 71.31a

BiLSTM-CRF 74.71 70.42 72.50a

Layered BiLSTM-CRF 77.02 75.45 76.23

Note: For each different level, the best precision (P), recall (R), and F-score

(F) amongst the 3 models is shown in bold.

Abbreviations: NER: named entity recognition; CRF: conditional random

field.
aA significant difference between CRF and (flat) BiLSTM-CRF models at

P < .05. Since the layered BiLSTM-CRF takes as input different entities than

the baseline models (ie, all entities vs innermost or outermost entities), we did

not apply significance testing between layered and flat models.
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by its superior performance to the other models in detecting all enti-

ties in the test dataset. Although there is no exact correspondence

between the recognition of specific levels of entities and layers of the

model, the complete model is still able to exploit the output of previ-

ous layers to achieve a high level of performance in detecting both

outermost and nested entities. Detailed performance statistics for

the layered BiLSTM-CRF by entity type are provided in Supplemen-

tary Appendix S5.

DISCUSSION

The results achieved by our layered BiLSTM-CRF in recognizing

COPD-related information are superior to those achieved by apply-

ing the same model to nested entity recognition in well-used corpora

from other domains.77 This provides evidence that our corpus is

suitable for training high-performance ML-based tools, and that au-

tomatic recognition of COPD phenotypic information is a feasible

task. Moreover, we have shown that detecting COPD phenotype in-

formation using deep learning models, which require minimal hu-

man intervention for training, can achieve superior performance to

more traditional methods requiring time-consuming feature engi-

neering, linguistic processing, and terminological resources. We

have furthermore demonstrated that our layered model can achieve

superior performance to a “flat” model, by exploiting information

about nested entities when detecting the longer entities in which

they are embedded.

These outcomes have important implications, in terms of im-

proving the ease of locating phenotypic information in text. In par-

ticular, our nested entity detection method not only allows efficient

location of COPD phenotype descriptions hidden in large text col-

lections, but it also detects the internal structure of these descrip-

tions. This provides scope to explore and categorize COPD

phenotypes in a fine-grained manner. Since our method can be rap-

idly adapted to detect different types of information, it could be

readily applied to find phenotypic information relating to other dis-

eases, given suitably annotated corpora.

Error analysis of our NER results reveals that about 17% of er-

roneous entities have the correct text span, but the wrong semantic

category. Figure 5 provides detailed error statistics for each semantic

type, revealing that Problem is the most frequently misclassified

category; these entities are mainly misclassified as either Medical-

Condition or SignOrSymptom. Conversely, MedicalCondition enti-

ties are mostly misclassified as Problem. Such errors are possibly

due to the fine-grained, hierarchical structure of our annotation

scheme; the often subtle differences between similar categories may

be difficult for the computer to distinguish. A further 23% of errors

(most frequently Treatment and TestOrMeasure entities) concern

cases where the model assigns the correct category, but the wrong

text span (ie, it partially overlaps with the correct span). This may

be due to the heterogeneity of phenotype descriptions, which can in-

clude mentions of various concept types, and which may or may not

include modifier phrases. However, it is significant that in around

40% of the erroneous cases, the model can successfully detect the

presence of entities, and categorize them correctly. Thus, even if

the span is not completely correct, the model can find documents

mentioning relevant entities, and allow examination of the context

surrounding these entities.

CONCLUSION

We have described the construction of a novel corpus of full-text

articles about COPD, annotated using a scheme that identifies perti-

nent information about COPD phenotypes, in which nested entity

annotations make explicit the internal structure of potentially com-

plex phenotype descriptions. The corpus is intended to assist the de-

velopment of novel NER approaches to COPD phenotype

recognition. The annotations were enriched using a high-

performance normalization method to link the majority of them to

UMLS Metathesaurus concepts.

We demonstrated the utility of the corpus by using it to train

a deep learning-based NER model, which is designed to recognize

entities with different levels of nesting and, in contrast to many ML-

based models, relies on neither linguistic features nor external

knowledge resources.

The detailed, fine-grained information about COPD phenotypes

output by our model will facilitate development of semantic search

systems for textual repositories, to pinpoint phenotype-relevant

information, for example, to identify treatment regimens and inves-

tigate their relative effectiveness in different disease phenotypes.

The ease of applying the NER model to newly available data will

Figure 5. Counts of different types of errors for each semantic type.
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facilitate repeated interrogation of relevant data sources, allowing

tracking of disease progression in individuals, and alerting clinicians

to changes in disease pattern. Resolving entities to UMLS Metathe-

saurus concepts will facilitate concept-level search, in which all men-

tions of a concept of interest can be found automatically, regardless

of the actual words or phrases used to describe them.

As future work, we will extend our framework to increase the

complexity of the information extracted, inspired by recent work93,94

applying deep neural network models to medical relationship extrac-

tion. We will also apply our method to clinical records and to the

detection of phenotypes of other diseases. This will reinforce the im-

portance of our method in helping to enhance clinical phenotyping

and early classification of disease subtype, providing a means of early,

accurate diagnosis, and personalized treatment regimens for patients.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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37. Köhler S, Vasilevsky NA, Engelstad M, et al. The human phenotype ontol-

ogy in 2017. Nucleic Acids Res 2017; 45 (D1): D865–76.

38. Leaman R, Khare R, Lu Z. Challenges in clinical natural language process-

ing for automated disorder normalization. J Biomed Inform 2015; 57:

28–37.

39. Fan J-W, Sood N, Huang Y. Disorder concept identification from clinical

notes: an experience with the ShARe/CLEF 2013 challenge. In: CLEF

2013 Working Notes; 2013. http://ceur-ws.org/Vol-1179/CLEF2013wn-

CLEFeHealth-FanEt2013.pdf. Accessed October 23, 2018.

40. Lee H-C, Hsu Y-Y, Kao H-Y. AuDis: an automatic CRF-enhanced disease

normalization in biomedical text. Database (Oxford) 2016; 2016:

baw091.

41. Thompson P, Ananiadou S. HYPHEN: a flexible, hybrid method to map

phenotype concept mentions to terminological resources. Terminology

2018; 24 (1): 91–121.

42. Friedman C, Alderson PO, Austin JH, et al. A general natural-language

text processor for clinical radiology. J Am Med Inform Assoc 1994; 1 (2):

161–74.

43. Friedman C, Hripcsak G. Evaluating natural language processors in the

clinical domain. Methods Inf Med 1998; 37 (4-5): 334–44.

44. Savova GK, Tseytlin E, Finan S, et al. DeepPhe: a natural language proc-

essing system for extracting cancer phenotypes from clinical records. Can-

cer Res 2017; 77 (21): e115–8.
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