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Abstract

Precise quantification of atherosclerotic plaque in preclinical models of atherosclerosis requires the volumetric assessment
of the lesion(s) while maintaining in situ architecture. Here we use micro-computed tomography (microCT) to detect ex vivo
aortic plaque established in three dyslipidemic mouse models of atherosclerosis. All three models lack the low-density
lipoprotein receptor (Ldlr2/2), each differing in plaque severity, allowing the evaluation of different plaque volumes using
microCT technology. From clearly identified lesions in the thoracic aorta from each model, we were able to determine
plaque volume (0.04–3.1 mm3), intimal surface area (0.5–30 mm2), and maximum plaque (intimal-medial) thickness (0.1–
0.7 mm). Further, quantification of aortic volume allowed calculation of vessel occlusion by the plaque. To validate microCT
for future preclinical studies, we compared microCT data to intimal surface area (by using en face methodology). Both
plaque surface area and plaque volume were in excellent correlation between microCT assessment and en face surface area
(r2 = 0.99, p,0.0001 and r2 = 0.95, p,0.0001, respectively). MicroCT also identified internal characteristics of the lipid core
and fibrous cap, which were confirmed pathologically as Stary type III-V lesions. These data validate the use of microCT
technology to provide a more exact empirical measure of ex vivo plaque volume throughout the entire intact aorta in situ
for the quantification of atherosclerosis in preclinical models.
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Introduction

Ischemic heart disease resulting from coronary atherosclerosis is

the leading cause of human mortality worldwide [1,2]. Athero-

sclerosis is characterized by deposition of cholesterol ester in the

arteries that may progressively occlude the lumen and become

prone to rupture and thrombosis. Therapies aimed at reducing the

risk factors for developing atherosclerosis and/or directly reducing

the size of the plaque are being actively pursued, creating the need

for more robust methods to determine plaque alterations in

preclinical models of atherosclerosis.

To date, different methods have been used to assess the extent

of atherosclerosis in mice, or quantitatively compare lesion

formation in various strains or treatment groups of mice. One

method requires the sequential sectioning of the heart and aortic

root [3] and subsequent histopathologic analysis to score and

measure lesions in a 300 micron area at the level of the aortic

sinus. Another method employs Sudan IV staining to determine

the extent of atherosclerosis affecting the intimal surface

throughout the entire aorta [4]. This method is commonly

referred to as the en face technique and has been widely used as it

yields morphometric data [5]. The technique consists of dissecting

the aorta from the heart to the iliac bifurcation, opening it

longitudinally to expose the luminal side, and staining it with

Sudan IV to reveal lipid-laden plaques to measure lesional surface

areas. These two methods provide qualitatively distinct estimates

of lesion area in orthogonal axes. Another method uses high-

resolution magnetic resonance imaging (MRI) to detect and

quantify the plaque volume incorporating all dimensions assessed

by the previous two methods in the intact aorta and to detect the

lipid-rich necrotic core without requiring histopathology [6].

Despite the advancements in assessing aortic plaque, the need

remains for the generation of very high-resolution three-dimen-

sional plaque models, along with determining the degree of

occlusion.

Currently, only the aortic root (Paigen) method is still routinely

used for assessing the volume of an atherosclerotic lesion in

preclinical models [3]. Though widely used, it is quite labor

intensive and generates only a calculated estimate of aortic lesions.

The estimate is often made on the basis of surface areas that are

determined from only 10 sections (typically 10 mm) at fixed

distances from the aortic sinus. The surface areas in turn are used

to estimate the volume between the dropped sections. This

approach provides only a limited volumetric assessment in the

aortic root, and does not include the rest of the aorta or the

adjoining arteries. We focused our work on validating the
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microcomputed tomography (microCT) method by comparing it

with the en face method. This was done because the en face method

was previously validated by comparing it with the aortic root

Paigen method [4,7] and because en face assesses the entire aorta

and not just 10 transversal sections of the aortic roots.

While traditional histopathology analysis remains the gold-

standard technique for the assessment of ex vivo tissues, these

methods are labor intensive, time consuming, and often rely on

subjective, qualitative measures. For that reason, there is

increasing use of medical imaging technologies, primarily micro-

MRI and CT, as alternatives or supplements to histopathology.

When coupled with appropriate contrast agents, these methods

can highlight tissue with high resolution and three-dimensional

visualization. These methods are non-destructive, enabling

scanning of the entire fixed tissue and allowing for subsequent

histopathology. Finally, a key advantage of the imaging method-

ologies is the 3D visualization and analysis options wherein image

segmentation and analysis algorithms quantify visualized pathol-

ogies into statistically measurable parameters. Because of the high

contrast for bone, microCT has traditionally been used for the

analysis of bone to examine changes in density and structure in

response to treatments [8,9,10,11]). However, recent method and

contrast development have allowed improved imaging of soft tissue

[12,13,14] and vessels [15,16,17], facilitating the assessment of

disease states.

Along these lines, the feasibility of microCT has been used to

assess atherosclerosis in 8 coronary arteries from human autopsy

specimens [18] with excellent correlation to histological findings.

In this report we demonstrate the use of microCT in 3 mouse

models with different levels of atherosclerotic lesions all associated

with deficiency of the Ldlr. Recently, the same technology was

applied to lesion detection in ApoE2/2 mice [19]. Here we extend

these data and formally validate microCT for use in preclinical

atherosclerosis by comparison with the conventional en face method

and found the results from the two methods were in excellent

correlation.

Materials and Methods

Ethics Statement
All animal studies were approved by the Amgen Inc. IACUC

under protocol number 2006-00010.

Animals
Four male Ldlr-3KO mice (Ldlr2/2Apob100/100Lepob/ob) and 4

male Ldlr-2KO mice (Ldlr2/2Apob100/100Lepob/+) were bred at

Charles River Laboratories (San Diego, CA). The generation of the

mice has been discussed previously [20]. Mice were fed standard

chow (8640; Harlan Teklad; Indianapolis, IN) for the duration of

the study. Five Ldlr2/2 (Ldlr-1KO) mice were obtained from

Jackson Laboratories (Bar Harbor, ME) were fed standard chow

until they were 12 weeks of age, at which point they were fed an

atherogenic (TD.02028; Harlan Teklad) diet for 16 weeks.

Plasma analysis
Four-hour fasted plasma was collected in Ldlr-2KO and -3KO

mice (20-21 weeks of age). Mice were bled from the retro-orbital

sinus, and blood was collected into EDTA plasma tubes. Plasma

lipids were measured using the Olympus AU400e Chemistry

Analyzer (Olympus America, Inc; Center Valley, PA).

Perfusion and sample preparation
A whole-body cardiac perfusion was performed three to four

days after plasma collection. The mice were anesthetized with a 50

mg/kg intraperitoneal injection of Nembutal. Anesthetized mice

were perfused with phosphate-buffered saline (PBS) followed by

fixative (4% paraformaldehyde, 5% sucrose, 20 mM EDTA,

pH 7.4) in the absence of a nitric oxide donor. The perfusion

fixation was done using an in vivo perfusion system (AutoMate

Scientific Inc., San Francisco, CA) following the instruction

manual. We calculated that 53 mmHg was the estimated pressure

we used to perfuse each mouse. Whole mouse carcasses were not

used for imaging due to the size constraints of scanning necessary

for sufficient resolution; instead carcasses were trimmed and the

excised heart and aorta specimens intact with spine, ribs and

kidneys were shipped in fixative to Numira Biosciences (Salt Lake

City, UT) for microCT imaging and quantitation. Specimens were

allowed to fix by gentle agitation in 10% neutral-buffered formalin

for an additional 4–5 days at room temperature.

After complete fixation the samples were immersed in a 5%

Phosphotungstic Acid solution for 48 (62) hours. The samples

were rinsed with 1x PBS both before and after reagent exposure.

The described specimen preparation, staining, and scanning

process is a patent-pending method of Numira Biosciences Inc

(www.numirabio.com). Numira performs this method as a service

to its clients. The contrast reagent was only used during the

soaking of the carcass and not injected during perfusion of the

mouse. Full immersion of the sample was necessary for uptake of

the agent into the aorta and plaque to allow them to be

distinguished from each other.

MicroCT imaging and data processing
MicroCT Imaging: A high-resolution, volumetric microCT

scanner (mCT40; ScanCo Medical, Zurich, CH) was used to scan

the tissue with the following parameters: 10 mm isometric voxel

resolution, 200 ms per view, 2000 views in a 360 degree rotation,

55 kVP for tube voltage and averaging the five frames into one.

The scanners utilized in this study are calibrated weekly as

recommended by the manufacturer. The calibration block is

supplied by the manufacturer and contains a metal rod of known

volume. The instrument scans the block and calculates the volume

of the rod and the calculated volume must be within 2.0% of the

actual volume. Initially only 1 cm of the descending aorta was

scanned (for Ldlr-2KO and -3KO mice), in later experiments

(Ldlr-1KO AD mice) the aorta were scanned to the iliac

bifurcation. The microCT data was reconstructed and files were

converted to DICOM format for further processing.

Image Processing: Seg3D, a segmentation software package

from the Scientific Computing and Imaging Institute (SCI,

University of Utah, Salt Lake City, UT) was used to semi-

automatically label plaques within the aortic arch. No filtering was

used during the instrument reconstruction process. The aorta was

first labeled based on prior knowledge of its cylindrical shape and

the grayscale values of its wall. To differentiate the different areas,

plaque, lumen and aorta, the basic grayscale criteria differences

were used, as each entity has a unique value that can be

distinguished from the others. The software was then used to label

the appropriate areas.

The software applications Teem (http://teem.sourceforge.net/)

and SCIRun (SCI) were then used to calculate the plaque volumes

and surface areas, and to create the intimal-medial thickness-map

movies. Presence of plaques was verified by an external radiology

consultant (MicroRad, LLC; Salt Lake City, UT).

Volume Measurements: As part of the segmentation process,

Seg3D reported the number of voxels associated with the aorta

and plaque. The voxel count for each region of interest was

converted into cubic millimeters by multiplying by the volume per

voxel element.

MicroCT to Image Atherosclerosis
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Total Surface Area Measurements: To create smooth surface

representations of the regions of interest, the boundary faces of the

segmented regions were smoothed using Taubin’s algorithm [21].

The surface area for each region was then calculated by summing

the areas of all of the triangles associated with each boundary.

Attached Plaque Surface Area: We define the attached portion of

the plaque as the region of the surface that abuts the aorta surface (in

contrast to that portion of the surface that faces the interior of the

aorta). The ‘‘Attached Plaque Surface Area’’ measurement was also

used when computing the ‘‘Percent Coverage’’ (percentage of aorta

wall that is covered by plaque), as seen in the ‘‘5-Panel Percent

Occlusion Map’’ movies. Since the attached plaque surface is

relatively smooth and represents just one side of the three-

dimensional plaque surface, it was anticipated that the Intimal

(attached) Plaque Surface Area would correspond well with the

plaque surface area measured with the en face method.

Intimal-Medial Thickness Map Generation: For each point on

the plaque surface, we computed the minimum distance to the

opposite side of the plaque (ie, vessel-side to lumen-side and vice

versa). The plaque was pseudo-colored to indicate the plaque

thickness at each point by using the color map shown on the left

corner of the thickness map images.

En face analysis
After Numira Biosciences completed the CT analysis, aortas were

soaked for one week in 4% paraformaldehyde/7.5% sucrose fixative to

remove the CT contrast agent as well as to make the aorta more

flexible for dissection. Aortas were excised from the carcass, separated

from the heart, flat-mounted on wax boards, and stained with Sudan

IV using previously published methods [20]. After staining, aortas were

trimmed to yield the aortic arch and a 1 cm section of the descending

aorta of Ldlr-2KO and -3KO mice, or the entire aorta of Ldlr-1KO

AD mice. The segments were individually positioned on a glass plate

and mounted under a glass coverslip using PBS, eliminating all folds

and air bubbles. Images of the aortas were captured with a Nikon

DXM 1200 digital camera using a Nikon SMZ-U dissecting

microscope (Nikon USA; Melville, NY) and the ACT1 controller

software. Each image was analyzed with Metamorph Imaging System

software v6.1 (Molecular Devices Corp., Sunnyvale, CA) using RGB

thresholding to define lesion areas. Atherosclerotic lesions were

quantified by a trained operator blinded to mouse genotype.

Histological analysis
After en face imaging, the Sudan IV stained aortic whole mount

samples from mice were returned to fixative. Later, by using both

the en face and microCT images as a guide to assist in trimming, the

aorta lengths were transected at specific points, yielding segments

several millimeters in length, and were processed in paraffin using

standard histological methods. Once infiltrated, the specimens were

embedded perpendicularly in blocks with the trim edge down,

providing selected cross-sectional profiles across the aorta. Sequen-

tial sections were stained with H&E, Verhoeff-Van Gieson, and

picrosirius red. Lesions were graded according to Stary type [22,23].

MicroCT reproducibility assessment
The reproducibility of microCT measurements was assessed by four

independent operators who were instructed to analyze the microCT

images for an aorta and to derive lesion surface areas and volumes. We

calculated the coefficient of variation (CV) to assess reproducibility.

Statistical analysis
Data analysis was performed using GraphPad Prism 5 (GraphPad

Software, Inc.). Linear regression and Spearman’s Rank Correlation

coefficient calculations were performed to compare the lesional data

generated by the microCT and en face methodologies. Data in Table 1

comparing Ldlr-2KO and -3KO mice were analyzed using a

Student’s T-Test; data comparing all three strains were analysed by

using a One-Way ANOVA and a Tukey post hoc test.

Results

Detection of atherosclerotic plaque in Ldlr-2KO and -3KO
mice

Ldlr-2KO and -3KO mice were used to evaluate the feasibility

of identifying plaque in the aortas using microCT since they

exhibit different amounts of plaque. As expected, the Ldlr-3KO

mice were obese, extremely hypercholesterolemic (including

elevated HDL-cholesterol) and hypertriglyceridemic compared

with Ldlr-2KO mice (Table S1, [20]). The Ldlr-2KO mice were

also hypercholesterolemic compared with typical levels in wildtype

mice (Table S1, [24]). Two-dimensional microCT images were

generated and used to visualize the aorta and resident plaque from

the Ldlr-2KO and -3KO mice. Figure 1 shows a representative

10 mm microCT coronal section of the aorta and arteries and

clearly defines artery wall, lumen and plaque. The aorta and

lesions were segmented from the microCT dataset and a 3D

rendering of the microCT data was generated. A rotational loop

sequence of these frames was then generated and composited into

a movie (Movie S1). Single images from the movies were captured

to compare the aortas from the two mouse strains side-by-side

(Figure 2). Since linear measurements were generated throughout

the aortas and lesions, plaque thickness was modeled. It is

important to note that microCT detection of the plaque area was

confirmed with the use of the conventional en face staining

technique in the same aortas. Figure 2 (lower panels, en face)

confirms the gross 2D shape of the lesions found in each aorta.

Each aorta from Ldlr-2KO and -3KO mice was measured using

microCT analysis (Table 1) and en face methods (Figure S1). We

also calculated plaque area normalized to total aorta area, for

comparison between the mouse strains. As expected, smaller lesion

sizes were found in the Ldlr-2KO mice than in Ldlr-3KO mice. In

two Ldlr-2KO mice no lesions were detected by microCT,

whereas small areas of Sudan IV-positive staining were evident

from en face analyses (Figure S1, aortas 6928 and 6930).

Interestingly, a severe aneurysm was observed in the aorta from

an Ldlr-3KO mouse (aorta 6944; Figures S1 and S2). The vessel

volume was approximately double that of the other Ldlr-3KO

mice; however, the plaque volume was not similarly increased.

We found that both readouts of lesion surface and volume were

highly reproducible; plaque surface area – SD = 0.59, CV =

5.25%, plaque volume – SD = 0.014, CV = 2.98%.

We evaluated whether the lesion measurements between Ldlr-

2KO and -3KO aortas generated with microCT showed similar

fold differences with en face (Figure S3) and found a 14.6-fold

difference in total plaque surface area between Ldlr-2KO and Ldlr-

3KO using en face and a 17.5-fold difference using microCT (Figure

S3A), demonstrating comparable fold differences between the two

techniques. We also calculated an 11.7-fold difference in plaque

volume between the Ldlr-2KO and Ldlr-3KO aortas (Figure S3B).

Detection of atherosclerotic plaque in a standard
preclinical model of atherogenesis

To evaluate microCT for its utility in preclinical studies, we

quantitatively analyzed atherosclerotic plaques in 5 Ldlr single

knockout mice fed an atherogenic diet (Ldlr-1KO-AD) (a common

model of atherogenesis [25,26,27,28]. In these mice plasma

cholesterol levels were extremely elevated (3137 +/2 63 mg/dL).

MicroCT to Image Atherosclerosis
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Similarly, the number of aortic plaques from the Ldlr-1KO-AD was

higher than those from Ldlr-2KO and -3KO mice (Table 1 and

Figure 3). In these analyses, 5-panel movies incorporating many

images and readouts were created (See Methods and Movie S2).

Figure 3A–C shows a single frame from a 5-panel movie. Extensive

atherosclerotic lesions in the Ldlr-1KO-AD throughout the aortic

tree and descending aorta are clear, along with other dimensions of

the aorta, lesions and lumen (% occlusion). En face surface areas were

generated for each aorta (Table 1 and Figure S4) and were used to

determine correlation between the two methods.

Correlation of microCT with en face
To assess the correlation of the surface areas generated by

microCT and by the en face techniques, data from each aorta for all

three mouse strains were graphed (Figure 3D). The two methods

are in near-perfect correlation (r2 = 0.99; p,0.0001). To determine

whether the microCT volumetric readout is an appropriate

predictor of plaque quantity, and to confirm its correlation with

en face surface areas, we compared the two sets of data from the

three strains (Figure 3E). We found almost perfect correlation

(r2 = 0.95, p,0.0001) demonstrating that microCT plaque volume

are in excellent agreement with the typical en face measurements.

Histological analyses after microCT
To determine feasibility of histologic evaluation following

microCT analysis, sections of aortas from Ldlr-1KO-AD mice

preselected by microCT and en face Sudanophilia were assessed.

These sections contained plaques consistent with Stary types I-V; a

thin endothelial layer, covering a fibrous cap was evident, as were

foam cells and lipid-rich necrotic core. Raised lesions that were

heterogeneous in density by microCT (Figure 4A) contained Type

V fibroatheroma with a fibrous cap overlying core of extracellular

lipid rimmed by foam cells (Figures 4B, C). The analysis

demonstrates preservation of pathological architecture following

microCT scanning, and histological focusing based on microCT

images.

Discussion

Imaging technologies have the advantage of both in vivo and ex

vivo applications, with the latter offering increased resolution,

sensitivity, and ease as the operator is not constrained by

complications of working with a live animal. For these studies,

the ex vivo validation was deemed necessary as proof-of-concept

prior to executing method development for in vivo imaging studies.

MicroCT imaging offers high-resolution (6–36 mm for the device

used in this study) and isotropic voxels for true 3D quantification

and visualization. Several examples of microCT-based analysis of

bone diseases have demonstrated the power of this technique

[8,9,10,11]. More recent work has demonstrated that improved

imaging methods and contrast reagents can enable microCT to be

used for soft tissue [17,18,14,29] and vessel imaging [15,16,17].

The microCT methodology presented clearly detected aortic

lesions in all three Ldlr -deficient models, providing data that can

be processed to generate movies to view the relevant features from

any orientation. In the first example, we produced a rotating

movie around a ventral/dorsal axis (Movie S1), allowing viewing

of the aorta and plaque from all perspectives. In the second

example we produced a multipanel movie that travels through the

aorta, displaying relevant dimensional statistics with reference to

the original microCT images (Movie S2). Importantly, we

determined the precise amount of lesional volume and calculated

luminal occlusion by the lesions based on volumetric data. The

attached surface area and volume of the lesions determined by

microCT were highly reproducible between operators (CV = 5.3%

and 3% respectively) and correlated highly (p,0.0001) to en face

surface areas. In addition to quantifying the dimensions of the

plaque, we found that microCT can also yield information about

the interior of the lesion, notably the necrotic area confirmed by

histologic analysis, without resorting to those methods that may

that may also alter the morphology and therefore affect volumetric

measurements.

The use of microCT to detect lesions in mice offers numerous

advantages over traditional techniques. 1) From the perspective of

the researcher, hands-on time is possibly reduced; the aortas need

not be precisely removed from the animal and only minimal organ

trimming is necessary. Although staining with a contrast agent

takes 2 days, the aortas once positioned within the CT scanner,

can be scanned for overnight data collection, and data processing

and image/3D rendering is mostly performed in silico. The current

method also reduces artifact or operator error as the collection of

data is performed in an unbiased manner by software that has

been provided guidance to determine the area of plaques by

trained personnel. 2) Accurate volumetric data can be collected

which reflect the precise volume of the lesion and aorta, unlike the

aortic root in which estimations of plaque volume are used

between dropped sections. Furthermore, microCT generates

volumetric data of the aorta that is mostly still within its normal

environment, potentially retaining all of its in vivo characteristics

(with the exception of blood volume/displacement). In contrast,

Figure 1. Coronal microCT image of the aortic arch. A microCT
section of 10 mm is shown for an Ldlr-3KO aorta (top 2 images) and an
Ldlr-2KO aorta (bottom two images). The descending aorta (Ao) and
brachiocephalic (Br), left common carotid (Ca) and left subclavian (Su)
arteries are clearly seen. Aortic lesion is evident within the luminal space
of the aorta and can be distinguished from the aortic wall by the
difference in gray scale values of the CT data between the aortic wall
and the lesion and is demarcated in pink after segmentation (arrows;
images on left).
doi:10.1371/journal.pone.0018800.g001
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the aorta may be physically distorted by handling, shrunken by

fixation/embedding with en face and aortic root sectioning.

The aneurysm detected in one of our Ldlr-3KO mice is a good

example of the benefits of in situ 3D (Figure S2) imaging over the

flattened en face preparation, where the architecture of this lesion

was significantly distorted (aorta 6944; Figure S1). The in situ

microCT scanning also allows the viewing and analysis of

surrounding tissues and organs, for example the carotid arteries

or perivascular adipose. 3) Anatomical planes can be chosen after

processing, as opposed to the careful selection of one anatomical

plane before traditional histologic analysis, or cutting of the tissue

before en face analysis. One can choose the desired orientation of a

Figure 2. Three-dimensional renderings of atherosclerotic plaque. The microCT images are rendered to generate a 3D representation of the
aortic arch and attached plaque. A rotating movie (Movie S1) allows the viewing of the plaque from any aspect. Coronal and oblique aspects
obtained from the movies are shown for both Ldlr-2KO (left images) and -3KO mice (right images). The distance of the surface of the plaque from the
aorta luminal wall is indicated using a color spectrum scale (0–340 mm) shown on the left-hand side of each image. Both coronal and oblique sections
illustrate differences in the amount of atherosclerosis detected by microCT between the two strains. The same aortas were excised from the carcass
and assessed by en face methods (see Materials and Methods) to allow comparison of the aortic arch plaque by using the two techniques.
doi:10.1371/journal.pone.0018800.g002
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particular histological projection by simple digital re-orientation

of a data set. 4) The nondestructive in situ methodology leaves the

aorta intact for future analyses, including histology to confirm

potential necrotic areas and immunohistochemistry. Further, the

precise area of the aorta can be selected for follow up based on

reference to the microCT data. 5) Lastly internal composition of

the lesions, specifically necrotic areas, can be identified.

Presumably microCT will also be of use in those models of

advanced atherosclerosis that exhibit lesions harboring areas of

calcification.

Despite the obvious quantitative value of microCT imaging,

there are significant hurdles to wide-spread use, including the cost

and technical expertise required. Further, there are perhaps some

limitations on the ability of microCT to detect the smallest of

lesions. In two of the Ldlr-2KO mice we analyzed tiny lipid-

positive areas that were detected and measured (both less than

0.2 mm2) by the en face method (Figure S1, Table 1) but that were

not detected in these same samples by microCT. Further studies

will be required to optimize the detection of lesions within this

range.

Figure 3. Plaque Detection by microCT in Ldlr-1KO atherogenic diet-fed mice; correlation of en face with microCT. A single frame of a
5-panel movie (Movie S2) of an Ldlr-1KO fed an atherogenic diet. (A) Aortic arch and descending aorta (gray) showing location of the plaque (yellow).
Cross section of aorta is show by the black line to indicate the section of interest in subsequent panels. (B) Both upper and lower graphs represent
sections along the aorta (proximal to distal) along the x–axis and plaque dimensions along the y–axis. Upper graph shows average aorta radius (red),
maximum plaque thickness (blue) and average plaque thickness (yellow) at each section is shown continuously along the aorta. Lower graphs show
percent plaque coverage (green) and percent occlusion of the plaque within the aorta. The vertical line in both graphs indicates position in relation to
section in panel A. (C) MicroCT image of the section indicated in panels A and B shows a cross section of the aorta with accumulation of plaque. The
plaque which is detected by the imaging has been demarcated in pink (right image). (D, E) Correlation of lesional readouts using microCT and en face.
En face plaque surface area data derived from aortas of Ldlr-1KO-fed atherogenic diet (AD) (green squares), -2KO (red circles), and -3KO (blue
triangles) mice were compared with plaque surface area (D) or plaque volume (E) derived by microCT methodology. Linear regression and correlation
coefficients were calculated for each data set comparison.
doi:10.1371/journal.pone.0018800.g003
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The methodology described in this paper does not allow for in

vivo microCT scanning due to the preparation and procedures

needed to view the plaques. Here we describe a novel method for

imaging plaques as a first step. The next step of the methodology

will be to image animals in vivo to view the progression of the

disease state. However, this will take development efforts to

establish a procedure to view and accurately quantify the

plaque.

In conclusion, this is the first study to validate the use of

microCT to detect atherosclerosis in mice by comparing it with the

established en face methodology. Additionally this procedure leaves

the intact aorta available for follow-up histologic analyses. The

microCT method will improve the precise volumetric evaluation

of atherosclerotic plaques throughout the whole arterial tree in

small animals because the preparative steps cause minimal

morphological alterations. In addition, histology methods can be

applied at the regions of interest after identification with micro-

CT. These techniques can be applied together to further our

understanding of pathologies in genetically modified models and

to evaluate therapeutic efficacies in both prevention and regression

models of atherosclerosis.

Supporting Information

Figure S1 En face assessment of atherosclerotic plaque.
Aortas from Ldlr-2KO (top images) and -3KO mice (bottom

images) used for microCT analysis were dissected from the carcass

and assessed by en face methods and Sudan IV staining to allow

comparison of the aortic arch plaque using the 2 techniques.

Lesional surface areas are reported in Table 1.

(DOC)

Figure S2 Three-dimensional microCT rendering of
aortic aneurysm. A coronal aspect obtained from a rotating

3D movie (not shown) of aorta 6944 (Table 1 and Figures S1 and

S4) displaying an aneurysm. The distance of the surface of the

plaque from the aorta luminal wall is indicated using a color scale

in micrometers shown on the left-hand side.

(DOC)

Figure S3 Comparison of microCT to en face. (A) Fold

differences between the total intimal plaque surface area in Ldlr-

2KO and -3KO aortas were calculated for each method. (B) The

fold difference in total plaque volume determined by microCT was

calculated between the two strains of mice. Region of the total

aorta is described in Methods section.

(DOC)

Figure S4 En face assessment of atherosclerotic plaque
in Ldlr-1KO-AD mice. Aortas from Ldlr-1KO fed atherogenic

diet used for microCT analysis were dissected from the carcass and

assessed by en face methods and Sudan IV staining to allow

comparison of the aortic arch plaque using the 2 techniques.

Lesional surface areas are reported in Table 1. Although the entire

descending aorta was analyzed and reported, here we show only

the aortic arch.

(DOC)

Table S1 Body weight and plasma lipid characteristic
of Ldlr-2KO and -3KO mice (N = 4). Ldlr-3KO mice were

obese, extremely hypercholesterolemic (including elevated HDL-

cholesterol) and hypertriglyceridemic compared with Ldlr-2KO

mice. The Ldlr-2KO mice were hypercholesterolemic compared

with typical levels in wildtype mice.

(DOC)

Movie S1 Intimal-medial plaque thickness movie of
Ldlr-3KO aorta 6945 (Table 1): Seg3D (Scientific Computing

and Imaging Institute, University of Utah, Salt Lake City, UT) was

used to create a label map associated with the regions of interest

that assigned a specific value (1 for aorta, 2 for plaque and 0 for

background). This label map was then used to produce a 3D

rendering of the surface boundaries of the regions of interest:

Aortic vessel in transparent gray and plaques in color spectrum

(violet – thin plaque areas, to red – thick plaque areas). SCIRun

(SCI Institute, Salt Lake City, UT) was used to generate the frames

for the rotating 3D movies. The frames were then converted into

QuickTime (Apple, Inc) movies for viewing.

(MOV)

Movie S2 5-Panel Percent Occlusion Map Movie of Ldlr-
1KO-AD aorta 4 (Table 1): This movie ties together the three-

dimensional aortic arch with the segmentation and quantitative

metrics. The movie is split into five panels; each panel is described

below: 3D Rendering Frame (left): we display the 3D aortic arch, with

a perpendicular slice. The arch is rendered as two surfaces: the vessel

is shown in a transparent gray; the plaque is shown in dark yellow. At

the bottom of this frame, we report the slice number and slice percent

occlusion as the movie progresses (and indicated by the black ring), as

well as total specimen measurements for the average occlusion, total

plaque volume, and total attached surface area. Linear Distance

Measurements (top-right): for each slice along the aorta, we graph the

average aorta radius, maximum plaque thickness, and the average

plaque thickness. As the animation proceeds, a black time-bar

indicates the current slice position. Percent Measurements (middle-

right): for each slice along the curved centerline, we graph the percent

coverage (percent of the vessel wall that has plaque attached) and

percent occlusion (percent of the vessel cross-section that is occluded

with plaque). As the animation proceeds, a black time-bar indicates

the current slice position. Planar Slice (bottom-middle): slice of

microCT volume that cuts through and is centered on the aorta, and

which is oriented perpendicular to the centerline. Planar Slice with

Segmentation Overlay (bottom-right): planar slice (same as above)

with plaque segmentation overlaid in red. Total Percent Occlusion:

The total percent occlusion for each specimen is taken as the average

of the percent occlusion values calculated at each centerline-

reformatted slice. We note that this formulation is different than

the value that results from the ratio of the total plaque volume to the

total vessel volume (which we do not report).

(MOV)

Figure 4. Histological examination of aortas pre-selected by
microCT and Sudanophilia. (A) MicroCT cross-section of an aorta
from an Ldlr-1KO mouse revealed a lesion (demarcated in pink)
occluding 69% of the aorta with variable internal density. (B) Verhoeff-
Van Gieson stained section of the raised lesion outlined by the white
rectangle in 4A contained a Type V fibroatheroma (Figure 4B) with a
core of extracellular lipid rimmed by foam cells (corresponding to the
dark center observed by microCT) and overlain by a fibrous cap (FC)
that is better defined by birefringence on polarization of the same
lesion stained with picrosirius red (C). Bar in C represents 100 microns.
doi:10.1371/journal.pone.0018800.g004
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