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Phenomics requires quantification of large volumes of image data, necessitating high
throughput image processing approaches. Existing image processing pipelines for
Drosophila wings, a powerful genetic model for studying the underlying genetics for a
broad range of cellular and developmental processes, are limited in speed, precision,
and functional versatility. To expand on the utility of the wing as a phenotypic screening
system, we developed MAPPER, an automated machine learning-based pipeline that
quantifies high-dimensional phenotypic signatures, with each dimension quantifying a
unique morphological feature of the Drosophila wing. MAPPER magnifies the power of
Drosophila phenomics by rapidly quantifying subtle phenotypic differences in sample
populations. We benchmarked MAPPER’s accuracy and precision in replicating
manual measurements to demonstrate its widespread utility. The morphological
features extracted using MAPPER reveal variable sexual dimorphism across
Drosophila species and unique underlying sex-specific differences in morphogen
signaling in male and female wings. Moreover, the length of the proximal-distal axis
across the species and sexes shows a conserved scaling relationship with respect to
the wing size. In sum, MAPPER is an open-source tool for rapid, high-dimensional
analysis of large imaging datasets. These high-content phenomic capabilities enable
rigorous and systematic identification of genotype-to-phenotype relationships in a
broad range of screening and drug testing applications and amplify the potential power
of multimodal genomic approaches.
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INTRODUCTION

The Challenge of Phenomics in Multicellular
Organs
The architectural maxim of L. Sullivan “form follows function”
is rigorously observed in many biological structures where
shape is a key determinant of function (Sullivan, 1896).
Mapping the functional relationships between genotypes
and phenotypes involves translating phenotypic data,
typically available as an image, into a high-dimensional
space that describes key morphometric features. The
quantification and subsequent comparison of morphometric
features is crucial for identifying and explaining gene
conditions responsible for the phenotype. Advances in
imaging and machine learning (ML) empower the
application of phenomics in a high throughput fashion due
to the ease of identification of patterns in features (Houle et al.,
2017).

The Drosophila wing has an excellent track record for genetic
screening studies and is ideal for phenomic studies to uncover
conserved biological processes relevant to human development
and diseases (Pitchers et al., 2019). The Drosophila wing has
successfully identified genes crucial for organ development and
relevant to human health (Strigini and Cohen, 1999; Bier, 2005;
Buchmann et al., 2014; Restrepo et al., 2014; Brock et al., 2017;
Narciso and Zartman, 2018; Kim et al., 2020). Further, the developing
wing imaginal disc has often been used for studying growth,
development, and tissue regeneration (Smith-Bolton et al., 2009;
Jaszczak and Halme, 2016; Hariharan and Serras, 2017). Thus, the
wing is an ideal model system for genotype-phenotype studies due to
its balance between structural simplicity and functional complexity.
Subtle changes in the shape and size of the wing can provide insights
into conserved signaling mechanisms that occur during wing
development (Gibson and Dworkin, 2004; Kawecki et al., 2012;
Matamoro-Vidal et al., 2018). This unique characteristic of the
Drosophila wing has enabled completion of a multivariate
genome-wide association analysis linking single nucleotide
polymorphisms from genotypes to wing shape deformations
induced by gene knockdown (Pitchers et al., 2019). The
Drosophila wing blade consists of five longitudinal veins, two
cross veins, intervein trichomes, and marginal hairs along the
surface and edge of the wing. These visual features provide a flat
readout of conserved signaling pathway activity (Figure 1A;
Supplementary Figure S1) (Bier, 2005). Wing development is a
systems-level process that requires coordinated regulation of cellular
processes such as proliferation, differentiation, and morphogenesis
(De Celis, 2003; O’Connor et al., 2006; Neto-Silva et al., 2009;
Restrepo et al., 2014; Diaz de la Loza and Thompson, 2017;
Huizar et al., 2020). The final shape and size of the adult wing
depends on the integration of both intrinsic genetic regulatory
networks and extrinsic environmental cues such as temperature,
nutrition, and hormones (Johnston and Gallant, 2002; Parker and
Struhl, 2020).

Most of the phenotypic studies of wings result in large volumes of
imaging data that are not fully utilized. Such data traditionally has
been analyzed manually or aided by semi-automated pipelines.

Manual extraction of key morphometric features, such as wing
size, interveinal areas, shape, trichome (cell number) number and
trichome distribution, is impractical over the large sample sizes
required to obtain reproducible results. Previous efforts have
developed algorithms to perform high throughput analysis of a
subset of these features (Houle et al., 2003; Dobens and Dobens,
2013). However, they are still limited by a lack of computational
speed, accuracy, andflexibility for various imaging arrangements with
respect to the quantification of morphometric traits. Further, existing
pipelines only extract a limited number of morphometric traits that
provide an incomplete picture of biological implications imposed
during experiments.

High-Dimensional Features Provided by
MAPPER
To overcome the limitations of manual and semi-automated
platforms, we developed the Multicellular Analysis Processing
Platform for Experimental Research (MAPPER), a fully automated
pipeline forDrosophilawing segmentation andmorphometric feature
extraction. MAPPER is composed of two distinct modules that
operate sequentially. The first module employs a deep learning
(DL)-based image segmentation platform to separate wing
interveins and veins from the imaging background. This is
achieved using the concepts of transfer learning, where we trained
the weights of the last few layers of a previously trained convolutional
neural network (CNN),U-Net (Ronneberger et al., 2015). The trained
DLmodel generates segmentationmasks that define different regions
of the wing, at a much faster rate compared to conventional image
segmentation algorithms such as active contours or image
thresholding. This model can also be re-trained with new images,
easily making it more generalizable for datasets belonging to different
imaging sources, thereby allowing versatility across various research
labs. A second option allows users to employ ILASTIK, a ML-based
pixel classifier for the same task.

Following the image segmentation pipeline, is a k-nearest
neighbor (KNN)-based machine learning classifier (Cover and
Hart, 1967) that classifies and labels each intervein region. This
facilitates high throughput feature extraction of each intervein
subregions resulting in the extraction of hundreds of geometrical
features. Together, these methods allow MAPPER to accurately
and swiftly extract large amounts of phenotypic data from wing
imaging datasets. MAPPER extracts Elliptic Fourier Descriptors
(EFDs) to describe the shape of the wing (Kuhl and Giardina,
1982). EFDsmeasure local and global changes in the overall shape
of wing. The labeling of interveins also provides an orientation-
free classification of veins. The pipeline then estimates landmark
features and anatomical axes lengths, such as the proximal-distal
(PD) axis and the anterior-posterior (AP) axis.

Case Studies Demonstrating the Capability,
Versatility, Accuracy, and Implementation
of MAPPER
To benchmark MAPPER’s accuracy and precision in replicating
manual measurements, we compared MAPPER’s output to manual
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measurements of Drosophila wings and demonstrate MAPPER
measurements are statistically identical to manual measurements.
From these measurements, MAPPER was able to reveal scaling
relationship differences between males and females from the
Samarkand strain of Drosophila melanogaster. Further, to compare
MAPPERwith previouswing analysis packages, we usedMAPPER to
confirm the role of insulin receptors (InsR) in regulating Drosophila
wings (Brogiolo et al., 2001). Additionally, MAPPER enabled a

complete systematic analysis of how wing shape varies across four
Drosophila species: D. ananassae, D. melanogaster, D. simulans, and
D. virilis.MAPPER’s measurements revealed subtle differences, such
as the scaling relationships between intervein regions, that would be
very difficult to identify from manual or semi-automated platforms.
These observations shed light on the genetic regulatory processes that
regulate wing shape and size of various experimental conditions.
MAPPER is available as an open-source tool in the form of an

FIGURE 1 | MAPPER automates segmentation of wings. (A) Overview of the MAPPER pipeline. The wing imaginal disc development is regulated through the
spatiotemporal patterning of multiple classes of genes (Williams et al., 1991; Campbell et al., 1993; Gómez-Skarmeta et al., 1996; Boutros and Mlodzik, 1999). During
pupal stages, the wing blade is formed from the wing disc. The coupled image segmentation and intervein classification processes of MAPPER enables morphological
feature extraction. (B) Segmentation of wings (left) is carried out for identification and labelling of different regions of interest (right) within the adult wing blade. Two
methods of training are available: 1 The trained U-Net or 2 ILASTIK. (C) MAPPER utilizes the U-Net architecture, which consists of convolutional layers for feature
extraction, followed by deconvolution layers to achieve pixel-level predictions. The confusionmatrix shows high pixel classification accuracy for a U-Net trained to identify
different regions of interest. The numbers in the boxes represent the prediction accuracy for classification of a pixel into a class represented in the vertical labels against
the true class in the horizontal labels. (D) Sample wings from multiple imaging sources that can be processed by MAPPER. (E) Schematic describing methodology
followed by ILASTIK, an open source pixel classifier, for the purpose of pixel classification.
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interactive GUI, making the tool usable and extensible to researchers
with no prior experience in programming.

RESULTS: PIPELINE DEVELOPMENT,
FEATURES, AND USAGE

MAPPER Utilizes Statistical Learning
Algorithms to Automate Segmentation of
Drosophila Wing Images
Automation of any quantitative feature extraction pipeline
depends primarily on the accuracy of segmentation masks.
These masks are used for defining regions of interest within
an image. Many regions of interest exist within wings including
the intervein regions, the longitudinal veins, and the marginal
hairs. Conventional image processing algorithms face a challenge
in accurate processing of wing images that might be obtained
from variable imaging conditions, such as changes in background
lighting or wing rotation. Packages such as WINGMACHINE
rely on image thresholding, where parameters need to be
recalibrated for separate datasets. In our hands, the
WINGMACHINE pipeline required a specific wing orientation
for extraction of landmark positions to a pre-fit spline model.
WINGMACHINE requires new spline models for wing
conditions that result in landmark region abnormalities, such
as missing or partial anterior or posterior cross veins. The semi-
automated wing analysis platform, FIJIWings, uses the trainable
Weka segmentation module to identify these regions (Dobens
and Dobens, 2013; Arganda-Carreras et al., 2017). However,
manual training is time consuming and needs to be repeated
when using images from very different imaging sources. There
has been recent work assessing wing phenotypes using an open
source ML-based pixel classifier ILASTIK (Sommer et al., 2011)
for the task of segmenting the overall wing blade (Alba et al.,
2020). However, to date, there is not a fully automated and high
throughput image analysis pipeline that can be used for
processing a broad range of phenotypes (e.g., severe vein
defects and wing deformations) or imaging conditions.

MAPPER provides for flexible training. For larger, high
resolution images or very high sample sizes (103) we utilized a
CNN, which served as a segmentation algorithm that can be
adapted to new identification problems (Kim, 2016). In
particular, we retrained the last few neural network layers of a
pre-trained U-Net model (Ronneberger et al., 2015; Zhou et al.,
2018; Falk et al., 2019), which is a DL-based image segmentation
pipeline for identifying different regions of interest. U-Net relies
on data augmentation for efficient use of annotated samples.
Here, we used a batch size of approximately 1,000 Drosophila
wings as the initial training dataset.

This training process annotates four different regions within
an image. These regional classes are the non-wing background,
the intervein regions, the veins, and the periphery hairs
(Figure 1B). Wing images that contain sample preparation
defects, such as mounting defects or torn wings, are excluded
from image analysis (Supplementary Figure S2). Training U-Net
through PyTorch using a GPU (Ketkar, 2017) resulted in a

deployable model with an overall accuracy of 95%
(Figure 1C). The default U-Net model was trained to be
compatible for images either taken using a medical slide
scanner or an EVOS microscope at a magnification of 4× or
higher (Figure 1D).

As a second method that is ideal for low resolution or images
with low sample sizes, we used the open source ML-based pixel
classifier ILASTIK to generate segmentation masks (Sommer
et al., 2011). The ILASTIK toolkit extracted 37 features for
each color channel within each pixel. These features included
intensity, edge-detection, and texture features. Following the
extraction step, a random forest classifier from sci-kit learn
was used to obtain a consensus classification for each pixel
(Pedregosa et al., 2011). When training MAPPER, ground
truth images are added iteratively to reduce the calculated
uncertainty of each pixel until the calculated uncertainty
reaches a minimum threshold desired by the user (Figure 1E).
This segmentation mask is then imported into the custom
pipeline of MAPPER for high throughput morphometric
quantification of features. Full details on training the image
segmentation pipeline for each training method are provided
in Supplementary File S1 Section S1.

MAPPER Provides High-Dimensional
Morphological Features Analysis
A key feature of MAPPER is the classification of individual
intervein regions. This is carried out by training a ML-based
intervein classifier that takes unlabeled intervein regions from the
segmentation mask as an input and classifies them according to
their location (Supplementary Figure S1). MAPPER then
identifies individual veins, intervein regions, and extracts wing
shape features (Supplementary File S1 Section S3). The size and
positioning of intervein boundaries provides a readout of
multiple conserved signaling pathways (Figure 1A). The
systematic labeling of interveins also allows construction of
quantified phenomes that can establish geometric similarities
and dissimilarities between disparate wing samples.

Segmentation masks generated either by U-Net or ILASTIK
are imported into a custom MATLAB pipeline that performs
erosion/dilation operations, smoothens the edges, and identifies
continuous intervein regions. For training a ML-based intervein
classifier, morphological features were first extracted for each
manually labelled intervein (Figure 2A). EFD-based shape
descriptors were first extracted for each intervein to train the
classifier (Kuhl and Giardina, 1982). The key advantage of using
such a framework is that EFDs produce a robust, translational
and rotation invariant representation of the intervein shape (Kuhl
and Giardina, 1982).

EFDs are determined by fitting a Fourier series to the periodic
function obtained from the closed Drosophila intervein region
contour (Supplementary Figure S3). The accuracy of an EFD fit
varies with the number of harmonics used in the expansion. We
fit EFDs to the seven intervein regions of a wildtype wing to
estimate the appropriate number of coefficients required for an
accurate representation of shape. The error between the actual
contour and the shape approximated by the EFD decreased as the
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number of terms in the EFD increased (Supplementary Figure
S3B). The first ten terms of the EFD were selected for
representing the shape of each intervein.

In addition to the EFDs, we extracted basic geometrical
properties of the intervein regions including: the ratio of an
individual intervein area with respect to the area of the whole
wing, the circularity of the region of interest (ROI), and the aspect
ratio of each intervein region. Both extracted EFD coefficients and
the geometric features of individual interveins were used to train
separate models to classify interveins (Figure 2A). This prevents
overfitting and selects the set of features that can be used best to
classify the interveins. We found that a KNN-based classifier

offers the best cross-validation accuracy of the eleven different
support vector machine (SVM) and KNN classification methods
tested (Supplementary Figure S4C). Overall, the KNN classifier
reported an accuracy of about 92.5% when trained on EFD-based
features and 99.2% when trained on the geometric features of
each intervein (provided in the confusion matrix of
Supplementary Figure S4D).

Based on this, we used an intervein classification scheme based
on geometric features for classification of interveins to analyze
images (Figure 2A). In summary, for any new segmentation
mask, the geometric features described above are extracted from
each intervein. The features are then passed into the trained

FIGURE 2 |MAPPER automates classification and extraction of a high (>100) dimensional morphological feature set. (A) During training, individual intervein regions
weremanually labelled using theMATLAB’s image labeler app. EFD features along with the geometric features were extracted from the labelled intervein regions to train a
machine learning (ML)-based classifier. This trained model then identifies the intervein regions based on the input binary mask and the associated features of each
intervein region. Edge cases of anterior cross vein (ACV), posterior cross vein (PCV), and marginal L5 defects were included in the analysis. (B) Image of the
MAPPER application interface. The MAPPER application supports both individual (III) and batch (IV) processing of image data sets based on input parameters (II) specific
to a user’s imaging setup.
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FIGURE 3 | Validation of automated measurements generated by MAPPER. Manual measurements were taken and compared to MAPPER’s output. (A) Total
wing area measurement distributions of automated and hand measurements are compared. An F-test (Snedecor and Cochran, 1989) compared the variances of the
distributions (p = 0.928), and an unpaired T-test (Fisher, 1925) compared the means (p = 0.236). (A9) A linear regression fit of automated versus manual measurements
(red dashed line corresponds to the fit, and light-blue bands correspond to the 95% CI of the fit). The slope parameter of the fit was not statistically different from a
value of 1.00 (p = 0.114). A color-coded image of a MAPPER-processed wing is shown in the inset. (B) Trichome count was validated by observing a small 50 × 50 pixel2

area between the third and fourth longitudinal veins. Identified trichomes byMAPPER are shown as red circles overlaid onto the raw image. (B’) Trichomes were counted
(Continued )
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intervein classification model that classifies and labels each
intervein region.

The labelling of interveins is followed by a series of operations to
extract morphological features from the wing blade (Supplementary
File S1 Section S3). The approach also systematically extracts
localized geometric features that can be used for phenomic
analysis. One of the key features extracted using MAPPER are the
EFD coefficients for the wing periphery (Supplementary File S1
Section S3D, Supplementary Figure S5). For this particular step,
EFDs were not normalized against size for quantification of changes
in area of the wing. To do so, wemodified the original algorithm such
that the EFDs produced are sensitive to size changes. This is
accomplished by removing the normalization step (Thomas, 2020)
where the EFD coefficients are normalized by the semi-major axis of
the first ellipse (Supplementary File S1 Section S3). Altogether,
coefficients of the Fourier series are included as additional features,
each of them carrying a local shape property. These coefficients can
not only be used for screening local shape changes within the wing,
but also can be used to estimate an average shape for a particular
genotype.

MAPPER also quantifies the AP and the PD axes lengths of the
wing blade (Figures 3C,D). The labelled interveins are used to
delineate the L2, L3, L4, and L5 veins and the cross veins
(Supplementary Figure S6). Identification of veins is
accompanied by quantification of landmark positions within
the wing. Further, the number trichomes of each labelled
intervein region (corresponding to cell number) and trichome
density of the region are quantified as extracted features. Thus,
MAPPER extracts a high-dimensional fingerprint of
morphological and shape features.

MAPPER’s Automated Measurements are
Statistically Identical to Manual
Measurements
We benchmarked MAPPER’s accuracy and precision in
replicating manual measurements for 112 adult wing images
(n = 49 females and 63 males) of Drosophila melanogaster
from the Samarkand strain (Sonnenschein et al., 2015). To
prevent artificially high coefficients of determination (R2) in

linear regression models, male and female measurements were
analyzed separately. Total wing area measurements for female
wings from MAPPER’s automated output were compared to
measurements taken manually in ImageJ software using the
Polygon selection tool (Figure 3A). An F-test (Snedecor and
Cochran, 1989) demonstrated the two variances of the
distributions were not statistically different (p = 0.928) and an
unpaired T-test (Fisher, 1925) demonstrated the twomeans of the
distributions were not statistically different (p = 0.236). A linear
regression model was fit to the manual measurements plotted
against the automated measurements (R2 = 0.996) and the slope
parameter of the fit was found to not be statistically different from
a value of 1.00 (p = 0.114), indicting a one-to-one correspondence
of manual and automated measurements (Figure 3A’).

We also validated MAPPER’s automated measurements
compared to manual measurements for all individually
labelled intervein regions (Figure 2A, Supplementary Figure
S7, Supplementary Figure S8). MAPPER’s measurements were
statistically identical to manual measurements for intervein
regions 1 through 6 (p > 0.05). MAPPER slightly
overestimated the area of intervein region 7 (Supplementary
Figure S8), which may be attributed to how the erosion/dilation
operations perform when handling the partial L6 vein (Blair,
2007). However, the slope parameter of the fit for this region had
a 95% CI of (0.919, 0.985), which indicates that the difference
between the automated and manual measurements was slight (no
more than 0.081 mm2 per 1 mm2 increase in overall wing size).
Even when slight variations between measurements were seen,
overall, MAPPER consistently produces measurements
statistically identical to manual measurements.

Further, we validated MAPPER’s accuracy in quantifying
trichomes by analyzing a small 50 × 50 pixel2 area between
the third and fourth longitudinal veins of the male wings
(Figure 3B). Trichome numbers were counted manually and
by usingMAPPER (Figure 3B’). A Poisson regression generalized
linear model (GLM) was fit to the trichome counts with either
MAPPER or manual measurements being a categorical
explanatory variable (Figure 3B’). The exponential of the fit
parameter associated with MAPPER versus manual
measurements has a 95% confidence interval (CI) of (0.974,

FIGURE 3 | using MAPPER andmanually. 95%CIs are based on order statistics (Harrell and Slaughter, 2021). A Poisson regression generalized linear model (GLM) was
fit to the trichome counts with either MAPPER or manual measurements being a categorical explanatory variable. (C) The landmark region measurements of proximal-
distal (PD) axis or anterior-posterior (AP) axis were manually measured and compared to MAPPER’s output. The axis length was scaled to the mean axis length of the
group. Violin plot distributions compare MAPPER’s output to manual measurements. Scaled landmark region lengths via MAPPER are not statistically different from
manual measurements for the PD axis (p = 0.802) or for the AP axis (p = 0.760) via Mann-Whitney U Test (Mann and Whitney, 1947; Nachar, 2008). (C’,C’’) A linear
regression fit to automated versus manual measurements (red line) was fit to the points for the PD axis (C’) and AP axis (C’’) measurements. The 95% confidence bands
of each fit are overlaid in light-blue for PD axis measurements and light-green for AP axis measurements. The slope parameters of each fit was not statistically different
from a value of 1.00 (p = 0.287 for PD axis and p = 0.055 for AP axis). Inset: Raw wing image with a corresponding landmark measurement is shown as a red line. (D)
MAPPERwas run three independent instances on the same dataset (labelled runs 1–3). The resulting output measurements for total wing area were compared tomanual
measurements. Variances of each distribution were not statistically different (Bartlett’s test for homogeneity of variances (Snedecor and Cochran, 1989), p = 0.985).
Means of each distribution were not statistically different (one-way ANOVA (Snedecor and Cochran, 1989; Chambers et al., 1992), p = 0.326). The mean absolute
percentage errors (MAPE) of the independent MAPPER runs ranged between 1.27 and 2.18% when comparing MAPPER predicted values to true manual
measurements (Makridakis et al., 1982; Bowerman, 2005). The root-mean-square errors normalized to the mean of the manual measured data (NRMSE) of the
independent MAPPER runs ranged between 1.36 and 2.31% (Poli and Cirillo, 1993; Hyndman and Koehler, 2006). The coefficient of variation (CV) of the manual
measurements serves as a proxy for the error that naturally occurs scaled to the mean when taking manual measurements (Everitt, 2002). Data in A, A’, B, B’, and D are
female, and data in C, C’, and C’’ are male Samarkand strain wings. Data available from (Sonnenschein et al., 2015).
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1.098), indicating there is no statistical difference whether
trichome counts come from MAPPER or manual
measurements (p = 0.271, Supplementary File S2).

Next, MAPPER’s automated output measurements were
compared to manual measurements for male wings for
measurements of PD and AP axes lengths. For each case, the
axes length measurements were normalized to the mean axis
length of their respective groups. Normalized landmark region
lengths (Figure 3C) measured by MAPPER are not statistically
different from manual measurements for the PD axis (p = 0.802)
nor for the AP axis (p = 0.760) viaMann-Whitney U Test (Mann
and Whitney, 1947; Nachar, 2008). Further, when fitting a linear
regression model to manual measurements plotted against
MAPPER’s automated measurements, the slope parameters of
each fit were not found to be statistically different from 1.00 (p =
0.287 for PD axis and p = 0.055 for AP axis) indicating a one-to-
one correspondence of manual and automated measurements for
landmark axes lengths (Figures 3C’, C’’).

To test precision, MAPPER was run three independent instances
on the same dataset starting with pre-processing of the rawwing data,
ILASTIK pixel-classification training, and finally processing by
MAPPER (Figure 3D). The resulting output measurements for
total wing area for each independent run were compared to each
other and manual measurements. Bartlett’s test for homogeneity of
variances (Snedecor and Cochran, 1989) determined the variances of
each distribution were not statistically different (p = 0.985). A one-
way ANOVA (Snedecor and Cochran, 1989; Chambers et al., 1992)
test determined the means of each distribution were not statistically
different (p= 0.326). Themean absolute percentage errors (MAPE) of
the independent MAPPER runs ranged between 1.27 and 2.18%
(Figure 3D, Supplementary File S2) when comparing MAPPER
predicted measurements to true manual measurements (Bowerman,
2005; Makridakis et al., 1982). The root-mean-square errors
normalized to the mean of the manual measured data (NRMSE)
of the independent MAPPER runs ranged between 1.36 and 2.31%
(Figure 3D, Supplementary File S2) (Poli and Cirillo, 1993;
Hyndman and Koehler, 2006). The coefficient of variation (CV)
of the manual measurements can be used as a proxy for the amount
of error that naturally occurs scaled to the mean when takingmanual
measurements (Everitt, 2002). Because RMSE is an estimator for the
standard deviation of the distribution of the MAPPER predicted
residuals, benchmarking MAPPER NRMSEs to the manual
measurement CV value of 5.88% suggests MAPPER total wing
measurements are within the range of naturally occurring error of
taking manual measurements (Shmueli et al., 2017). Overall,
MAPPER’s automated measurements are both accurate and
precise in comparison to manual measurements for total wing
area, intervein region areas, trichome counts, and landmark axes
lengths.

Benchmarking MAPPER performance
As a second validation step, we benchmarked MAPPER’s
performance against a currently available wing analysis
pipeline, FIJIWings, for wings of varying size. This was done
through a systematic comparison of metrics, such as wing blade
area and trichome density, for wings generated by genetically
perturbing insulin signaling. Insulin and insulin-like growth

factors regulate metabolic activity (Kurtzhals et al., 2000;
Samani et al., 2007; Belfiore et al., 2009). Dysregulation of
insulin signaling causes a variety of human diseases including
diabetes, insulinoma, metabolic syndrome, ovary syndrome, and
auto-immune disorders (Dunaif et al., 1989; Kahn et al., 2006;
Wang et al., 2017). In Drosophila, the InsR homolog regulates
cellular proliferation (Brogiolo et al., 2001). Loss of function of
InsR in wing imaginal discs reduces final wing size (Chen et al.,
1996).

As expected, quantification of wing size shows that activation
of InsR signaling increases wing size. Conversely, suppression of
InsR signaling reduces wing size (Brogiolo et al., 2001). The
overall area of wings were comparable (p > 0.05 for unpaired
T-tests and F-tests, Supplementary File S2) when they were
measured through FIJIWings and MAPPER (Figures 4A,B).
However, FIJIWings over-segmented tissues as regions
containing marginal wing hairs were often misclassified as
intervein regions (Figure 4A). This was not observed in any
of the segmentation masks produced by MAPPER.

MAPPER and FIJIWings were then compared in their
ability to quantify the number of trichomes in a 75 × 75
pixel2 area cropped from the seventh intervein region. This
metric was chosen after validation of MAPPER trichome
counts being statistically identical to manual counts
(Figure 3B-B’). The median count of trichomes upon
activation of InsR were higher than the RyRRNAi control
(p = 1.35 × 10–03). However, suppression of InsR did not
have a significant change in the trichome counts (p = 0.845)
(Figure 4C). When comparing trichome counts by MAPPER
to those of FIJIWings, there was a significant difference in
number of trichomes estimated by FIJIWings and MAPPER
(Figures 4C,D). In particular, FIJIWings predicted a greater
number of trichomes compared to MAPPER for
downregulated insulin signaling (p = 7.94 × 10–03), for a
control group (p = 2.15 × 10–06), and for upregulated
insulin signaling (p = 5.59 × 10–06) (Figures 4C,D,
Supplementary File S2). To visualize the discrepancies of
trichome counts predicted through FIJIWings and MAPPER
in a sample 75 × 75 pixel2 area, identified trichome locations
were plotted (Figure 4D). FIJIWings showed an
overestimation in predicted number of trichomes, as
confirmed by the measured data (Figure 4C). Estimation of
trichome density within a small region of the wing is not
sufficient to quantify global changes in trichome density. To
do so, MAPPER was next used to first estimate the location of
trichomes within the intervein region. The overall wing
domain was then binned into small subdomains of 20 × 20
pixel2 areas. The number of trichomes in those sub-domains
were then used to create heat maps representative of local
trichome density within the wing samples (Figure 4E,
Supplementary Figure S9). This highlights that a
suppression of InsR during wing development leads to an
increase in trichome density, consistent with insulin’s role in
regulating cell size. Taken together, these results highlight
MAPPER’s ability to more accurately and precisely estimate
both wing area and trichome counts compared to a previous
pipeline.
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RESULTS: CASE STUDIES

High-Dimensional Phenotypic Exploration
of Sexual Dimorphism
The sex-based differences in overall size of adult Drosophila
melanogaster wings is well documented (Testa and Dworkin,
2016). To further study this dimorphism and to investigate
whether additional, more subtle differences are detectable, we

processed 128 Samarkand strain wings with MAPPER
(Figure 2B, Figures 5A,B) (Sonnenschein et al., 2015) to
create a high-dimensional morphometric fingerprint of each
sample (Figure 5C). Principal Component Analysis (PCA)
(Wold et al., 1987) carried out on the geometric features
revealed that the maximum variance (89.4%) within data
was distributed majorly between the first two principal
components (Figure 5D, Supplementary Figures S10A–C).

FIGURE 4 |MAPPER provides precise segmentation and extraction of wing shape and trichome density. (A)MAPPER automates identification and labeling of the
individual intervein components with high accuracy. InsRDN is the dominant negative form of the insulin receptor, and InsRCA is the constitutively active insulin receptor.
RyRRNAi is the GAL4-UAS knockdown of the ryanodine receptor, which is not known to be expressed in the wing disc. Full genotypes are the Nubbin-Gal4, UAS-
Gcamp6f lines crossed to each of the indicated UAS lines. (B,C) Comparison of wing area and number of trichomes in a 75 × 75 pixel2 bounding box, respectively,
as calculated byMAPPER and FIJIWings. Error bars indicate standard deviation inmeasurements. Statistical comparisons for wing area were performed via the unpaired
T-test and F-test (p > 0.05, n. s.). Statistical comparisons for trichome counts were performed via the Mann-Whitney U Test (Mann andWhitney, 1947; Nachar, 2008) for
nonparametric comparisons (p < 0.001 ***, p < 0.01 **). (D)Comparison of trichome location estimation between MAPPER and FIJIWings with respect to the raw image.
(E) Heatmaps representing trichome density. The wing is binned into regions of 20 × 20 pixel2 areas. Number of trichomes are calculated using MAPPER in wing
subregions.
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Analysis of the loadings for the first principal component
showed that overall wing blade area explains the majority of
variance within the data. As expected, the area of the female
wing was significantly larger than a male wing (p < 0.001)
(Figure 5E, Supplementary Figure S10E). A plot of the first
two principal components shows the two distinct clusters of
male and female populations (Figure 5D).

To highlight the utility of EFDs for phenomic analysis of
wing shape, EFD coefficients were separately analyzed from
the other geometric features. PCA applied on the EFD
coefficients revealed a total variance of about 97%
distributed along PC1 alone (Figure 5F). The observed
variance along PC1 is attributed to the known overall size
differences between the male and female population of wings
(Figure 5E). Clustering carried out on the first two principal
components using Gaussian Mixture Models (Yang et al.,
2012) (GMM) was also able to distinguish the male and
female population of wings (Figure 5F). The mean shapes
of each cluster can also be used to highlight local shape changes

between the male and female populations. We used the mean
contours of each population and measured variation
peripheral growth along the normal direction (Figures
5G,H). There is more growth along the PD axis compared
to the AP axis, which is necessary for maintaining a uniform
scaling of these anatomical axes with overall size of wing blade
(Supplementary Figure S11). This uniform scaling also
confirms that the normalized length of the AP and PD axes
are equal for both the male and female wings.

We further investigated potential scaling relationship
differences between the two wing populations. We first
normalized all geometric wing feature measurements
produced by MAPPER. More information on normalization
approaches are detailed in the methods section. Overall, each
feature was normalized such that they were unitless to enable
comparisons across male and female population despite
known size differences. A correlation plot of the normalized
features reveals that there are significant scaling relationships
of wing features for both male and female populations

FIGURE 5 | Representative statistical approaches for phenotypic analysis. (A)Male and female Samarkand wings (Sonnenschein et al., 2015), with sample sizes
indicated, were analyzed and processed (B) to demonstrate MAPPER’s phenotypic profiling features. (C) Definition of the wide number of geometric/morphological
features including extracted EFD coefficients fit to the wing margin. (D) PCA reveals the largest variance in the data observed in terms of overall wing area and trichome
density. As expected, two distinct clusters are evident when plotting the first to PCs. (E) Violin plot showing the distribution of area of male and female wings. Solid
red line indicates themedian and solid black line indicates the mean of each population. (F) PCA on EFD revealedmost of the variance in the data concentrated only in the
first principal component. Two distinct clusters separate the male and female populations. (G) Standard deviation in the direction of PC1 was calculated for the entire
population of wings. PC1 was varied by adding and subtracting 1.5 times the standard deviation along PC1. Reverse PCA was then used to obtain the desired EFD
coefficients in which the contours were reconstructed. (H) EFDwas used to construct mean wing shapes representing themale and female populations. 100 points were
sampled from themale wing and their minimumdistance from the female wing was calculated to quantify local size differences within the two populations. The variation of
size is drawn as a bar graph where the x-axis is representative of the points sampled in male wing. The locations of points sampled are indicated in the plot.
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(Figure 6A). We identified several underlying significant
differences in scaling relationships between male and female
wings after applying a Fisher’s Z-transformation (Fisher, 1915;
Fisher, 1921) on correlation values. Of note, females have a
relatively larger normalized intervein region 7 (the most
posterior region) scaled to intervein region 4 (related to
high levels of Hedgehog and Decapentaplegic signaling)
(Figures 5B,C, p < 0.001). Males had a significantly larger
normalized d(L3−L4) scaled to intervein region 7 (Figures
6B,D, p < 0.05). These results suggest the presence of
underlying sex-specific differences in morphogen signaling
in male and female wings during development (Surkova
et al., 2021). Further investigation of the identified scaling
differences from the Fisher’s Z-transformation would enable
linking of the relationships to the governing genes that regulate
wing morphogenesis. We explore these scaling relationships in

more detail in a case study conducted on wings belonging to
four different species of Drosophila.

MAPPER Reveals Species-Specific
Differences inWing Size andDevelopmental
Patterning
Next, we quantified morphometric phenotypes of wings for four
species: D. melanogaster, D. simulans (a species in the
melanogaster subgroup), D. ananassae (a species in the
melanogaster group), and D. virilis (a species outside the
melanogaster group) (Da Lage et al., 2007). Wing area was
revealed to be larger in females when compared to males in D.
melanogaster, D. simulans, and D. ananassae (Figure 7A).
Interestingly, adult wings are larger in males than in females
in D. virilis (Figures 7A,B). We found size-independent

FIGURE 6 | MAPPER identifies unique scaling relationships between wing populations. MAPPER output data of male and female Samarkand strain wings
(Sonnenschein et al., 2015) were analyzed to identify potential scaling relationships between features. All geometric features were normalized to become unitless
features, denoted by the hat symbol. (A) A correlation plot of the features for males (lower-left triangle) and females (upper-right triangle) is shown. Significance of
correlation is denoted by asterisks with p < 0.05 *, p < 0.01 **, and p < 0.001 ***. (B) Fisher’s Z-transformation (Fisher, 1915; Fisher, 1921) was performed on the
correlation coefficients to observe differences in underlying correlations between the two populations. Significance of correlation is denoted by asterisks with p < 0.05 *,
p < 0.01 **, and p < 0.001 ***. Z-scores were scaled to be between -1 and 1 for plot simplicity. Red arrows indicate significant correlations plotted as violin plots on
subsequent figure panels. (C,D) The underlying correlation differences between Î7 and Î4 (C) and between d̂ (L3-L4) and Î7 (D) were found to be significant by Fisher’s
Z-transformation between populations. Statistical tests were performed using the Mann-Whitney U Test (Mann and Whitney, 1947; Nachar, 2008) for nonparametric
comparisons (p < 0.001 ***).
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differences among species, especially in females (Supplementary
Figure S12A). The relative location of the posterior cross vein
that connects the longitudinal veins L4 and L5 is approximately
the same for D. melanogaster and D. simulans but is located more
distally in D. ananassae and D. virilis (Figure 7C-C’,
Supplementary Figure S12B).

We also found species-specific differences in the relative areas
of anterior (A) and posterior (P) regions of the wing (Figure 7D).
In D. simulans and D. ananassae the A and P regions are
approximately of the same size, but in D. melanogaster and D.
virilis the P region is about 10 and 20% larger than the A region,
respectively (p < 0.001) (Figure 7D’, Supplementary Figure
S12C). Details about the tests for determining the statistical
significance of these comparisons can be found in

Supplementary File S1 Section S6, while individual p-values
are listed in Supplementary Figure S13. It should be noted that
the dataset processed for this analysis did not have sufficient
resolution for accurate analysis of trichome density patterns.

Not all Anatomical Axes are Equally Scaled
Across Species
Along the PD axis, all species follow a similar linear scaling
relationship with respect to the square root of the total wing area
(Figure 7E), suggesting that there is strong selection in
maintaining a proportional PD length across species. Along
the AP axis, we also observe a linear scaling relationship for
the AP length, but the slopes vary from species to species

FIGURE 7 |MAPPER identifies differences in wing size and scaling relationships across Drosophila species. (A) Representative male (right) and female (left) wings
for four different species. Red contours on female wings represent the outline of the corresponding male wing. The dendrogram in the left is representative of hierarchical
clustering based on different features extracted using the pipeline. (B) Quantification of wing areas by MAPPER for wings from different species and different sexes.
(C-C’) Quantification of shift in posterior cross vein position in female wings (d1 is defined as the segment of L5 from the proximal end of the vein to posterior cross
vein, d2 is defined as the segment of L5 from the posterior cross vein to the distal end of L5). (D-D’)Relative anterior (A) and posterior (P) areas in female wings. (E) Scaling
relationships between the length of the proximal-distal [l (P-D)] axis and the overall wing blade area for the various species. Legends for different sexes have been
included. Straight lines were fit to estimate the existence of scaling relationships for the four species. (F) Scaling relationships between the length of the anterior-posterior
[l (A-P)] axis and the overall wing blade area for the four species. (G) The l (P-D) to l (A-P) ratio for females from different species. (H) Scaling relationships between the area
of the intervein region between veins L3-L4 and the overall wing blade area for the four species. Straight lines were fit to estimate the existence of scaling relationships for
the different species. (*p < 0.05, **p < 0.01, ***p < 0.001).
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(Figure 7F). To further explore these results, we plotted the ratio
of the PD and AP axes lengths and found that D. ananassae and
D. virilis have a slight but significantly larger ratio than D.
simulans and D. melanogaster (Figure 7G, Supplementary
Figure S12D). Taken together, these data suggest that the
relative length of the AP axis in D. ananassae and D. virilis is
significantly shorter compared to that of D. simulans and D.
melanogaster, suggesting that variation in AP axis correlates with
the phylogenetic split between pairs of species (Figure 7A).

In Drosophila, the AP axis is patterned by two morphogens
(Figure 1A): Hedgehog (Hh) and Decapentaplegic (Dpp) (Blair,
2007). Hh patterns the most central region (L3-L4 veins)
(Vervoort et al., 1999; Mohler et al., 2000), whereas Dpp
patterns the positions of L2 and L5 (Affolter and Basler, 2007;
Restrepo et al., 2014). To pinpoint whether the changes we see
along the AP axis could be attributed to any of these signaling
pathways, we compared the L3-L4 intervein area in these species
(Figure 7H). We found that these similarly scale in all four
species, suggesting that it is unlikely that these differences are due
to variations in the regulation of the Hh signaling pathway.
Interestingly however, the areas comprising veins L2 and L5
with respect to the wing margin appear to scale differently
across species (Supplementary Figure S12A), suggesting that
Dpp signaling dynamics varies across species to regulate the
proportions of these wings along the AP axis. As a prediction
for future studies, these results are suggestive that Dpp transport
and/or transduction is variable, while Hh is not, across species. In
sum,MAPPER proved to be a powerful toolkit for generating new
hypotheses about morphogenetic relationships across Drosophila
species.

DISCUSSION

Features and Strengths of MAPPER as a
Robust Tool for Drosophila Wing
Phenomics
Conventional image processing techniques are often unable to
process images of model organism morphologies that have been
generated with different imaging systems. For example,
traditional image processing pipelines have difficulty analyzing
images taken with multiple different lens objectives, lighting
conditions, or rotational orientations. As such, these pipelines
often fail at accurately processing images beyond the initial
dataset for which it has been developed.

MAPPER supersedes previous pipelines by using a statistical
learning framework, with the latest computer vision and ML
approaches, to compartmentalize a wing accurately and precisely
into different regions. In previously established pipelines, the
number of morphometric features that are extracted are low-
dimensional, making them unsuitable for detecting subtle
quantitative changes that can be mapped back to differential
gene regulation. A key feature of MAPPER is its hybrid, modular
framework. The first component is a DL-based pixel classification
module that segments individual regions of wings. The second
module labels each intervein region according to its shape-based

features. In conjunction, these individual pipelines allow
MAPPER to generate a wide variety of geometrical and
pattern-based features of wing images. The precise labelling of
interveins allows for reconstruction of veins and automated
extraction of landmark-based measurements, such as the AP
and PD axes. In summary, the coupling of two modules with
an integrated diverse class of functions, automates the systematic
generation of high-dimensional geometric and pattern-based
features for a large volume of wing image data.

Implications of Insights Generated by
MAPPER
The analysis of adult wings in different Drosophila species using
MAPPER reveals two key observations. First, we noticed a
reversal in sexual dimorphism when comparing species within
the melanogaster group with D. virilis. Particularly, wings of D.
melanogaster,D. simulans, andD. ananassae are larger in females
than in males. However, in D. virilis the opposite phenotype is
observed (Figures 7A,B). How wing size is differentially
regulated in a sex-specific manner across species is unclear,
but our data suggest that the dimorphism that makes female
wings larger than male wings arose at some point in the
divergence between the melanogaster and virilis groups.
Second, the length of the wing PD axis across species and
sexes shows a conserved scaling relationship with respect to
wing size (Figure 7E), suggesting that while ecological and
genetic changes may exert pressure on overall wing size,
preserving a scaling relationship between length of the PD axis
and total wing area in all species may be essential. In contrast, the
AP axis in D. ananassae and D. virilis is smaller with respect to
what would be predicted from the scaling relationship of D.
melanogaster and D. simulans (Figure 7F). Since BMP/Dpp
signaling is responsible for patterning and growth along this
axis, we predict the variation in this pathway between species can
explain the larger AP axis in D. melanogaster and D. simulans.
Variation in Dpp pathway activities between species may also
explain why the posterior cross vein is located more distally in D.
ananassae and D. virilis compared to D. melanogaster and D.
simulans (Figure 7C-C’). This is because the specification of the
posterior cross vein depends on pupal BMP signaling driven by
Dpp and Glass-bottom-boat (Gbb) ligands (Ray and Wharton,
2001).

Current Limitations and Future Extensions
The new findings from these case studies demonstrate that, in
the current age of big data phenomics, manual phenotypic
characterization provides an incomplete characterization of
phenotypic variation in samples. Here we present a novel,
hybrid ML-based approach that was used to automate high
throughput measurements of adult Drosophila wings. With the
extensive research documenting gene expression profiles and
genotypes in Drosophila wings, the phenomics data produced
by MAPPER can be used to bridge quantitative sciences to
genomics from analysis of phenomes induced by genetic
perturbations (Pitchers et al., 2019). By performing a
genome-wide association analysis linking features measured
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by MAPPER to genotypes, a gene regulatory network of genes
associated with phenotypes can be established. Therefore,
MAPPER has the capability to be used as a computational
tool to identify genetic variations that contribute to gene-
related diseases.

The image segmentation capabilities of MAPPER can be
easily extended to any insect wing by using training datasets
from different imaging sources and multiple insect species. A
particular strength of MAPPER is its automated intervein
classification module. A current limitation is that output
measurements resulting from low-resolution or obscured
image input, will produce inaccurate results or inaccurately
labelled intervein regions. However, this is expected for any
image-based ML approach where the output is largely
dependent upon the quality of the input image. In the
future, MAPPER can also be extended to perform
phenotypic analysis at a whole organism level. Recently,
there have been several attempts to extend depth of field
and multi-view imaging of insects (Ströbel et al., 2018). The
advancements in the field of DL-based smartphone imaging
has allowed smartphones to be used for the acquisition of
multiview datasets. Integration of algorithms such as Multi-
View Deep Extreme Learning Machine (MVD-ELM) can easily
be used for the task of 3D segmentation of specific organs
(Xie et al., 2015; Ahmed et al., 2019). In summary, MAPPER
rigorously fits form to functions for a broad range of
applications that can range from comparative genomics,
drug target discovery, and phenotypic screening.

MATERIALS AND METHODS

Fly Culture, Wing Collection, and Imaging
Wing-specific GAL4 drivers were grown at 25°C. Virgins were
collected twice a day from the bottles. Virgins were crossed
with males that carry the indicated UAS-TRiP line constructs
in a ratio of female:male of 10:3. Adult flies were harvested
within 7 days of eclosure. Wings were removed and mounted

on microscopy slides to obtain high resolution images. 360
wings were analyzed in different case studies for this paper.
Wings were placed in ethanol, and approximately 15 wings
were mounted on each slide in Permount medium (Fisher
Scientific, SP15) using standard procedures. For the
benchmark experiments related to InsR, slides were batch-
imaged using an EVOS microscope at ×4 magnification. For
the case study involving wings from four Drosophila species,
the wings were incubated overnight in 70% ethanol. Wings of
different Drosophila species were imaged using a Nikon
Eclipse Ci-S microscope using a Jenoptik ProgRes®
monochromatic camera and the ProgRes® Capture Pro 2.9
software.

Description of Computational Platform
MAPPER is available in the form of a MATLAB-based GUI for
both individual and batch analysis of wings. The design of
MAPPER also allows users with preliminary knowledge of
MATLAB to integrate their custom functions estimating any
new desired geometric feature. Details about the design, use and
MAPPER application are provided in Supplementary File S1
Section S1–S4. The code repository, instructions to run the
MAPPER application, available segmentation modules, trained
U-Net model, and the data used to produce figures, can all
be found on MAPPER’s dedicated GitHub Page here
https://multicellularsystemslab.github.io/MAPPER/ (https://
multicellularsystemslab.github.io/MAPPER/). Additionally, an
in-depth user manual and guide for the MAPPER application
can be downloaded here.

Additional Notes on Statistical Analysis
For Figure 6, all intervein region measurements were normalized
to their respective total wing area (ITotal) to become unitless
features (Îi for j = 1 to 7 regions). Trichome densities (TDs) were
calculated by dividing trichome counts in an intervein region by
the intervein area of the region. These TDs were then normalized
to their respective total trichome density (TDTotal) to become
unitless features (̂TDi for i = 1 to 7 regions). Landmark features

Fly lines Source Stock # Genotype

MS1096-GAL4, UAS Dcr2 BDRC 25,706 w (1,118) P[w (+mW.hs) = GawB]B x (MS1096); P[w (+mC) = UAS-Dcr-2.D]2
Nub-GAL4, UAS-GCaMP6f Brodskiy et al. (2019) N/A nub-GAL4,UAS-GCaMP6f/CyO
UAS-Rya-r44F RNAi BDRC 31,540 y (1) v (1); P[y (+t7.7) v (+t1.8) = TRiP.JF01100 ]attP2
UAS-Insulin Receptor (dominant negative) BDRC 8,248 y (1) w (1,118); P[w (+mC) = UAS-InR.del]2
UAS-Insulin Receptor (constitutively active) BDRC 8,252 y (1) w (1,118); P[w (+mC) = UAS-InR.K1409A]2

Fly lines Source Stock #

D.ananassae Drosophila Species Stock Center 14,024–0,371.00
University of California, San Diego

D. simulans Drosophila Species Stock Center 14,021–0,251.261
University of California, San Diego

D. melanogaster Obtained from the lab of Dr. Fanis Missirlis, Cinvestav, Mexco NA
D. virilis Drosophila Species Stock Center. University of California, San Diego 15,010–1,051.87
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were normalized to their respective square root of total wing area
to become unitless features (d̂) where P-D is the distance of the
proximal-distal axis, A-P is the distance of the anterior-posterior
axis, and L3-L4 is the distance between the L3 and L4 veins. To
assess statistically significant differences in the scaling
relationships between the two populations, Fisher’s
Z-transformation (Fisher, 1915; Fisher, 1921) was performed
on the correlation coefficients (Figure 6B). This
transformation effectively transforms the correlation
coefficients into normally distributed values with which
statistical tests can be performed to compare the Z-scores
between two groups. For Figure 7, all p-values corresponding
to comparisons made can be found in Supplementary Figure S13
with details on the statistical tests being explained in
Supplementary File S1 Section S5.
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