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Abstract: The blood–brain barrier (BBB) limits the delivery of therapeutics to the brain but also
represents the main gate for nutrient entrance. Targeting the natural transport mechanisms of the BBB
offers an attractive route for brain drug delivery. Peptide shuttles are able to use these mechanisms to
increase the transport of compounds that cannot cross the BBB unaided. As peptides are a group of
biomolecules with unique physicochemical and structural properties, the field of peptide shuttles
has substantially evolved in the last few years. In this review, we analyze the main classifications of
BBB–peptide shuttles and the leading sources used to discover them.
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1. Introduction

Neurological-related disorders, such as glioblastoma, and other central nervous system
(CNS) tumors, Parkinson’s disease (PD), migraine or stroke, to name a few, are a major
cause of death and disability worldwide, being the second most common cause of death
after cardiovascular diseases [1]. Despite the efforts to treat those diseases and to improve
the quality of lives of patients and families, there are not yet any efficient treatments
available. The main limitation in the development of such treatments is the presence of
the blood–brain barrier (BBB) [2]. The BBB isolates and protects the brain from harmful
blood-borne substances and is the main gate for nutrient entrance [3].

The early idea of a BBB shuttle was developed by Pardridge, who thought the nat-
ural transport mechanism of certain peptides and proteins could be explored to deliver
pharmaceutics to the brain [4]. Since then, several types of compounds able to hijack the
natural transport mechanism at the BBB have been developed [5–8]. Monoclonal antibodies
targeting the receptors and transporters present at the BBB have been established to deliver
a wide variety of biotherapeutics [9–12]. For instance, a monoclonal antibody against the
human insulin receptor conjugated to the enzyme α-L-iduronidase is being evaluated in
a clinical trial (NCT03053089 and NCT03071341) to treat mucopolysaccharidosis I [13].
However, antibodies display a very high affinity for their targets, which may hamper the
dissociation from the receptor, leading to vesicle entrapment and inefficient transport across
the BBB [10].

In 1999, Schwarce et al. proved that a cell-penetrating peptide, TAT, delivered an active
enzyme to the brain parenchyma [14]. The delivery was not selective, but this result opened
a field of investigation. Since then, more than 40 peptides have been described as able to
cross the BBB carrying compounds that cannot transverse this membrane alone [8,15]. In
this paper, we discuss the main families of BBB–peptide shuttle as well as the most explored
sources to discover them.
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2. The Blood–Brain Barrier

The presence of the BBB ensures brain homeostasis. This highly metabolic and phys-
ical barrier allows the passage of only a selected group of nutrients, such as sugars or
amino acids, restricting the entrance of harmful substances. The natural transport mech-
anisms present at the BBB that tightly control the access of nutrients to the brain can be
divided into passive and active according to their energy requirements (Figure 1). Passive
transport mechanisms embrace transcellular passive diffusion and paracellular diffusion,
while active transport mechanisms include receptor- and transporter-mediated transcytosis
and adsorptive-mediated transcytosis. The main physiological characteristic of the BBB
is that its constitutive endothelial cells are tightly bound by the presence of tight and
adherens junction proteins that limit the paracellular transport of substances. In addition,
this barrier has reduced vesicular transport, bearing high proteolytic activity and present-
ing efflux pumps at its abluminal side that force the exit of potentially toxic substances.
However, the high vascularization of the brain offers a unique platform for the delivery
of therapeutics [16]. Each neuron has a capillary of less than 20 µm [17]. If a compound
is able to undergo transcytosis after interacting with a receptor at the BBB, it would be
homogenously distributed along the brain. This unique feature has prompted the study
of several types of ligands targeting receptors at the luminal side of the BBB. Antibodies
against the transferrin (Tf), insulin, or low-density protein-1 (LRP1) receptors have been
widely studied with varying degrees of success [13–18].

Figure 1. Schematic representation of the blood–brain barrier structure (BBB). (a) The blood–brain
barrier comprises a monolayer of endothelial cells in intimate contact with astrocytes’ end-feet and
pericytes. The endothelial cells are strongly bound by tight junction (TJs) proteins. (b) Passive
transport mechanisms are divided into paracellular diffusion and transcellular passive diffusion;
(c) active transport mechanisms include transcytosis mediated by receptors and transporters and
adsorptive-mediated; (d) minimal requirements of a receptor for targeted brain delivery.

In order to exploit the natural transport mechanisms present at the BBB for the delivery
of therapeutics, several BBB peptide shuttles, able to increase the transport of compounds
of interest, have been developed [5–8]. On the one hand, small lipophilic peptides, such
as diketopiperazines (DKPs) [19], N-methyl phenylalanines [20], or phenyl prolines [21]
have been evaluated as carriers of small drugs by targeting passive transport mechanisms.
On the other hand, cell-penetrating peptides or peptides targeting receptors have been
proposed for the brain delivery of drugs by targeting active transport mechanisms.

3. Peptides Designed to Increase Passive Transport of Drugs

Transcellular and paracellular passive diffusion has traditionally been envisaged as
a strategy for the delivery of small lipophilic compounds. The use of small peptides that
cross by this mechanism has been explored for the delivery of small drugs. One of the most
representative examples is the use of diketopiperazines (DKPs) [19], highly stable cyclic
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dipeptides that are able to increase the transport of two small compounds with therapeutic
interest, L-dopa and baicalin, by means of passive diffusion, as proved by the PAMPA
assay, the gold standard model used to evaluate this mechanism. In addition, this family
of compounds was used to deliver a hexapeptide, able to inhibit Tau aggregation in vivo
in mice [22].

Passive diffusion passage is governed by the physicochemical properties of the com-
pounds. For instance, the number of hydrogen acceptors and donors is an important
parameter to optimize. In general, the higher the lipophilicity, the higher the transport, but
if a compound is too hydrophobic, it can be retained at the lipid membrane. Modifications
such as N-methylation [23] or halogenation [20,24] have been used as powerful tools to
modulate the lipophilicity of small peptides. To this end, a family of BBB shuttle peptides
composed of N-methylated tetrapeptides was proposed as efficient vectors to increase the
transport of small drugs such as L-dopa [23]. Importantly, this chemical modification also
increases the stability of the peptide shuttle to serum proteases. The potential N-methyl
phenylalanines based shuttles have been explored through modifications to its structure
with amino acids with different stereochemistry and a different number of halogenated
atoms, yielding optimized peptide shuttles with an ideal structure for given cargoes [20].
For instance, when comparing how di-peptides-based N-methyl phenylalanines increase
the transport of 3,4-dihydroxy-l-phenylalanine, 4-aminobutyric acid, and nipecotic acid as
cargoes, the authors found that the first, which is more polar, was better transported by
N-methylated peptide shuttles, while the last two were better transported by chlorinated-
N-methylated peptide shuttles [20]. This work suggested that slight modifications of the
structural properties of a given peptide shuttle for a given cargo can lead to optimized
transport. The main drawback of this family of compounds is their limited solubility, which
can be overcome using phenylproline-based peptides [21].

Another strategy, which has lately been gaining attention, is the use of peptides able
to increase the porosity of the tight junctions, thus enabling the delivery of compounds. To
this end, peptides derived from claudin-5 [25], E-cadherin [26], or occluding [27], which
have been proved to interact with the proteins that form the tight junctions, are able to
modulate the protein-protein interactions that hold these protein connections. For instance,
HAV6 (Ac-SHAVSS-NH2) derived from the C-1 domain of E-cadherin, is able to increase
the paracellular transport of anticancer drugs, magnetic resonance imaging (MRI) contrast
agents, or near-infrared dyes [26–28]. More recently, this peptide has been compared
with ADT5 (Ac-C(&)DTPPVC(&)-NH2) [29], another E-cadherin-derived peptide, for the
delivery of proteins [28]. Lysozyme, albumin, IgG mAb, and fibronectin with 15, 65, 150
and 220 KDa, respectively, were intravenously co-administered in mice. ADT5 increased
the transport of lysozyme, albumin, and an IgG mAb but not fibronectin, while HAV6 only
improved the delivery of lysozyme [28]. Mechanistic studies revealed that these peptides
are able to promote the formation of pores within the protein tight junctions of enough
size to allow the transport of proteins. The authors proposed that the formed pores are of
different sizes, with the largest being the least stable. Thus, depending on the duration of
the effect caused by the peptide modulator, the transport of big proteins will be limited [28].
This work demonstrated that tight junction modulation can be used for the delivery of
therapeutic proteins, although important factors such as the size of the protein to delivery
must be considered. It might be necessary to adapt the selected tight junction modulator
to the size of the protein cargo to avoid the passage of bigger proteins that could have
undesired effects [29]. Despite the potential of this strategy, significant concerns about its
safety must be considered. Precise control of the duration of the effect, to limit the passage
of toxic substances, for instance, is of utmost importance.

Other families of peptides, such as membrane-active peptides [30,31], are able to
promote the transient opening of the BBB. Melittin, a venom-derived peptide, was recently
shown to promote reversible BBB opening during 24 h at neurologically safe sub-toxic
concentrations [31].
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4. Peptides Designed to Increase Active Transport of Drugs

Targeting the active transport mechanisms of the BBB represents another attractive
option for brain delivery. However, the search for an efficient receptor for the delivery of
therapeutics directed to the CNS is challenging. Such a receptor should be expressed at
higher levels in the brain microvasculature than in the peripheral tissues or in the brain
parenchyma. As such, the risk of off-target effects would be minimized. In addition,
the receptor must be able to undergo transcytosis at a reasonable rate, allowing for the
passage of the selected cargo from the blood to the brain. To identify such a receptor,
several proteomic and transcriptomic works have been carried out [31–33]. Importantly,
these studies allow for comparison of the level of expression of a given receptor between
preclinical species, such as mice or rats, and humans because the difference in expression
patterns can hamper the development of delivery agents [33]. As an example, TfR, which
has been widely used as a model receptor for brain delivery, is expressed five-fold higher
in mice brain microvasculature than in that of humans [34]. Another important fact to
consider is that the sole enrichment of the mRNA of a receptor at the brain microvasculature
does not make it suitable as a target for brain delivery. For instance, Tam et al. identified
Ldlrad3 and CD320 [35] as possible targets for brain delivery, but evaluation of the transport
of monoclonal antibodies against these two receptors indicated that they did not have
preferred brain uptake, showing similar levels to control IgG [34].

Several peptides have been shown to increase the transport of drugs by targeting
the active transport mechanism of the BBB, mainly through targeting the low-density
lipoprotein (LDL) and transferrin receptors [8,15]. For instance, Angiopep-2, which was
proven to interact with the LRP-1 [36], has been used to modify nanoparticles of different
nature [37,38], peptides [39,40], proteins [41,42], and small molecules [43,44], increasing
their transport in several in vivo and in vitro models. Another example is THR, which
was discovered through phage display against cells overexpressing the human transferrin
receptor [45], and it was shown to deliver gold nanoparticles to the brain parenchyma
of mice [8].

5. Sources of BBB Shuttles
5.1. Natural Proteins

Natural proteins have served as an inspiration for developing new brain-targeting
peptides (Table 1). For instance, peptides based on apolipoproteins have been widely ex-
plored. Apolipoproteins are involved in lipid and cholesterol trafficking and interact with
the LDLRs that are present at the BBB. Peptides based on ApoE and ApoB proteins have
been used to modify various enzymes to develop new therapies for enzyme replacement
therapy [46–48]. The most successful example of a BBB shuttle inspired by natural sources
is angiopep-2, a 19-mer peptide derived from the alignment of the Kunitz domain of human
proteins that interact with the LRP-1 [35]. Remarkably, angiopep-2 modified with three
molecules of paclitaxel (ANG1005) has been evaluated in various clinical trials, showing
good safety, tolerability, pharmacokinetics, and efficacy in patients with advanced solid
tumors (NCT02048059), high-grade glioma (NCT01967810) [49,50], and leptomeningeal car-
cinomatosis and brain metastasis from breast cancer (NCT01480583 and NCT02048059) [50].
In the near future, a new trial (NCT03613181) will evaluate the effect of ANG1005 in HER2-
negative breast cancer patients with the newly diagnosed leptomeningeal disease and pre-
viously treated brain metastases (source: www.clinicaltrials.gov, accessed on 1 July 2022).

Melanotransferrin (MTf), or p97, is an 80 kDa protein able to bind iron to transport it
across the central nervous system [51]. Its soluble form was shown to undergo transcytosis
across the BBB [52]. The potential of this protein as a shuttle has been explored in the
transport of small molecules or antibodies [53,54]. A 12-mer peptide derived from MTf
was described upon evaluation of the tryptic mixture of this protein in a BBB cell-based
model [55]. The selected peptide, DSSHAFTLDELR, preserves the capacity of MTf for
crossing the BBB and is found in neurons, astrocytes, and microglia.

www.clinicaltrials.gov


Pharmaceutics 2022, 14, 1874 5 of 13

Table 1. Brain-targeting peptides obtained from natural sources.

Peptide Origin Target Ref

(LRKLRKLL)2 ApoE (Aa 141–149)2 LDLR [46,47]
TEELRVRLASHLRKLRKRLLRDA ApoE (Aa 130–152) LDLR [47]

SVIDALQYKLEGTTRLTRKRGLKLATALSLSNKFVEGS ApoB (Aa 3371–3409) LDLR [47]

TFFYGGSRGKRNNFKTEEY Sequence alignment of human
Kunitz domains LRP1 [36]

DSSHAFTLDELR MTf (Aa 441–452) LDLR [56]
YTIWMPENPRPGTPCDIFTNSRGKRASNG RVG glycoprotein (Aa 175–203) AchR [57]

VQQLTKRFSL DEN2C [a] (Aa 26–35) None [58]
KLFMALVAFLRFLT DEN2C (Aa 45–59) None [58]

AGILKRW DEN2C (Aa 63–69) None [58]
KSKAINVLRGFRKEIGRMLNILN DEN2C (Aa 74–97) None [58]

[Dap](&)KAPETALD(&) [b] Apamin Unknown [59]
[Dap](&)YGPQD(&) Chlorotoxin Unknown [60]

[a] DEN2C: Dengue virus type 2 capsid protein. [b] [Dap] is the three-letter code for L-2,3-diaminopropionic acid;
(&) refers to cyclic peptides [8].

The rabies virus has clear CNS tropism [61]. The protein responsible for virus inter-
nalization is the trimeric glycoprotein known as RVG, which was shown to interact with
the α subunit of AchR. Lentz et al. [62] compared the sequence of RVG with some snake
venom toxins that interact with AchR and defined the region between amino acids 175 and
203 of the RVG protein as the most efficient for binding. The peptide RVG29 comprises a
nonimmunogenic region of the RVG protein, which made it interesting as a BBB-shuttle
peptide. Since the first seminal work where an RVG29 nanosystem was used to deliver
small-interfering RNA in vivo in mice [57], several researchers have explored the use of this
peptide [63]. Most of the studies modified RVG29 with several arginines in order to enhance
the complexation of nucleic acids. The use of this extension may alter the internalization
mechanism of the RVG29 peptide.

The dengue virus capsid protein has served as a scaffold for the design of various
BBB peptide shuttles [58], which have recently been used to modify an Fc domain of IgG
without affecting its binding properties to the FcR [64] or to modify porphyrins to yield
peptide−porphyrin conjugates that can be used as antiviral drugs [65].

Venoms are a privileged source of bioactive compounds [66,67]. One of their ma-
jor components is peptides of complex structure, which are characterized by a rich con-
tent on disulfide bridges that confer them high metabolic stability. Currently, there are
11 compounds derived from venoms approved by the FDA [67]. Some venoms affect
the CNS, serving as motivation for researchers to search for CNS active compounds. To
this end, two BBB-shuttle peptides derived from venoms have been described: MiniAp-4
and miniCTX3 [59,60]. MiniAp-4 is a minimized version of apamin, which is the main
component of bee venom. This highly stable peptidomimetic was shown to be able to
deliver a fluorophore in vivo in mice [59]. MiniCTX3 corresponds to a minimized ver-
sion of chlorotoxin [60], a disulfide-rich peptide from the venom of the Israeli scorpion
Leiurus quinquestriatus [68]. MiniCTX3-modified gold nanoparticles translocated across a
human-cell-based BBB model.

5.2. Phage Display

Phage display is a potent source of bioactive peptides that have been widely used to
obtain BBB-shuttle peptide candidates [69]. It consists of the evaluation against a target of
interest of a library of bacteriophages, where each one is genetically modified to display a
given peptide or protein on its coat protein. Phage display libraries have been evaluated
against isolated receptors or proteins [70–72], cellular models [45,73–75], an even living
animals [76–87]. A list of BBB shuttle peptides discovered by phage display is summarized
in Table 2.
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Table 2. Brain -targeting peptides discovered by phage display.

Peptide Target Panned Against Ref

C(&)LSSRLDAC(&) Brain BALB/c mice [76]
GHKAKGPRK hTfR hTfR [70]

THRPPMWSPVWP TfR hTfR (chicken fibroblast) [45]
HLNILSTLWKYR GM1 Trisialoganglioside (GT1b) [71]
C(&)AGALC(&)Y Brain endothelium BALB/c, FVB/N, and C57BL mice [77]

GLAHSFSDFARDFV Brain endothelium C57Bl/6 and BALB/c mice [80]
GYRPVHNIRGHWAPG Brain endothelium C57Bl/6 and BALB/c mice [80]

TGNYKALHPHNG Brain ICR mice [81]
C(&)RTIGPSVC(&) Apo-TfR BALB/c mice [82]
C(&)TSTSAPYC(&) Brain ICR mice [83]
C(&)SYTSSTMC(&) Brain Sprague-Dawley rats [84]

DSGLC(&)MPRLRGC(&)DPR LDLR hLDLR [72]
TPSYDTYAAELR Brain through the BCSFB Sprague-Dawley rats [85]
RLSSVDSDLSGC BBB/BCSFB Wistar rats [86]

SGVYKVAYDWQH Brain endothelium Human BBB cellular model [73]
TFYGGRPKRNNFLRGIRSRGD BBB/BTB BALB/c mice [87]

C(&)SLSHSPQC(&) Brain endothelium hCMEC/D3 cell monolayers [74]
VAARTGEIYVPW Brain endothelium Primary endothelial rat cellular model [75]
GLHTSATNLYLH Brain endothelium Primary endothelial rat cellular model [75]

C(&)SLSHSPQC(&) Brain endothelium hCMEC/D3 cell monolayers [74]
C(&)RGGKRSSC(&) CNS Ex vivo and in vivo EAE [a] mice [79]
QFAALPVRAHYG Brain C57BL/6J mice [78]

[a] EAE: experimental autoimmune encephalomyelitis.

The validation of the selected targets is of great importance because several factors,
such as the affinity for albumin or plastic, can affect the replication of a given phage, biasing
the results. To this end, several target-unrelated peptides (TUPs) have been described [69].
For instance, HAIYPRH, which was initially discovered as a transferrin receptor binder [45],
has been found in more than 30 phage display experiments against more than 20 different
targets (source: Biopanning Data Bank (BDB) [88]). A combination of in vitro and in vivo
screening methods is suggested as a way to minimize the discovery of TUPs [69]. However,
some peptides can interact in a nonspecific manner with various receptors or cell membrane
components and can be useful for more than one application, although their promiscuity
would need to be assessed in each case.

5.3. Chemical Libraries

High-throughput screening techniques have sped up the development of therapeutics
during the last few decades [89]. In the field of peptide drug discovery, phage display
is the main example, although it has some limitations, such as the restricted possibili-
ties for including nonproteinogenic amino acids. The use of DNA- or mRNA-encoded
libraries [90,91] or one-bead-one compound (OBOC) [92] libraries overcome this restriction.
This last technology has been used to discover new protease-resistant BBB-shuttle peptides.
Guixer et al. [93] evaluated for the first time an all-D OBOC library against a BBB cell-based
model. Detection of the peptides able to transverse the cell monolayer was performed
by mass spectrometry analysis. More recently [94], an OBOC library also composed of D
amino acids was used to discover brevican-targeting peptides. Brevican is an extracellular
matrix protein located in the CNS and overexpressed in glioma cells. One of the peptides
discovered was found to cross the BBB in vivo in mice [94] and to shuttle the insoluble
drug camptothecin in an orthotopic mice model [95].

5.4. Optimization

Protease liability is one of the major concerns in the development of therapeutic
peptides. To overcome this limitation, several strategies have been applied, such as the use
of non-natural amino acids, cyclisation, or chemical modifications [96]. In the field of BBB
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shuttles, one of the most common methods is the use of the retro-enantio or retro-inverso
approach, which consists of the preparation of a given peptide using D amino acids and
reversing the order of the sequence. To this end, the topological properties of the parent
peptide and its retro-enantio counterpart will be very similar (Figure 2). Thus, this strategy
has been applied to angiopep-2 [97], THR [98], CDX [99], and to a minimized version of
RVG [100]. In all the cases, the newly designed peptides displayed higher stability to serum
proteases and proved to be more efficient in the transport of various cargoes across the
BBB, both in vitro and in vivo. In addition, it was demonstrated that retro-enantio/inverso
peptides are less immunogenic than the original peptides, making them very attractive
for their development as therapeutics [101]. For instance, THRre was recently used to
efficiently deliver amphiphilic polymeric nanoparticles loaded with a cytotoxic drug in a
diffuse intrinsic pontine glioma model [102].

Figure 2. (A) Structure of a natural peptide and its retro and retro-enantio/inverso counterparts;
(B) three-dimensional superposition of one pairing obtained from the cross-RMSD matrix of THR and
THR retro-enantio [101]; (C) percentage of peptide versus incubation time in human serum obtained
for THR and its protease-resistant enantio, and retro-enantio analogues [98]; (D) in vivo fluorescence
quantification measured in a preclinical IVIS spectrum in vivo imaging system (IVIS-200) at 0.5, 1,
2, 4, and 8 h after injection of cyanine 5,5-THR and cyanine 5,5-THR retro-enantio [98] Error bars
correspond to standard error mean (s.e.m.). Unpaired t student test: ** p < 0.01, *** p < 0.001.

5.5. Computational Prediction

The use of computational methods to predict the BBB permeability of peptides is very
attractive due to their low cost and the rapid evolution of the field [103]. These methods
use chemoinformatic filters, molecular dynamic simulations, statistical models, and/or
artificial intelligence algorithms [103]. Pioneering work was conducted by Giralt et al., who
worked on the design of genetic algorithms to decipher the key features necessary for a
peptide to cross the BBB [104,105]. Since then, several predictors have been developed,
such as the sequence-based predictor BBPpred [106]; B3predict, which is based on machine-
learning models [107]; and the online tool BBPpredict [108]. In addition, databases such
as B3Pdb [109] and Brainpeps [110] hold relevant information about already described
BBB-shuttle peptides.

Despite the increasing number of predictors and the impressive evolution of the field,
there are still a few issues that remain to be resolved. The prediction of BBB permeability
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based on the physicochemical properties, such as topological polar surface area or the
number of hydrogen bond acceptors, among others, only considers passive transport
mechanisms across the lipid bilayer, neglecting the active transport mechanisms such as a
receptor- or adsorptive-mediated transcytosis. Additionally, machine learning models are
limited by the amount and quality of the currently available data [103].

More sophisticated methods are needed to find good BBB-shuttle peptides by compu-
tational prediction. For instance, molecular dynamic simulations are time-consuming, both
in computing and processing time [103]. Current efforts to overcome these limitations are
directed to reduce the computational cost by implementing more realistic membrane com-
positions, which will also allow for the evaluation of different species and new sampling
techniques [111,112].

6. Conclusions

The development of peptides as therapeutic entities is in a golden era [113,114]. Pep-
tides have great properties, such as low immunogenicity and biocompatibility. In addition,
the advances in synthetic methodologies as well as in the strategies to increase their cir-
culation time and stability to proteases have helped to overcome their main drawbacks.
As a consequence, there are more than 150 peptides in clinical development [115]. In this
context, the field of peptide shuttles for brain delivery has notably evolved, with a few
candidates in clinical development.

Despite the evolution of the field, a better understanding of BBB properties and
composition is needed to develop new and more efficient BBB-shuttle peptides. In this way,
the discovery of new receptors may be accomplished by studies based on proteomic and
transcriptomic approaches [32–34]. In addition, strategies to efficiently characterize the
different transport mechanisms undertaken by a given peptide shuttle have to be further
developed. Then, nonbiased strategies to discover BBB-shuttle peptides, such as in vivo
phage display or in vivo screening of synthetic libraries, can be applied to the discovery of
new peptides without missing information about the mechanism used.
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