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Abstract

Background: The field of neural prosthetics aims to develop prosthetic limbs with a brain-computer interface (BCI) through
which neural activity is decoded into movements. A natural extension of current research is the incorporation of neural
activity from multiple modalities to more accurately estimate the user’s intent. The challenge remains how to appropriately
combine this information in real-time for a neural prosthetic device.

Methodology/Principal Findings: Here we propose a framework based on decision fusion, i.e., fusing predictions from
several single-modality decoders to produce a more accurate device state estimate. We examine two algorithms for
continuous variable decision fusion: the Kalman filter and artificial neural networks (ANNs). Using simulated cortical neural
spike signals, we implemented several successful individual neural decoding algorithms, and tested the capabilities of each
fusion method in the context of decoding 2-dimensional endpoint trajectories of a neural prosthetic arm. Extensively testing
these methods on random trajectories, we find that on average both the Kalman filter and ANNs successfully fuse the
individual decoder estimates to produce more accurate predictions.

Conclusions: Our results reveal that a fusion-based approach has the potential to improve prediction accuracy over individual
decoders of varying quality, and we hope that this work will encourage multimodal neural prosthetics experiments in the future.
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Introduction

Each year ,150,000 people in the United States undergo an

arm or leg amputation [1]. An estimated 1.7 million amputees live

in the United States [2] and millions more throughout the world.

Reasons for limb loss range from physical trauma to infection to

diseases such as diabetes and cancer. Regardless of the cause, the

loss of a limb dramatically affects a person’s life, making many

simple tasks unbearably difficult. Over the past decade, prosthetic

limbs have been developed to incorporate electrical signals from

indirect muscles for user control – this is known as conventional

prosthetic control. The emerging field of neural prosthetics goes

further, interpreting the neural activity of the user for more

intuitive control of prosthetic devices.

The problem of translating neural activity into direct

movements is known as neural decoding. Types of recorded neural

activity that can be decoded include cortical single-neuron action

potentials (spikes) [3,4], local field potentials (LFPs) [5,6,7], and

activity on the surface of the brain via electrocorticography

(ECoG) [8,9,10,11,12], electromyography (EMG) [13], or

electroencephalography (EEG) [14,15,16]. Each of these modal-

ities offers particular advantages and limitations. For example,

the surface-based EEG and ECoG recording platforms are

relatively non-invasive, but provide poor spatial resolution

(millimeters or centimeters). In contrast, spike signals provide

accurate firing rates of single neurons, but this modality is highly

invasive and prone to electrode failure [17,18,19]. While spike

decoding is useful for predicting prosthetic endpoint trajectories,

recent studies have demonstrated that modalities with less

resolution are superior at encoding more general movement

regimes [20,21].

Each modality involves specific hardware (e.g. electrodes), and

analysis of these signals requires algorithms carefully designed to

predict the user’s intent given the characteristics of the signal (e.g.

signal-to-noise ratio, noise distributions, dependencies). Neural

decoding algorithms generate a state estimate as either a discrete

classification (e.g. a gating classifier results in a decision for

movement or no movement [22]) or a prediction of continuous

variables (e.g. three-dimensional position and velocity estimates for

the endpoint of a limb [23]). Moreover, some algorithms calculate

confidence regions for state estimates, thereby providing additional

information for the robotic controls interface.

Decoding of individual neural modalities is a consistently

improving field with many robust methodologies. However, due

to the limitations of current recording technologies, more

advanced prosthetic limbs will require multiple neural signals

with varying information content in order to achieve full

functionality. A major computational challenge is to analyze all

signals simultaneously to provide the best estimate of the user’s

desired movement.
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Here we present a framework for combining information from

multiple modalities to more accurately decode user intent for a

prosthetic device. There are two solution paradigms for this

problem: data fusion and decision fusion. Data fusion (low-level

fusion) merges several raw signals prior to analysis, while decision

fusion (high-level fusion) acts as a post-processor to merge the

results of individual data analyses. Fusion frameworks have been

shown to improve prediction accuracy in a wide range of fields

including biometric identity confirmation [24,25,26], surface-to-

air defense [27], robot navigation [28,29,30,31], image segmen-

tation [32], and diagnosis of disease [33,34].

Though data fusion allows for all information to be assessed at

once by a single algorithm, current hardware architectures for

neural prostheses are parallelized with multiple recording

platforms and processors, inherently advocating parallelized

decoding prior to a final state prediction. As most decoding

algorithms are optimized for specific modalities, we employ

techniques for decision fusion, where we incorporate the estimates

from each individual decoder into a single device state estimate.

In this report, we examine two algorithms for decision fusion of

continuous variables: the Kalman filter and artificial neural networks

(ANNs). We implemented three of the most successful individual

neural decoding algorithms with simulated cortical neural spike data

to test the capabilities of each fusion method. Through these

simulations, we reveal the advantages and limitations of these

approaches. Our methodology provides a flexible framework for

fusing state estimates from decoding algorithms with different

properties and hopefully will encourage multimodal experiments

for improved control of sophisticated neural prosthetic devices.

Materials and Methods

The Kalman Filter for Decision Fusion
We first formulate decision fusion in terms of Bayesian statistical

inference. For our purposes, measurements are predictions from

the individual decoders, and the system state is the 2-dimensional

velocity vector of the prosthetic endpoint. Given the history of all

measurements up to timestep k, z1,:::,zk, we seek to find the most

likely state of the system, xk, which is equivalent to the mode of the

posterior probability distribution:

p xk Dzk,:::,z1ð Þ:

The Kalman filter is a well-known recursive Bayesian algorithm

for solving this problem. This algorithm efficiently solves for the

mode of the system posterior at time k given the set of all

measurements of the system through time k. The Kalman filter

first assumes a linear-Gaussian relationship between the current

state of the system and the state at the previous timestep:

xk~Akxk{1zwk,

Ak is a coefficient matrix, and wk is a Gaussian error term with

mean 0 and covariance matrix Wk. The Kalman filter further

assumes a linear-Gaussian relationship between the measurements

and the state of the system at each timestep:

zk~Hkxkzqk,

Hk is a coefficient matrix, and qk is a Gaussian error term with

mean 0 and covariance Qk. Under these assumptions the Kalman

filter provides an ‘‘optimal’’ estimate of the state posterior

minimizing the mean-squared error.

To simplify the model, we assume Ak,Wk,Hk and Qk are time-

invariant, and so closed-form maximum joint probability solutions

exist for each matrix [35]:
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See [36] for an excellent review of Kalman filter theory.

Artificial Neural Networks for Decision Fusion
Artificial neural networks have also been used as a method for

fusing decisions from supervised classifiers and data from multiple

sensors. An ANN is a mathematical model composed of simulated

neuron units and links between units. Each unit has a correspond-

ing activation function, j, that accepts a weighted sum of input

values and outputs a net activation value. Activation functions may

be piecewise constant, linear, or nonlinear. The general form of

the net activation value for unit j is:

nj~jj w0iz
Xg

i~1

yiwij

 !
,

where jj is the activation function of the j th unit, yi is the net activation

from unit i, and wij is the weight from unit i into unit j (see Figure 1).

We implemented feed-forward ANNs with either one or two

hidden layers. At each timestep, the state estimates of each

individual decoder are provided to the input units, while the

output layer produces a fused estimate of the x and y velocities.

The activation functions for all hidden units are tansigmoid, and

the output layer uses linear functions. To train each ANN, we

employed the scaled conjugate gradient method for learning the

neuron weights and the mean squared error as a criterion

function. We additionally optimized the number of hidden units

by searching the space of all permutations ranging from one to 12

hidden units in the first layer, and zero to 11 hidden units in the

second layer. Thus, 144 ANNs were examined to find an optimal

selection of hidden units within each layer.

Simulated Neural Data
Similar to Moran and Schwartz [37] and Wu et al. [35] we

model neuron spiking activity according to a cosine-tuning

function relating the ‘‘preferred direction’’ of each neuron to the

direction and velocity of an endpoint. Thus, the firing rate of a

neuron at time t follows a Poisson distribution with mean zt:

zt~a0z vtk kap cos ht{hp

� �
,

where hp is the preferred direction of the neuron, and ht and vt are

the angle and velocity of the movement, respectively. All

experiments modeled 50 input neurons. Simulated neurons were

randomly assigned preferred directions (within range [2p, p]), and

parameters a0 and ap varied for each experiment.

Fusion for Neural Prostheses

PLoS ONE | www.plosone.org 2 March 2010 | Volume 5 | Issue 3 | e9493



Individual Decoder Algorithms
Kalman filter. The Kalman filter framework as a single neural

decoder was very similar to that of the fusion implementation. The

individual Kalman filter modeled the relationship between neural

spikes and the state of the device as a linear Gaussian process. The

dimensionality of this observation model was larger than the

observation model used for the fusion Kalman filter.

A variant of the population vector algorithm. We

employed a model similar to the population vector algorithm

(PVA) described in Moran and Schwartz [37] to decode the

intended endpoint velocities. The equation used to generate our

simulated neural data is described above, and the population

vector algorithm utilizes the following model:

D t{tð Þ{b0~ ~VV tð Þ
�� �� bnzby sin h tð Þ½ �zbx cos h tð Þ½ �

� �
In PVA, t, b0, bn, by, and bx must be estimated before determining h
and IV(t)I whereas in our model we only needed to estimate a0, ap,

and hp. We can estimate these parameters using an iterative Taylor

series approximation. As long as there are more neurons than the

number of parameters (in this case 3), we can then estimate the angle

and speed, or equivalently, the x and y components of the velocity.

Optimal linear decoder. The linear filters constructed for

decoding used sliding windows of length four timepoints to form a

response matrix of neuron firing rates. To train each filter, we

performed a multiple regression of the x and y velocities over a

response matrix spanning the entire training set:

f ~ RT R
� �{1

RT v,

where f is the linear filter, R is the response matrix, and v is a

vector containing the x or y velocities. For any response matrix, R,

the linear prediction is:

u~R.f

Note that for this filter, there exists a delay the same length as the

window size, and we translated each decoded trajectory accordingly.

Decision Fusion Evaluation
Evaluation trials were designed to compare the accuracy of

individual decoder predictions to ‘‘fused’’ results obtained from the

Kalman filter and ANNs. Below we describe the three major

components of each experiment: (i) individual decoder training, (ii)

fusion decoder training, and (iii) final testing. See Figure 2 for a

graphical description.

Individual decoder training. Each single decoder (PVA,

Kalman filter, and optimal linear decoder) was trained on an

identical dataset composed of 50 simulated neuron spike

observations with a corresponding endpoint path. Trials associated

with high-quality and poor-quality decoders used training datasets

with 3,000 and 1,500 time-steps, respectively.

Fusion decoder training. When training the decision fusion

algorithms, a set of predictions for each individual decoder is

required. One could simply let the single decoders make

predictions based on the initial training dataset, but this could

lead to overfitting and poor performance on new data. To avoid

this, a second dataset for fusion training was generated separately for

the decision fusion algorithms. This dataset uses the same 50

simulated neurons, but for a different endpoint trajectory of

10,000 timesteps. Trained individual decoders were used to

predict the two-dimensional endpoint velocity of the limb based on

the fusion training dataset. At each timepoint, the predictions (vx,

vy) were formed into an observation vector, (3 individual

decoders 62 velocity components = 6 components to each

observation vector). The set of all observation vectors were used

as a training set for the fusion Kalman filter and ANNs. To

prevent overfitting the ANNs, a secondary ANN fusion validation

dataset for a limited trajectory (3,000 timesteps) was employed in

the same manner as the fusion training dataset.

Final testing. After training the fusion and individual

decoders, a set of trajectories and corresponding spike signals

Figure 1. Conceptual design of an artificial neural network. (A) Each individual unit in the network accepts a weighted sum of input values,
producing a single net activation value, nj. (B) A three-layer network topology. This topology is feed-forward and fully-connected, that is, each unit
links to all units in the layer directly after it.
doi:10.1371/journal.pone.0009493.g001
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were generated for testing. Each trajectory represented 3,000

timesteps. For each trial, cortical spikes counts were input to

individual decoders, which output predictions for x and y velocity

estimates. Endpoint velocity predictions were then compiled into

observation vectors and fed to the fusion algorithms for final

predictions. Predictions from the individual decoders and the

fusion methods were finally compared to the true endpoint

velocities using root mean squared error.

Random Trajectory Generation
We generated random trajectories in 2-dimensional position

space according to the following model:

xt

yt

� �
~

xt{1

yt{1

� �
z

d1a1 cos
t

a2

� �
zd2a3 sin

t

a4

� �
zd3a5

d4b1 cos
t

b2

� �
zd5b3 sin

t

b4

� �
zd6b5

2
6664

3
7775:

The parameters of the model for each trajectory were chosen by

sampling from the following statistical distributions:

di~
1 with probability 0:8

0 with probability 0:2

(

a1,a3,b1,b3ð Þ~Uniform (0:5, 2)

a2,a4,b2,b4ð Þ~Uniform (100, 2000)

a5,b5ð Þ~Uniform (0, :1)

The space of possible trajectories spanned both nonlinear and

linear relationships.

Results

We present the fusion problem in the context of estimating the

endpoint velocity of a prosthetic arm using several different

Figure 2. Experimental design for fusion trials. Flowchart describing fusion of Kalman filter (KF), PVA, and the optimal linear decodes using the
Kalman filter and ANNs. Experimental trials contained three major phases: (i) individual decoder training, (ii) fusion decoder training, and (iii) final
testing. In each experiment, individual decoders were first trained using the same simulated spike count data. Next, fusion decoders were trained on
the individual decoders’ outputs (predicted velocity components in x and y dimensions) for a separate fusion training dataset. An additional
validation dataset was employed to prevent overtraining of ANNs. In final testing, trained individual decoders were used to predict the 2-d
velocities, which were then compiled as input for fusion decoders. Endpoint velocity predictions from all decoders were then compared for accuracy.
See Methods for details of the evaluation methodology.
doi:10.1371/journal.pone.0009493.g002
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Figure 3. Initial testing of fusion decoders. (A) Decoded velocity trajectories for four trials. The true velocities are shown in red. The fused ANN
and fused Kalman filter decodes are shown in brown and black, respectively. Individual decoders are plotted in varying shades of grey. (B) Erms of 144
neural networks for four trial decodes. We examined a range of single and double hidden-layer networks to optimize the fusion results. Rows
correspond to 1st-layer sizes, while columns are 2nd-layer sizes. Note the first column in each matrix corresponds to all single hidden-layer networks.
Interestingly, many single hidden-layer networks outperform more complex networks, indicating the dynamic accuracies of different neural network
topologies. Table 2 displays the corresponding Erms values for each decoder.
doi:10.1371/journal.pone.0009493.g003
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decoding algorithms of varying accuracy. Decoding studies often

focus on endpoint trajectories, leaving the controls of the limb to

determine optimal joint positions and velocities by inverse

kinematics.

Simulated Fusion Trials
To investigate these fusion methods, we simulated neural spike

data and implemented the following algorithms for spike decoding:

standard Kalman filter [35,38,39], optimal linear filter [40,41],

and a variant of the population vector algorithm (PVA)

[23,42,43,44]. The optimal linear filter uses a sliding window to

look back in time to estimate the current state of the arm using a

multidimensional linear regression. A separate linear filter is

developed for each variable of interest (in our case, x and y

velocities). The population vector algorithm predicts velocity and

direction using the ‘‘preferred direction’’ of each neuron in

conjunction with a model relating neural activity to speed and

direction of movement. We simulate single-neuron spike firing

rates as a function of the velocity and direction of the limb in x and

y coordinates. All simulated neuron firing rates were perfectly

cosine-tuned and included Poisson noise (see Methods for detailed

descriptions of decoders and simulated firing rates).

Initial Testing of Fusion Algorithms
Testing the fusion algorithms first required training each

individual decoder. Each trained algorithm was then used to

decode a fusion training dataset and a separate fusion validation

dataset for training the artificial neural network. The use of a

validation dataset prevents overtraining of the ANN. The outputs

of the trained algorithms (in our case x and y velocities) served as

inputs to train the fusion algorithms (Figure 2). All trained

algorithms decoded velocities for four testing datasets. The four

test sets were generated independently from previous training and

validation data, and tested a range of trajectories from simple to

complex.

We measure the accuracy of the decoded trajectories in terms of

the root mean squared error (Erms) in velocity space. If vxk,vyk

� �
is

the true velocity and v̂vxk,v̂vyk

� �
is the estimate k~1,:::,Nð Þ, then:

Erms~
1

N

XN

k~1

vxk{v̂vxkð Þ2z vyk{v̂vyk

� �2
	 
" #1=2

:

Figure 3B displays ANN Erms results of optimizing the number of

neurons in each hidden layer for each of four trials. Note that the

first column of cells in each matrix corresponds to a single hidden-

layer network. We observe that neural networks with a single unit

in the first or second hidden layer perform poorly. We also see that

the single hidden-layer networks typically perform just as well as

many of the double hidden-layer networks. This experiment

reveals the dynamic nature of network accuracy depending on the

topology employed. Indeed more complex networks do not

necessarily provide the best performance. A notable example is

the double hidden-layer network with nine and three units in the

first and second hidden layers, respectively. The Erms for this

network is relatively high (compared to its immediate neighbors)

for trials 1 through 3, but this disappears for trial 4. ANN

topologies with the lowest Erms were all different for each trial

(Table 1). This suggests that optimizing the number of neurons is

data dependent and no one topology will always result in the best

performance.

The final decoded trajectories are presented in Figure 3A. For

each trial, the best performing ANN is plotted in brown. True

velocities are plotted in red. Table 2 shows the Erms for all

individual decoders and fusion algorithms. In three out of four

trials, the Kalman filter fusion resulted in the most accurate

decode. In the remaining trial, the fused ANN decoded velocities

had the lowest Erms. In all four trials, at least one fusion algorithm

outperformed all three individual decoders. Furthermore, across

individual decoders, no single method was consistently superior.

Variable Decoding Accuracies
The accuracy of neural decoders depends not only on the

sophistication of the decoding algorithms but also on the physical

recording locations and the nature of the signals. A few millimeters

of discrepancy in electrode placement can dramatically impact

decoding accuracy [20]. Thus, in devices with multimodal

recording, no one decoded modality is likely to provide superior

performance over others for the full spectrum of functionality.

To address this scenario, we subsequently tested the ability of our

fusion algorithms to handle poor quality decoding. Generating a

simulated neural training set lacking sufficient complexity and size,

we retrained the individual decoders resulting in unacceptable

decoding accuracy. We ran four decoding trials, comparing the fusion

outputs to the single decoders. In Figure 4 and Table 3, we observe

the poor performance of the Kalman filter and optimal linear filter

decoders. Despite the high error associated with each single decoder,

Table 1. Artificial neural networks with lowest Erms for each trial.

Trial 1 2 3 4

No. units in 1st hidden layer 8 11 12 6

No. units in 2nd hidden layer 11 7 10 10

Erms6s.e. 0.08560.002 0.08360.002 0.09760.003 0.10360.004

Searching the space of possible topologies seen in Figure 3B, the most accurate decoding ANNs had different topologies for each trial.
doi:10.1371/journal.pone.0009493.t001

Table 2. Erms 6 standard error (s.e.) for four trials.

Trial 1 2 3 4

Kalman filter 0.07360.001 0.06960.001 0.12660.004 0.09060.004

Linear filter 0.09360.002 0.09060.002 0.10260.003 0.10760.005

Population
vector

0.17460.003 0.17260.003 0.17960.003 0.20360.011

Kalman fusion 0.05960.001 0.06260.001 0.11960.004 0.06660.002

ANN fusion 0.085060.002 0.08360.002 0.09760.003 0.10360.004

Bold elements in tables have the lowest Erms for the trial. In all four trials, the
fusion algorithms had more accurate results than at least two of the three
individual decoders. In trials 1, 2, and 4, the Kalman fusion method produced
the lowest Erms. In trial 3, the fused ANN decisions were the most accurate.
doi:10.1371/journal.pone.0009493.t002
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the fusion algorithms successfully produce highly accurate decodes,

significantly improving over all three individual decoders. Note that

we again optimized the ANN topologies for each trial similarly to the

previous experiment. In Figure 4B, we analyzed the decoding

accuracy of each algorithm over time for trials 2 and 3. While the

error for the individual decoders varies over time, the fusion

algorithms effectively assessed the individual decoders’ weaknesses,

and resulted in lower Erms throughout the entire trials.

To determine if the improvement of the fusion algorithms

was statistically significant, we generated 468 additional

randomized trajectories (selected from a large space of smooth

realistic movements, see Methods) and corresponding simulat-

ed neural spike datasets. For each trial, we employed only a

single ANN topology, because searching a space of topologies

is not feasible for real-time decoding. The selected ANN used a

single hidden-layer with six hidden units, the same as the

number of input nodes. The fusion Kalman filter resulted in

significantly lower Erms than all three individual decoders,

(p,1e-150 in all cases, one-tailed paired T-test) (see Figure 5).

The ANN fusion method was not as successful, though still

produced significantly more accurate decodes than the Kal-

man filter and linear filter single decoders, (p,1e-44 for both

comparison, one-tailed paired T-test). Our PVA variant

resulted in significantly more accurate decodes than ANN

fusion (p,1e-42, one-tailed paired T-test). Since it is not

reasonable to find an optimal ANN topology in real time, the

Kalman filter has a major advantage over the ANN as a fusion

method. However, if a topology could be found in training that

performed well overall, then the ANN would provide a

computationally efficient method for decision fusion.

Figure 4. Fusion results of using potentially poor quality decoders. These two sets correspond to trials 2 and 3 in Table 3. (A) Example trials
showing individual and fusion decodes. True velocities are shown in red. The fused ANN and fused Kalman filter decodes are shown in brown and
black, respectively. Individual decoders are plotted in varying shades of grey. (B) Corresponding pointwise root mean squared error of decodes over
time. Note that time is unitless in these simulations. Though the decoders have variable accuracy over time, the fusion algorithms maintain
acceptable decoding accuracy throughout the entire trials.
doi:10.1371/journal.pone.0009493.g004
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Discussion

We have described a framework for fusing decisions in the

context of multimodal prosthetic devices. Investigating the

Kalman filter and ANNs, we have shown that each fusion method

is capable of producing accurate fusion decodes and can adapt to

decodes of varying quality over time.

While our expertise is targeted towards neural decoding for

prosthetic limb movement, this approach may be generalized to the

larger field of brain-machine interfaces (BMIs) to help improve

communication for patients suffering from severe paralysis, locked-

in syndrome, and other neurological injuries. Recent BMI studies

have demonstrated success in providing some level of communica-

tion for subjects [41,45], though to our knowledge, none have

employed a fusion framework for decoding. As hardware platforms

for neural recording continue to advance, so too will our

opportunities for fusing multiple signals with distinct characteristics.

The computational expense of a fusion step in a neural

prosthetic device is of notable importance. Each of the methods

examined in this study is capable of running in real-time on a

single processor, which is likely to be the hardware implementa-

tion of such a framework. Furthermore, the computational cost of

individual modality decoders is increasing considerably, with

many suggesting parallel processing implementations [46,47]. The

efficiency of these fusion algorithms could be improved by

reducing the dimensionality of the data using feature selection or

principal component analysis [22].

Progress in neural recording technologies may eventually lead to

opportunities for data fusion, where a single decoder is used on all

modalities simultaneously. Our choice to employ decision fusion in

this study was in large part due to the current capabilities of neural

prostheses and those in development, making our findings timely.

Our results must be qualified because of the artificial nature of our

cortical spike data. Though our analysis is based on simulated neural

activity, we sought to capture the fundamental features of spike data

including: a realistic number of monitored neurons, randomized

preferred directions, and firing rates exhibiting Poisson noise. Our

simulated neurons are indeed close to ideal, but we have shown the

significant improvement decision fusion can provide when fusing

predictions from decoders of variable accuracy – a result independent

of the simulated data itself. Currently, no continuous real-time

multimodal neural data recordings are available, but several are in

production, and the community has shown an evident interest in this

direction [48,49]. We plan to perform a rigorous off-line evaluation of

decision fusion and data fusion methodologies using real multimodal

neural data in future work.

An ideal neural prosthesis will be fully autonomous, capable of

independently retraining and adapting to different human condi-

tions and mechanical failure. Electrode loss is arguably the most

important limiting factor for neural prostheses proliferation

[17,18,19], and multiple craniotomies are not a practical solution.

As a corollary, an autonomous prosthetic arm will need to detect

recording anomalies and adjust appropriately. If individual

decoders do not address this issue, any fusion technique is

susceptible to electrode loss. However, some fusion methods are

easily modified to adapt to this problem. The Kalman filter and

other methods may be formulated such that poor quality decoders

can be isolated and removed from the prediction without retraining,

while the ANNs would be significantly more problematic. We hope

to extend these methods to provide better autonomy in the future.

Neural prosthetics is a swiftly evolving field with ambitious

goals. Restoring the functionality of a limb for an individual will

require innovative technology and robust computational methods

to rapidly and accurately assess user intent.
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