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Abstract 

Background: We aimed to identify risk factors for sporadic campylobacteriosis in Australia, and to compare these for 
Campylobacter jejuni and Campylobacter coli infections.

Methods: In a multi‑jurisdictional case–control study, we recruited culture‑confirmed cases of campylobacteriosis 
reported to state and territory health departments from February 2018 through October 2019. We recruited controls 
from notified influenza cases in the previous 12 months that were frequency matched to cases by age group, sex, and 
location. Campylobacter isolates were confirmed to species level by public health laboratories using molecular meth‑
ods. We conducted backward stepwise multivariable logistic regression to identify significant risk factors.

Results: We recruited 571 cases of campylobacteriosis (422 C. jejuni and 84 C. coli) and 586 controls. Important risk 
factors for campylobacteriosis included eating undercooked chicken (adjusted odds ratio [aOR] 70, 95% CI 13–1296) 
or cooked chicken (aOR 1.7, 95% CI 1.1–2.8), owning a pet dog aged < 6 months (aOR 6.4, 95% CI 3.4–12), and the 
regular use of proton‑pump inhibitors in the 4 weeks prior to illness (aOR 2.8, 95% CI 1.9–4.3). Risk factors remained 
similar when analysed specifically for C. jejuni infection. Unique risks for C. coli infection included eating chicken pâté 
(aOR 6.1, 95% CI 1.5–25) and delicatessen meats (aOR 1.8, 95% CI 1.0–3.3). Eating any chicken carried a high popula‑
tion attributable fraction for campylobacteriosis of 42% (95% CI 13–68), while the attributable fraction for proton‑
pump inhibitors was 13% (95% CI 8.3–18) and owning a pet dog aged < 6 months was 9.6% (95% CI 6.5–13). The 
population attributable fractions for these variables were similar when analysed by campylobacter species. Eating 
delicatessen meats was attributed to 31% (95% CI 0.0–54) of cases for C. coli and eating chicken pâté was attributed to 
6.0% (95% CI 0.0–11).

Conclusions: The main risk factor for campylobacteriosis in Australia is consumption of chicken meat. However, con‑
tact with young pet dogs may also be an important source of infection. Proton‑pump inhibitors are likely to increase 
vulnerability to infection.
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Background
Campylobacter spp. are among the most common bac-
terial causes of diarrheal disease worldwide [1, 2]. In 
Australia, the National Notifiable Diseases Surveillance 
System (NNDSS) has recorded data on campylobacteri-
osis in seven of eight jurisdictions since 1991. Over this 
period, the notification rate has generally increased. 
Campylobacteriosis was mandated as notifiable in all 
jurisdictions from 2017 [3]. In 2019, Australia reported 
a notification rate of 143.5 cases per 100,000 popula-
tion [4], higher than recently reported rates per 100,000 
population from other high-income countries such as the 
United States (19.5 cases in 2018) and the United King-
dom (96.8 cases in 2017) [5, 6]. There is considerable 
underreporting of campylobacteriosis to surveillance 
systems, with an estimated ten community cases for each 
reported case in Australia [7].

A large proportion of Campylobacter spp. isolates from 
notified cases in Australia are not speciated. Of the 17 
Campylobacter species identified as human pathogens, 
the two most common are Campylobacter jejuni (C. 
jejuni) and Campylobacter coli (C. coli), which are pre-
dominantly acquired from animal sources [1, 8]. Campy-
lobacter spp. comprise part of the normal gastrointestinal 
tract flora of poultry, adult ruminants, and other wild 
and domestic animals such as rodents, birds, and dogs 
[1, 2, 9]. Infections are often acquired through consump-
tion of undercooked meats (e.g., poultry) or contact 
with infected animals [1, 10, 11]. While most Campylo-
bacter infections are sporadic, outbreaks can occur and 
are often associated with chicken or chicken-containing 
dishes, contaminated water, or raw dairy products [1, 12, 
13].

The epidemiology of campylobacteriosis is similar 
across high-income countries, although variations in 
risk factors may indicate differences in primary sources, 
human behaviour, and Campylobacter ecology. Such var-
iations include stronger associations with zoonotic fac-
tors (e.g., contact with animal faeces, farm animals, and 
pet dogs aged less than 6 months), consuming barbecued 
foods, frequency and prevalence of poultry consumption, 
consuming bottled water, living on a farm, or contact 
with environmental sources (e.g., garden soil) depending 
on study location and design [14–16].

The majority of human campylobacteriosis is caused by 
C. jejuni (> 80%), with nearly all remaining cases caused 
by C. coli [2, 17–19]. Historically, studies have not always 
determined the species causing campylobacteriosis and 

thus few risk factors have been attributed specifically to 
either C. jejuni or C. coli, although C. coli campylobacte-
riosis cases tend to be older in age [19, 20].

In this paper, we present the findings from the Campy-
Source case–control study investigating risk factors asso-
ciated with sporadic campylobacteriosis caused by C. 
jejuni and C. coli in Australia [21].

Methods
Study design and population
Study design, participant recruitment, and data collec-
tion followed the CampySource protocol [21]. Data col-
lection for the multijurisdictional case–control study 
occurred over a period of 20 months from February 2018 
through October 2019 in the Australian Capital Territory 
(ACT), Queensland (Qld), and the Hunter New England 
(HNE) region of New South Wales, covering a total pop-
ulation of approximately 6.1 million people [21]. Health 
units from each jurisdiction provided lists of participants 
to a specialised computer-assisted telephone interview-
ing (CATI) team conducting interviews with all Qld and 
HNE participants and ACT controls, and to ACT Health 
staff conducting interviews of ACT cases.

Case and control recruitment
Recruitment of cases and controls is described elsewhere 
[21]. Briefly, people with culture-confirmed campylo-
bacteriosis were eligible for interview if they had recent 
acute diarrhoea with three or more loose bowel move-
ments in a 24-h period and were able to recall the illness 
onset date. Cases were excluded if an additional enteric 
pathogen to Campylobacter was detected in their stool. 
Controls were recruited from among notified cases of 
influenza with a delay of at least 6  months from their 
reported illness. Controls were frequency matched to 
cases by sex, age group, and location. We estimated that 
a sample size of 1200 participants (600 cases; 600 con-
trols) was necessary to enable the detection of statisti-
cally significant associations for risk factors of interest 
to a p-value of p = 0.05, with 80% power and considering 
a range of magnitudes of odds ratios to be detected and 
prevalence of exposure amongst the controls, as previ-
ously described [21].

Cases and controls were excluded from interview if: 
(1) a household member was positive for Campylobacter 
or experienced diarrhoea in the 4 weeks prior to illness 
onset or interview, (2) they travelled outside of Aus-
tralia during (or interstate for the entire duration of ) the 
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2 weeks prior to illness onset or interview, (3) they could 
not speak English or were unable to answer questions 
for another reason, (4) they were unable to be contacted 
after six telephone attempts, (5) they did not have a tel-
ephone number available (residential or mobile), or (6) 
they resided outside the study catchment areas.

Questionnaire
Telephone-administered questionnaires were used to col-
lect information on known risk factors for campylobac-
teriosis in the 7  days prior to case illness onset, and in 
the 7 days prior to interview for controls. The question-
naire investigated clinical features, demographic details, 
and various potential risk factors, as described previously 
[21].

Isolate speciation
Stool samples from potential cases were collected and 
Campylobacter spp. isolated [21]. Genome sequencing 
of isolates from patients included in the study was sub-
sequently conducted using the  Illumina® sequencing 
platform [22]. Taxonomic classification to species-level 
for each isolate was determined from isolate read sets 
using Kraken with the PlusPf database [23]. Primary 
genome sequencing data for each isolate were submit-
ted to the National Centre for Biotechnology Information 
(NCBI) and are included in Bioprojects PRJNA592186 
and PRJNA560409. A total of 63 study isolates could not 
be revived in culture and classification was not confirmed 
beyond genus level.

Data analysis
Data cleaning, variable manipulation, and statistical anal-
yses were performed with R (version 4.0.5) [24], using 
the ‘dplyr’ package (version 1.0.5) to clean and manipu-
late variables [25], ‘arsenal’ (version 3.6.2) to create sum-
mary tables and perform univariable logistic regressions 
[26], ‘stats’ (version 4.0.5) for multivariable regressions 
[27], ‘questionr’ (version 0.7.4) to produce odds ratios 
[28], ‘rcompanion’ (version 2.4.1) for Cramér’s V [29], and 
‘rms’ (version 6.2-0) for variance inflation factor estima-
tion (VIF) [30]. Logistic regression modelling was used to 
calculate adjusted odds ratios controlling for study design 
variables of age group, sex, location, and season for every 
variable in the dataset. A p-value threshold of p ≤ 0.10 
was used to determine variable inclusion for further 
logistic regression modelling in six separate exposure 
groups: (1) demographics, illnesses, and medications; 
(2) water consumption; (3) food (excluding poultry); (4) 
poultry; (5) animals and pets; and (6) food preparation.

Within each exposure group, we used backward step-
wise logistic regression to identify variables to be consid-
ered for inclusion in the combined multivariable model, 

including those with p-values ≤ 0.05 and variables with 
p-values between p = 0.05 and p = 0.1 that were plausible 
risk factors. Following this, we assessed the VIF of each 
exposure group, adopting the commonly used cut-off 
value of ≥ 5 to identify variable collinearity [31]. Pairs of 
high-VIF variables were then assessed using Cramér’s V 
and a cut-off guide of V > 0.25 [32] to determine which 
variables were driving collinearity, keeping the most 
biologically plausible variables in the model (Additional 
file 1). Three final models were created with the outcome 
variable based on species of infection: (1) Campylobacter 
spp., (2) C. jejuni, and (3) C. coli.

We performed a sensitivity analysis on the Campylo-
bacter spp. model by including only those participants 
that ate chicken to investigate any differences in risk fac-
tors between the whole population and those who con-
sumed chicken meat using the same methodology as 
above. Due to lack of power related to insufficient sam-
ple population sizes, we did not perform this sensitivity 
analysis separately for the C. jejuni and C. coli specific 
models.

We calculated the population attributable fraction 
(PAF) for elevated risk factors for all campylobacteriosis 
cases and those caused by C. jejuni or C. coli using the 
R package ‘AF’ (version 0.1.5) [33], with 95% bootstrap 
confidence intervals calculated using the R package ‘boot’ 
[34]. We define the PAF as the fraction of cases (from all 
species, C. jejuni, or C. coli) in the population that would 
be averted if a risk factor was removed from the entire 
population.

Ethics
This study was approved by the Australian National Uni-
versity Human Research Ethics Committee (Reference 
No. 2016/426), ACT Health Human Research Ethics 
Committee (Reference No. ETH.8.17.168), Qld Health 
Human Research Ethics Committee (Reference No. 
RD007108), HNE Human Research Ethics Committee 
(Reference No. 17/08/16/4.03), and the University of Mel-
bourne Office of Research Ethics and Integrity (Reference 
No. 1750366.1). Human ethics approval was obtained for 
patients with campylobacteriosis in the ACT, HNE, and 
Qld as part of the CampySource case–control study [21].

Results
We invited 939 cases and 1,988 controls to participate in 
the study. The study team completed interviews for 571 
cases (61% response rate) and 586 controls (29% response 
rate). The median delay from onset of illness in cases to 
interview was 19  days (range: 3–66  days). Of the cases, 
422 (74%) were infected with C. jejuni, 84 (15%) with C. 
coli, two with C. lari (< 1%), and 63 (11%) were not iden-
tified due to inability to recover isolates in culture. One 
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case was infected with both C. jejuni and C. coli and was 
included in the individual analyses for each species.

The distribution of age and sex for study cases was con-
sistent with those notified in Australia 2018–2019 (Addi-
tional file  2) with no statistically significant differences 
between cases and controls for any of the demographic 
factors assessed. C. coli cases were older than C. jejuni 
cases (mean age 44.4 years versus 38.1 years, respectively, 
p = 0.018), and a higher proportion of C. coli cases were 
males compared to C. jejuni cases, although this wasn’t 
statistically significant (64% versus 56%, respectively, 
p = 0.196) (Table 1).

Univariate analyses for all risk factors for Campylobac-
ter spp., C. jejuni, and C. coli variables adjusted for age, 
sex, location, and season are presented in Additional files 
3, 4 and 5. These include meat consumption frequency 
and food preference variables we excluded from the main 
models (i.e., “number of chicken meals consumed” and 

“number of days in 7 days prior to illness that meat was 
consumed”) as they did not show a dose–response rela-
tionship and were collinear with other variables. The final 
multivariable logistic regression models for Campylobac-
ter spp., C. jejuni, and C. coli are shown in Table 2.

Use of PPIs in the 4 weeks prior to illness was signifi-
cantly associated with campylobacteriosis (aOR 2.8, 95% 
CI 1.9–4.3). Taking antibiotics in the 4 weeks prior to ill-
ness was associated with reduced odds of campylobacte-
riosis (aOR 0.4, 95% CI 0.2–0.7) (Table 2). These factors 
remained significant when analysed separately for C. 
jejuni or C. coli infections.

Eating cooked chicken (aOR 1.7, 95% CI 1.1–2.8) or 
undercooked chicken (aOR 70, 95% CI 13–1296) were 
strongly statistically associated with campylobacteriosis. 
The wide confidence interval for undercooked chicken 
was due to few study participants (37 cases, 1 con-
trol) reporting this exposure (Additional file  3). Eating 

Table 1 Demographic characteristics of the CampySource Project case–control study for all campylobacteriosis cases, C. jejuni cases, 
C. coli cases, and controls, Australia, 2018–2019

ACT  Australian Capital Territory, HNE Hunter New England region of New South Wales, Qld Queensland, TAFE Technical and Further Education

*t test, Fisher’s test, or Pearson’s Chi-squared test of the difference between C. jejuni and C. coli cases

Characteristic All cases 
(n = 571) n 
(%)

Controls 
(n = 586) n 
(%)

C. jejuni cases 
(n = 422) n (%)

C. coli cases 
(n = 84) n (%)

P value*

Sex Female 241 (42) 244 (42) 186 (44) 30 (36) 0.196

Male 330 (58) 342 (58) 236 (56) 54 (64)

Jurisdiction ACT 93 (16) 93 (16) 64 (15) 5 (6) 0.076

HNE 178 (31) 192 (33) 116 (28) 27 (32)

Qld 300 (53) 301 (51) 242 (57) 52 (62)

Age Mean (SD) 39.4 (24.0) 40.2 (23.9) 38.1 (24.1) 44.4 (21.9) 0.018

Rurality Rural or remote 81 (14) 75 (13) 66 (16) 9 (11) 0.317

Aboriginal and Torres Strait Islander status Aboriginal and Torres Strait 
Islander person

28 (5) 27 (5) 22 (5) 3 (4) 0.783

Season Summer 145 (25) 139 (24) 102 (24) 28 (33) 0.354

Autumn 147 (26) 120 (21) 112 (27) 18 (21)

Winter 159 (28) 204 (35) 118 (28) 22 (26)

Spring 120 (21) 119 (20) 90 (21) 16 (19)

Highest level of education Year 10 66 (12) 64 (11) 46 (11) 13 (15) 0.312

Year 12 77 (14) 75 (13) 62 (15) 6 (7)

TAFE/apprenticeship 145 (25) 151 (26) 106 (25) 19 (23)

Undergraduate degree 160 (28) 157 (27) 122 (29) 25 (30)

Postgraduate degree 114 (20) 134 (23) 79 (19) 19 (23)

Unknown or refused 8 (1) 3 (< 1) 6 (1) 2 (2)

Household income in AUD per annum < $25 k 35 (6) 39 (7) 24 (6) 7 (8) 0.874

$25–50 k 93 (17) 81 (14) 67 (16) 14 (17)

$50–100 k 145 (25) 124 (21) 113 (27) 20 (24)

$100–150 k 122 (21) 146 (25) 85 (20) 17 (20)

> $150 k 118 (21) 140 (24) 87 (20) 19 (23)

Unknown or refused 57 (10) 54 (9) 45 (11) 7 (8)

Language in household Language other than English 52 (9) 52 (9) 36 (9) 7 (8) 1.000
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Table 2 Results of multivariable logistic regression analysis showing adjusted odds ratios (aOR) and 95% confidence intervals (95% CI) 
for exposures associated with an increased or decreased campylobacteriosis risk, Australia, 2018–2019

*Excludes kebab shops. ‘–’ variable was not included in model

Exposures Campylobacter aOR (95% CI) 
n = 1006

C. jejuni aOR (95% CI) 
n = 899

C. coli aOR 
(95% CI) 
n = 638

Medication exposures in 4 weeks prior to illness

 Antibiotics 0.4 (0.2–0.7) 0.3 (0.2–0.6) 0.3 (0.0–0.9)

 Proton‑pump inhibitors 2.8 (1.9–4.3) 2.6 (1.7–4.2) 3.8 (1.9–7.8)

Poultry‑related food exposures in 7 days prior to illness

 Ate duck 3.1 (1.1–9.7) – –

 Ate pre‑cooked chicken – – 0.4 (0.2–0.9)

 Ate cooked chicken kebabs 2.2 (1.4–3.8) 2.0 (1.1–3.5) –

 Chicken consumption

  None Ref. Ref. Ref.

  Ate cooked chicken only 1.7 (1.1–2.8) 1.7 (1.0–3.0) 2.0 (0.8–6.1)

  Ate undercooked chicken 70 (13–1296) 85 (15–1627) 60 (6.6–1408)

Other food exposures in 7 days prior to illness

 Ate at a café or restaurant 0.7 (0.5–1.0) – –

 Ate at a fast food or takeaway outlet* 0.6 (0.5–0.9) – –

 Ate delicatessen ham, chicken, turkey or beef – – 1.8 (1.0–3.3)

 Ate chicken pâté – – 6.1 (1.5–25)

 Ate minced beef or veal dishes 0.7 (0.5–0.9) – –

 Beef consumption

  None – Ref. –

  Ate cooked beef only – 0.8 (0.5–1.1) –

  Ate undercooked beef – 0.3 (0.1–0.7) –

 Lamb consumption

  None Ref. Ref. –

  Ate cooked lamb only 0.6 (0.4–0.8) 0.6 (0.5–0.9) –

  Ate undercooked lamb 0.2 (0.0–0.9) 0.4 (0.0–1.8) –

 Pork consumption

  None – Ref. –

  Ate cooked pork only – 0.7 (0.5–0.9) –

  Ate undercooked pork – 3.6 (0.1–97) –

Animal exposures

 Contact with chicken faeces in 7 days prior to illness 4.3 (1.7–13) 4.3 (1.5–14) –

 Visited a private farm in 7 days prior to illness – 2.1 (1.1–3.7) –

 Fed pet dog raw chicken necks – 1.8 (1.0–3.2) –

 Age of pet cat

  No cat – Ref. –

  Cat aged less than 6 months – 3.8 (1.2–13) –

  Cat aged more than 6 months – 1.0 (0.7–1.4) –

 Age of pet dog

  No dog Ref. Ref. –

  Dog aged less than 6 months 6.4 (3.4–12) 6.2 (3.2–12) –

  Dog aged more than 6 months 1.3 (1.0–1.7) 1.2 (0.8–1.6) –

Preparation exposures in 3 months prior to illness

 Cooked meat on barbecue – – 0.5 (0.3–0.8)
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undercooked chicken remained significantly associated 
with illness when analysed separately for C. jejuni and C. 
coli infections. However, eating cooked chicken was not 
statistically significantly associated with C. coli infection 
(aOR 2.0, 95% CI 0.8–6.1). Eating chicken kebabs (aOR 
2.2, 95% CI 1.4–3.8) and duck (aOR 3.1, 95% CI 1.1–9.7) 
were associated with campylobacteriosis. Eating chicken 
kebabs remained a risk factor for C. jejuni (aOR 2.0, 95% 
CI 1.1–3.5), but was not associated with C. coli infection. 
Eating pre-cooked chicken was associated with reduced 
odds of C. coli infection (aOR 0.4, 95% CI 0.2–0.9). Eating 
chicken pâté (aOR 6.1, 95% CI 1.5–25) and delicatessen 
ham, chicken, turkey, or beef (aOR 1.8, 95% CI 1.0–3.3), 
also known as cold cuts or sliced meats, were signifi-
cantly associated with C. coli infection.

Some foods and food exposure locations were associ-
ated with reduced odds of campylobacteriosis. These 
included cooking food on a barbecue, eating at locations 
outside of the home (e.g., café or fast-food outlet), and 
consumption of non-poultry meats such as minced beef 
or veal and cooked lamb (Table 2).

Contact with chicken faeces (aOR 4.3, 95% CI 1.7–13) 
or owning a pet dog aged less than 6 months (aOR 6.4, 
95% CI 3.4–12) were associated with campylobacte-
riosis. These factors remained significant for C. jejuni 
cases, with the addition of owning a pet cat aged less than 
6  months (aOR 3.8, 95% CI 1.2–13), visiting a private 
farm (aOR 2.1, 95% CI 1.1–3.7), and feeding a pet dog 

raw chicken necks (aOR 1.8, 95% CI 1.0–3.2). No animal 
exposures were significantly associated with illness from 
C. coli infection.

We estimated that 42% (95% CI 13–62) of campylobac-
teriosis cases in the study population were attributable 
to any chicken consumption (cooked or undercooked), 
while PPI use was attributed to 13% (95% CI 8.3–18) of 
cases and owning a pet dog aged less than 6 months was 
attributable to 9.6% (95% CI 6.5–13) of cases (Table  3). 
The PAF for the other independent risk factors ranged 
from 1.8 to 7.0%. The PAF for these variables remained 
similar for C. jejuni and C. coli infections. The animal 
variables associated with only C. jejuni infection ranged 
from 2.4 to 7.0%. Eating delicatessen meats was attrib-
uted to 31% (95% CI 0.0–54) of cases for C. coli infection 
and eating chicken pâté was attributed to 6.0% (95% CI 
0.0–11).

A sensitivity analysis including only participants who 
ate chicken in the 7 days prior to illness did not indicate 
any further significant risk factors (Additional file 6).

Discussion
In the present study, we found the main risk factors for 
campylobacteriosis in Australia are consumption of 
chicken meat, PPI use, and contact with young dogs aged 
less than 6 months. This is consistent with previous case–
control studies of sporadic campylobacteriosis in Aus-
tralia and New Zealand [11]. While undercooked chicken 

Table 3 Population attributable fraction (PAF) proportions with 95% confidence intervals (95% CI) for exposures associated with 
increased campylobacteriosis risk, Australia, 2018–2019*

*Calculated from adjusted odds ratios (aOR) from final multivariable logistic regression model ‘–’ variable was not included in model. aVariable not significant. bCooked 
and undercooked chicken combined

Exposures Campylobacter PAF % 
(95% CI)

C. jejuni PAF % (95% CI) C. coli PAF % (95% CI)

Medication exposures

 Proton‑pump inhibitors 13 (8.3–18) 12 (6.3–16) 20 (7.8–32)

Poultry‑related food exposures

 Ate any  chickenb 42 (13–62) 42 (11–66) a

  Ate cooked chicken 36 (7.5–58) 36 (4.0–60) a

  Ate undercooked chicken 6.8 (4.5–9.5) 7.0 (4.9–10) 7.0 (2.2–15)

 Ate cooked chicken kebabs 7.0 (3.1–11) 5.7 (1.3–10) –

 Ate duck 1.8 (0.1–3.7) – –

Food exposures

 Ate delicatessen ham, chicken, turkey, or beef – – 31 (0.0–54)

Ate chicken pâté – – 6.0 (0.0–11)

Animal exposures

 Dog aged less than 6 months 9.6 (6.5–13) 11 (6.9–14) –

 Visited a private farm in 7 days prior to illness – 4.7 (0.4–7.9) –

 Fed pet dog raw chicken necks – 4.6 (0.4–8.5) –

 Contact with chicken faeces in 7 days prior to illness 3.1 (1.2–5.2) 2.9 (0.8–5.1) –

 Cat aged less than 6 months – 2.4 (0.3–4.5) –
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consumption poses a substantial campylobacteriosis risk, 
cooked chicken consumption has a population attributa-
ble risk more than five times higher, accounting for about 
a third of the campylobacteriosis cases in the population. 
We identified that these main risk factors were generally 
consistent across the two most common Campylobacter 
species implicated in human illness, C. jejuni and C. coli. 
However, C. coli infections were not significantly associ-
ated with animal exposures, and unique factors included 
consumption of chicken pâté and some delicatessen 
meats (ham, chicken, turkey, or beef ).

Differences in case profiles and risk factors between 
C. jejuni and C. coli have been reported previously. Two 
studies reported that cases infected with C. coli tended to 
be older and more likely to have recently travelled abroad 
[19, 20] and that C. jejuni infection is more prevalent in 
summer [19, 20]. Previously reported principal risk fac-
tors for C. coli infection include consumption of halal 
meats, offal meats, pâté, game meat, and market stall 
foods, while contact with animals has been less com-
monly reported as a risk factor [20, 35, 36]. Our study 
found the main risk factors for C. jejuni appeared simi-
lar to those for campylobacteriosis in general, as reported 
elsewhere [16]. C. jejuni and C. coli infections share the 
risk factors of chicken and other poultry consumption, 
undercooked meat, and PPI use [35].

Poultry is a well-known reservoir of Campylobacter 
spp. with the pathogen frequently isolated from chicken 
faeces [37, 38]. Human campylobacteriosis is often attrib-
uted to consumption of chicken meat, with Australian 
and New Zealand case–control studies attributing almost 
30% and 5–16% of campylobacteriosis cases to chicken 
consumption factors, respectively [10, 36]. In particu-
lar, raw and undercooked chicken meat are commonly 
known food vehicles for gastroenteritis [39, 40]. The risk 
associated with eating cooked chicken is less clear but 
may be explained through surface or utensil cross-con-
tamination from raw chicken during meal preparation, 
or cases being unaware they consumed undercooked 
chicken [10]. Pre-cooked retail chicken consumption was 
negatively associated with C. coli infection. This is likely 
due to thermal inactivation of Campylobacter spp. and 
reduced likelihood of cross-contamination during meal 
preparation. Pâté is a known source of Campylobacter 
and is often associated with disease outbreaks [41–44]. 
Chicken livers are a common retail pâté ingredient and 
are known to contain Campylobacter [45, 46], with recent 
testing of chicken offal in Australia finding C. coli signifi-
cantly more common in this source than C. jejuni [46].

Previous case–control studies have identified PPI use 
as a risk factor contributing to human Campylobacter 
infection [35, 36, 47, 48]. Increases in campylobacteriosis 
incidence may also be associated with increased PPI use 

[49]. PPIs reduce stomach acid secretion and neutralise 
stomach pH levels [50, 51], and are commonly prescribed 
to treat acid-related gastro-oesophageal disorders and 
prevent ulcers [50–52]. Although Campylobacter is acid-
sensitive, the protective effect of food paired with PPI 
use could enhance survival of the pathogen through the 
stomach and into the bowel [53, 54]. While considered 
safe and effective medications approved for long-term 
use, they are associated with an increased risk of enteric 
infection [51, 54]. Many patients use PPIs as a first-line 
therapy and continue using them on a long-term basis 
[52]. Additionally, over-prescription of PPIs is a known 
problem with between 25 and 70% of users lacking an 
appropriate indicator for use [55]. PPIs are advertised 
directly to consumers in Australia, and are available for 
purchase over the counter [52].

Odds of human campylobacteriosis were lower in par-
ticipants who reported taking antibiotics in the 4 weeks 
prior to interview. A recent Australian study showed low 
levels of antimicrobial resistance in campylobacteriosis 
case isolates relative to other countries [22]. It is plau-
sible that antibiotic use could have a protective effect 
against campylobacteriosis, with a Danish study finding 
macrolides provided protection for 4–8  weeks after use 
[56]. Macrolides are prescribed in Australia for respira-
tory tract infections, so may have been taken by study 
controls following influenza infection [57]. However, 
those that used antibiotics in the 4 weeks prior to inter-
view generally reported using amoxicillin or cephalexin, 
the most frequently dispensed antimicrobials in Australia 
[58]. A protective effect has not previously been reported 
for these antimicrobials.

Exposure to domestic pets has been reported as a risk 
factor for human campylobacteriosis [10, 47, 59–63], 
with up to 25% of human campylobacteriosis cases attrib-
uted to pet sources [64–66]. Domestic cats and dogs are 
often asymptomatic carriers of Campylobacter spp. [62]. 
C. jejuni is the most commonly isolated Campylobacter 
species in dogs, accounting for over 96% of dog-sourced 
isolates on PubMLST [67–69]. We found strong associa-
tions between owning pet dogs aged less than 6 months 
and pet cats aged less than 6 months (when restricted to 
C. jejuni infection) and campylobacteriosis. Younger pet 
dogs are more likely to be a source of infection for human 
campylobacteriosis as they often have a higher carriage 
prevalence of Campylobacter compared with mature pet 
dogs (76% in puppies versus 39% in mature dogs), and are 
more likely to shed Campylobacter than older dogs [70]. 
Newly acquired puppies and kittens present the highest 
risk of transmission [62].

Raw meat-based diets in pet dogs pose a higher risk of 
Campylobacter spp. carriage than commercial dry feed 
diets [71]. These diets for domestic pets have increased 
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in popularity, with health benefits including coat and skin 
improvements and dental diseases reduction [68, 69]. 
However, raw meats often contain enteric pathogens that 
may cause serious health conditions in dogs and can be 
transmitted to humans [68, 72].

Additionally, a high magnitude association was 
observed for owners that fed their cat raw kangaroo meat 
(OR 9, 95% CI 1.4–177) and C. jejuni infection, but due 
to small numbers the effect was not statistically signifi-
cant in multivariable modelling. In Australia, veterinar-
ians may advise feeding cats with severe food allergies 
raw kangaroo meat as it has markedly different allergenic 
properties to other commonly available meats. If this raw 
kangaroo meat has high levels of Campylobacter spp. 
then freezing for at least 1  week [73] and thawing just 
before feeding could reduce bacterial counts and risk in 
the owners and their pets.

Study limitations
The large study size and representativeness of the case 
population are important strengths of our study. How-
ever, our study is subject to biases common to many 
case–control studies. We had low power for C. coli anal-
yses due to a smaller sample population (n = 84), which 
may have impacted our ability to detect associations. 
Influenza cases were recruited as controls for their simi-
lar healthcare-seeking behaviours. However, there were 
differences in case and control recruitment rates, with 
39% of eligible controls declining interview compared 
with 9% of eligible cases.

Most controls were interviewed within a 30-day win-
dow of cases to ensure minimal variation in seasonal food 
intake. However, due to difficulties in control recruit-
ment, it was necessary to recruit some controls outside 
of this window to achieve the 1:1 case:control ratio. We 
accounted for this by controlling for season throughout 
all analyses. Interviewers were thoroughly trained and fol-
lowed interview protocols. However, interviews were not 
conducted blindly so interviewer bias cannot be ruled out.

The study was designed to minimise information bias 
by strict recall periods for cases (7 days prior to illness) 
and controls (7 days prior to interview), and strict adher-
ence to exclusion criteria. However, on average 3 weeks 
elapsed between illness and interview for cases, which 
may have resulted in poorer recall and bias toward the 
null [74]. Cases may have closely reflected upon their 
food consumption in the days prior to falling ill, explain-
ing some of the difference in responses between cases 
and controls for factors like undercooked chicken con-
sumption. However, a previous study found no measur-
able difference in dietary recall between those with and 
without gastroenteritis symptoms [75], suggesting this 
has minimal impact on participant responses.

Conclusions
Australian retail raw meat (including poultry) is not sub-
ject to specified microbiological limits [76]. However, 
voluntary guidelines of less than 6000–10,000 Colony 
Forming Units (CFU) of Campylobacter spp. per poul-
try carcass exist for the Australian poultry sector [77]. 
Importantly, doses as low as 360–800 CFU can result in 
campylobacteriosis [78, 79]. As Campylobacter spp. are 
generally incapable of ex vivo growth in foods, the princi-
pal risks associated with campylobacteriosis and chicken 
meat are undercooking and/or cross-contamination dur-
ing food preparation. This is particularly the case in rela-
tion to chicken liver pâté given the relative prevalence of 
Campylobacter spp. in chicken offal [46, 80, 81].

Australia has a high incidence of human campylobacte-
riosis compared with other high-income countries, a high 
prevalence of Campylobacter spp. on raw retail poultry 
[46], and a high population-level campylobacteriosis risk 
from chicken meat consumption. Given this, commu-
nication with, and improved education of, consumers 
regarding the risks associated with handling raw meats 
(particularly poultry) including proper food handling, 
preparation and hygiene practices is recommended as a 
key approach for personal risk reduction [82, 83]. Addi-
tionally, continued engagement with industry partners, 
particularly in the poultry supply chain, is required to 
identify means of reducing Campylobacter prevalence in, 
and concentration of Campylobacter on, chicken meat.

While clear benefits exist for the use of PPIs, consum-
ers and clinicians should consider these against the risks 
associated with use before initiating and continuing PPI 
therapy. PPIs should come with advice that they may 
increase the risk of gastroenteritis from Campylobacter 
infection and other pathogens including Salmonella and 
Clostridiodes difficile.

To reduce the risk of Campylobacter spp. transmis-
sion from pets to humans, several activities are recom-
mended. These include good hand hygiene practices 
following animal handling; feeding young pets cooked 
meat products or commercial canned and dry foods; rou-
tine cleaning and disinfection of animal contact surfaces 
in the home, enclosures, breeding locations, animal shel-
ters, and pet stores; and closely monitoring pet health by 
engaging with veterinarians for preventative and diag-
nostic care [62].

We observed differences in risk factors between C. jejuni 
and C. coli infections, suggesting that important differences 
in infection sources may exist between these two species. 
Future studies should consider high-powered disaggregated 
Campylobacter spp. analyses to detect possible species-spe-
cific risk factors. This study provided insights into the public 
health importance of sources of Campylobacter infection 
and reiterated that awareness of the risks associated with 
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chicken meat handling, preparation, and consumption; PPI 
use; and contact with young pets is essential for informed 
control over risk exposure in individuals.
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