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Abstract: In the food industry, the most prominent and concerned points in the application of dietary
fiber are hydration properties and oil absorption capacity. The target of this work was to investigate
the impact of a novel industry-scale microfluidizer system (ISMS) on the changing structures and
functionalities of pea fiber. Different ISMS treatment intensity (0–120 MPa for one pass and 120 MPa
for two passes) was applied to treat pea fiber. ISMS treatment induced the reduction in particle size
and the transformation of big compact blocks to loose flakes, and the destruction of the original
ordered cellulose structure caused the decline of crystallinity. Meanwhile, the hydration properties of
pea fiber were improved, and pre-pulverizer and industry-scale microfluidizer treatment together
increased the swelling capacity and water retention capacity of fiber. The oil holding capacity of
ISMS-treated fiber was increased to more than double the original one. The elevated functionalities
of pea fiber by ISMS treatment could be attributed to loosening structure, exposing more surface
area, and disordering the crystalline structure, which increased the sites of water binding and oil
adsorption. These findings suggested that ISMS could be applied as an effective industrial technique
to the disintegrate structure and improve the functionalities of pea fiber, so as to widen the application
of pea fibers in foods.

Keywords: pea fiber; industry-scale microfluidizer; structure; functional properties

1. Introduction

The appropriate consumption of dietary fibre has considered to be advantageous to
health, such as by preserving gastrointestinal function, lowering blood lipids and choles-
terol levels, and reducing the risk of cardiovascular disease [1], so we were encouraged
to seek excellent fiber sources for the development of foods supplemented with dietary
fibers. Pea fiber is a valuable and attractive food component which has been added to
pasta for improving the nutritional value [2]. Commonly, the incorporation of raw pea fiber
would negatively impact the sensory characteristics of the food matrix owing to its poor
techno-functional properties. One of the areas of focus among researchers and in the field
of functional food processing is the modification of fibers to increase their quality or func-
tional properties by adopting physical, chemical and biological approaches [3]. In recent
years, superfine pulverization techniques have gained much attention for their modifying
properties of fiber. For instance, pulverization methods such as homogenization, microflu-
idization and ultrafine comminution have been reported to modify fibers from citrus [4,5],
purple-fleshed potatoes [6], bamboo shoot shells [7] and carrot pomace [8]. Furthermore,
microfluidization showed great potential in modifying fibers such as wheat and corn bran,
peach and oat fiber, insoluble soybean fiber and hazelnut skin fiber, as reviewed by Guo,
et al. [9] and Ozturk and Turasan [10]. Morales-Medina, et al. [11] also found a continuous
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defibrillation of pea hull fiber by microfluidization with the decreasing of particle size.
Nevertheless, previous reports were mainly concentrated on treating fibers by small scale
microfluidizers. As pointed out by Ozturk and Turasan [10], one of the biggest problems
with this technology was the limitation of scale, and additional supporting equipment like a
pretreatment miller was necessary if an industry-scale microfluidizer was provided. In our
research group, an innovative industry-scale microfluidizer system (ISMS) was developed
which combined a pre-pulverizer and an industry-scale microfluidizer (ISM). The schematic
diagram and the main functions of the pre-pulverizer and industry-scale microfluidizer
were demonstrated in our previous research in greater detail [12–14]. The industry-scale
microfluidizer possesses a unique constructional microchannel with large orifice diameters,
unusual impact modes and a high processing capacity which could continuously run to
reach productivity of five tons per hour. ISMS has been successfully applied to produce
stable whole soybean milk and improve the stability of whole corn slurry without filtering
and removing any components. This indirectly reflected that the soybean and corn fibers in
the whole component systems were modified. With regard to the low utilization of pea
fiber, it was worth investigating the effect of ISMS treatment on its structural and functional
properties. Ascertaining the efficiency and ability of ISMS to modify pea fiber can provide
the possibility for its high-value utilization.

Therefore, the objective of the current work was to investigate the efficiency of ISMS
modifying pea fiber. Pea fiber was treated by ISMS at a different intensity (60, 90, 120 MPa
for one pass and 120 MPa for two passes after pre-pulverizer treatment). Subsequently, the
structure and functionalities of ISMS-treated pea fiber (ISMS-treated PeaF) were determined.
The structural properties were characterized by particle size distribution, confocal laser
scanning microscopy (CLSM), scanning electron microscopy (SEM), and X-ray diffraction
(XRD) analysis. The functionalities including swelling capacity (SC), water retention
capacity (WRC) and oil holding capacity (OHC) of ISMS-treated PeaF were discussed. This
study may identify a new technology that can be utilized to manufacture nutritious foods
with high fiber content, thereby promoting the development of new food products.

2. Materials and Methods
2.1. Material

Pea fiber powder was provided by Shuangta Food Co., Ltd (Zhaoyuan, China), which
contained 80.7% of total dietary fibre. The protein, starch, and ashes accounted for a much
lower percentage (0.3, 3.6 and 3.4%, respectively). Calcofluor white was purchased from
Aladdin Reagent Company (Shanghai, China). Corn oil was purchased from a local super-
market (Jinlongyu, Shanghai, China). All other chemical agents were of analytical grade.

2.2. ISMS Treatment of Pea Fiber

Native pea fiber (native PeaF) suspensions were prepared by mixing pea fiber powder
in distilled water using a stirrer for overnight at approximately 500 rpm to completely
hydrate, and a concentration of 1.2% (w/w) was selected according to the investigation
of Bruno, et al. [5]. Completely hydrated pea fiber suspensions were added directly into
the pre-pulverizer, then the pea fiber suspensions obtained from the pre-pulverizer were
treated by ISM for one pass at 60, 90, and 120 MPa and two passes at 120 MPa in series. The
temperature of the treated pea fiber suspensions (ISMS-treated PeaF) was less than 54 ◦C,
and after ISM treatment, the ISMS-treated PeaF suspensions were immediately cooled
to room temperature using an ice bath. Pea fiber treated by ISM at the corresponding
intensity was designated as ISM-60 PeaF, ISM-90 PeaF, ISM-120 PeaF and ISM-120-T2 PeaF,
respectively. The fiber treated by pre-pulverizer but without ISM treatment was labeled as
Pre-PeaF. Part of the suspensions were withdrawn to perform particle size distributions
and CLSM analysis. Other suspension samples were freeze-dried and ground into powders.
The suspensions were first frozen at −80 ◦C overnight, and then freeze-dried using the
FreeZone® 4.5 L freeze-drier (Labconco, Kansas City, MO, USA) at low vacuum (≤10 bar)
and temperature (~−40 ◦C). The freeze-dried PeaF was ground into power using a basic
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analytical mill (IKA® A11B S025, Merck KGaA, Darmstadt, Germany) by intermittent
operating for dozens of seconds. The obtained powders were stored in a desiccator for
further analysis.

2.3. Particle Size

The particle size distributions and mean diameters of pea fibers were determined
(expressed in % volume) using a Malvern MasterSizer 3000 (Malvern Instrument, Ltd.,
Malvern, UK) by referencing the method of Chen, et al. [15] with slight modifications.
This technique provides information on the equivalent sphere diameter of fiber particles
with different geometrical shapes, and the term “diameter” will be used to substitute for
“equivalent sphere diameter” for simplicity. The measurement was conducted with the
refractive indices of 1.52 and 1.33 for pea fiber and water, respectively, and an absorption
index of 0.1 was used. The mean diameters including volume weighted mean diameter
D[4,3] (diameter of the sphere of equivalent volume to measured particles) and surface-
weighted mean diameter D[3,2] (particle diameter that has the same specific surface as
that of the full distribution) were evaluated. Cumulative percentiles of D10, D50 and D90
were also calculated, which indicated that the size of 10%, 50% and 90% of the particles
was below the specified diameter, respectively. The pan of particle size distributions was
applied to characterize the width of the particle size distribution, which was calculated
according to Equation (1):

Span =
D90 − D10

D50
(1)

2.4. Confocal Laser Scanning Microscopy (CLSM) Analysis

The microstructure of pea fiber was observed using confocal laser scanning microscopy
(Carl Zeiss LSM710, Jena, Germany). The preparation of samples were conducted by
referencing the method of Huang, et al. [16]. Briefly, pea fibers were mixed with calcofluor
white dye at a 50:1 volume ratio, and then the stained sample was added to a culture dish
for observation. Images were acquired using a CLSM multiphoton system with a 40×
objective lens. The excitation-emission wavelengths of 405–455 nm for calcofluor white and
appropriate emission channels were used.

2.5. Scanning Electron Microscopy (SEM) Analysis

The morphology of pea fiber samples after freeze-drying and grinding was also ex-
amined using an environmental scanning electron microscope (Quanta-200, FEI Company,
Eindhoven, The Netherlands). ISM-treated PeaF were prepared by sticking them onto
double-sided adhesive tape attached to a circular specimen stub, following by sputtering a
thin film of gold. The morphology of samples was observed at ×800 magnifications with
an accelerating voltage of 5 kV voltage.

2.6. Bulk Density Analysis

1.8 g of pea fiber powder was accurately weighed and carefully added into a calibrated
25 mL graduated cylinder. Pressure was imposed manually to ensure no further decrease
in sample volume. The bulk density was calculated as the volume of sample occupied by
per gram dry weight (mL/g) [17].

2.7. X-ray Diffraction (XRD) Analysis

X-ray diffractograms of pea fiber powders after freeze-drying and grinding were
obtained using an X-ray diffractometer (D8 Advance, Bruker, Berlin, Germany) operated at
40 kV and 40 mA with Cu Kα radiation. Before measurements, samples were stored in a
desiccator where a saturated solution of NaCl maintained a constant humidity atmosphere
(relative humidity = 75%) at 25 ◦C for five days. The scanning angle (2θ) of 5–50◦ with
the interval of 0.02◦ was used to obtain XRD patterns. The crystallinity of samples was
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calculated based on the ratio of the area of the crystalline region to the total area in the XRD
spectra using Origin software [18].

2.8. Measurement of Hydration Properties

Hydration properties including swelling capacity (SC) and water-retention capacity
(WRC) were determined.

Swelling capacity was determined by referencing the method of Mateos-Aparicio, et al. [19].
Accurately weighed pea fiber (0.3 ± 0.001 g) was added into a 25 mL graduated cylinder
containing 15 mL of distilled water. The sample was stirred gently, then left undisturbed at
room temperature for 8 h to completely hydrate. The volume (mL) of the settled sample
was recorded, and SC was expressed as the volume of the settled sample (mL) per gram of
dry fiber.

Water retention capacity was measured by referencing the method of Morales-Medina,
Dong, Schalow and Drusch [11], with some modifications. Accurately weighed pea fiber
(0.3 ± 0.001 g) and 15 mL of distilled water were added in a 50 mL centrifuge tube, and
the sample was stirred and allowed to hydrate at room temperature for 8 h. Subsequently,
the fibre suspension was centrifuged at 1790× g for 15 min, and the supernatant of each
tube was carefully decanted. The excess of liquid was drained by turning the tubes upside
down on a filter paper for several minutes. The weight of the hydrated sample (m1) was
recorded. Then the hydrated sample was freeze-dried, and the weight of the dried sample
was labeled as m2. WRC was calculated according to Equation (2):

WRC(g/g) =
m1 − m2

m1
(2)

2.9. Measurement of Oil Holding Capacity

Oil holding capacity (OHC) was measured following a modified procedure by referenc-
ing the report of Jiang, et al. [20] and Meng, et al. [21]. Pea fiber powder (0.2 ± 0.001 g) and
oil (10 g ± 0.01 g) were put into a 50 mL centrifuge tube and fully mixed by vortex mixer
for several minutes. Then the centrifuge tube was kept at room temperature for 4 h. Subse-
quently, the fibre suspension was centrifuged at 1790× g for 15 min, and the upper clear
liquid was poured out gently. The weight of the pea fiber after absorbing oil was recorded.
The OHC of pea fibers was calculated by Equation (3):

OHC(g/g) =
moiled − m

m
(3)

where m was the weight of the original ISMS-treated PeaF powder (0.2 g), and moiled was
the weight of the ISMS-treated PeaF after absorbing oil (g).

2.10. Statistical Analysis

All experiments were carried out in triplicate using three samples, and then the mean
and standard deviation were calculated by statistical analysis software (SPSS 25.0, SPSS
Inc., Chicago, IL, United States). Significant differences between sample means (p < 0.05)
were established according to Duncan’s test using one-way analysis of variance (ANOVA).

3. Results and Discussion
3.1. Particle Size Characteristics

Initially, the influence of the ISMS treatment on the particle characteristics of pea
fiber was examined. Particle size distributions for native PeaF and ISMS-treated PeaF
aqueous suspensions are shown in Figure 1. Native PeaF aqueous suspensions exhibited
a wide and asymmetric unimodal distribution (1.4~374.8 µm) with a shoulder around
8.1~37.7 µm. The pre-pulverizer treatment weakened the shape of the shoulder and slightly
narrowed the particle size distribution. After ISM treatment, peaks of the distributions
tended to be homogeneously distributed. Meanwhile, a progressive shift of the peaks
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to the left for ISMS-treated PeaF aqueous suspensions was observed as the treatment
intensity increased, and the distribution gradually narrowed. Additionally, when ISM
pressure was below 120 MPa, the peaks moved downward with the increasing of ISM
pressure. Although the particle size distribution of ISM-120-T2 PeaF was located at the
leftmost, it was not significantly deviated from that of ISM-120 PeaF. These phenomena
indicated that the increasing treatment pressure resulted in a decrease in the overall particle
size, and ISMS treatment could grind the pea fiber to a micron size to a limited extent.
As displayed in Table 1, all mean diameters analyzed decreased with increasing ISMS
treatment intensity, and similar results had been found in another study of treating soybean
insoluble dietary fiber by high-energy wet media milling [22]. For example, along with
the treatment intensity, D[4,3] values decreased from 92.6 µm of native PeaF to 38.3 µm
of ISM-120-T2 PeaF. Furthermore, D[3,2] values of pea fiber significantly dropped from
34.5 µm to 19.3 µm, and those of ISM-60 PeaF, ISM-90 PeaF, and ISM-120 PeaF were 23.5,
20.4 and 19.4 µm, respectively. Bruno, et al. [5] reported that D[3,2] values of citrus fiber
were approximately 26 µm and 20 µm after treatment by a M110P microfluidizer® at higher
pressure for one pass (103.3 MPa and 172.2 MPa, respectively). The cumulative percentiles
of D(50) and D(90) were also reduced to varying degrees. When pressures of ISM were
90 MPa and 120 MPa, D(90) the values of pea fiber were 93.2 µm and 82.5 µm, respectively.
In the study of Morales-Medina, et al. [11], when D(90) values of pea hull fiber reached
100 µm and 80 µm, the conditions of treatment by the LM20 Microfluidizer® were predicted
to be 109 MPa for two passes and 127 MPa for four passes, respectively. Meanwhile, D(50)
values of pea hull fiber processed by the aforementioned conditions were slightly higher
than these of ISM-90 PeaF and ISM-120 PeaF in this investigation. These phenomena
indicated that ISM was a more powerful technique than conventional microfluidizers at
disrupting fiber to a smaller particle size. Intriguingly, ISMS treatment did not cause a
decrease in span, which was contrary to the observation of narrowing distributions from
Figure 1. As depicted in Figure 1, the size range of native PeaF was actually larger than that
of ISMS-treated PeaF, and native PeaF were mainly large size particles with concentrated
distribution. Nevertheless, ISMS-treated PeaF possessed more homogeneous distribution
with a high fraction of small sized particles and a slightly small size range. The concentrated
distribution of large size particles and very low fraction of small size particles contributed
to a lower span for native PeaF. As considered by Guo, et al. [12], the reduced particle size
of pea fiber was possibly attributed to mechanical action initiated by ISMS, and higher
processing strength provided a greater crushing effect. Meanwhile, the specific surface
area of pea fiber was increased with the increasing of ISMS treatment intensity, which
climbed from 173.6 m2/kg to 309.4 m2/kg when ISM pressure rose to 120 MPa (Table 1).
The reduction in particle size and increase in particle specific surface area initiated by the
crushing effect inevitably destroyed the structure of pea fiber. Therefore, the structure of
ISMS-treated PeaF will be investigated in the next sections.

Table 1. Particle diameter size of ISMS-treated PeaF 1.

Samples Specific Surface
Area (m2/kg) D[3,2] (µm) D[4,3] (µm) D(50) (µm) D(90) (µm) Span

native PeaF 173.6 ± 1.7e 34.5 ± 0.4a 92.6 ± 0.5a 82.8 ± 1.2a 185.0 ± 1.4a 2.03 ± 0.05b
Pre-PeaF 197.3 ± 3.1d 30.4 ± 0.4b 72.7 ± 3.3b 64.2 ± 1.0b 145.0 ± 9.9b 2.03 ± 0.13b

ISM-60 PeaF 256.6 ± 0.1c 23.5 ± 0.1c 52.9 ± 0.4c 43.1 ± 0.1c 109.0 ± 1.4c 2.26 ± 0.03a
ISM-90 PeaF 293.4 ± 0.4b 20.4 ± 0.1d 45.0 ± 0.1d 36.1 ± 0.1d 93.2 ± 0.14d 2.31 ± 0.01a

ISM-120 PeaF 309.4 ± 1.3a 19.4 ± 0.1e 40.5 ± 0.4e 32.7 ± 0.1e 82.5 ± 1.0e 2.23 ± 0.02a
ISM-T2-120 PeaF 310.0 ± 2.8a 19.3 ± 0.2e 38.3 ± 0.6e 32.1 ± 0.3e 76.2 ± 1.3e 2.08 ± 0.01b

1 Reported results correspond to mean ± standard deviation. Different letters within the same column indicate
significant differences (p < 0.05).
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Figure 1. Particle size distributions of ISMS-treated PeaF.

3.2. CLSM

The microstructure of ISMS-treated PeaF suspensions was first visualized by means of
CLSM to analyze the alterations of pea fiber induced by ISMS treatment, and blue fluores-
cence was observed, as shown in Figure 2A–F. Native PeaF revealed the predominance of a
relatively big thick and compact structure, where the centre of some fibers presented weaker
fluorescence than their well-defined edges, as shown by arrows in Figure 2A. In accordance
with the results of particle size, pre-pulverizer treatment broke the fibers into relatively
small structures with bright fluorescence (Figure 2B). Upon ISM treatment, the dense fiber
seemed to be disrupted into loose fibers with the increasing of treatment intensity accord-
ing to the significant change of blue fluorescence. ISM-60 PeaF showed diverse shapes of
fluorescence with some strips as depicted in Figure 2C. When ISM pressure reached 90 MPa,
the fluorescence intensity of fiber was weakened. ISM-90 PeaF presented a small flake-like
structure with weak fluorescence intensity (Figure 2D). The further increasing of the treat-
ment intensity led to a greater degree of tearing fiber, and ISM-120 PeaF (Figure 2E) and
ISM-120-T2 PeaF (Figure 2F) displayed more small fragments with faint fluorescence and
multiform shape. Overall, as the intensity of the ISMS treatment increased, the fluorescence
of ISMS-treated PeaF was weakened and blurred, and the area of fluorescence for most
fibers significantly diminished. It was implied that the ISMS treatment disrupted the thick
and compact block-like pea fibers into small loose fragments. As pictured in Figure 2G,
ISMS-treated PeaF suspensions exhibited a larger sediment volume of fiber at the bottom
of the centrifugal tube as the treatment intensity increased, since fibers with smaller and
looser structure were more difficult to sink lower to the bottom. These results indicated
that the ISMS treatment did cause serious damage to the pea fiber, which confirmed the
observation of CLSM images.
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Figure 2. CLSM images and appearance of native PeaF and ISMS-treated PeaF. (A) Native PeaF;
(B) Pre-PeaF; (C) ISM-60 PeaF; (D) ISM-90 PeaF; (E) ISM-120 PeaF; (F) ISM-120-T2 PeaF; (G) Appear-
ance of native peaF and ISMS-treated PeaF.

3.3. Morphology

SEM micrographs of pea fibers before and after ISMS treatments are displayed in
Figure 3. Native PeaF displayed compact and thick blocks, and some fiber blocks with
a smooth surface were distributed (Figure 3A). ISMS treatment could effectively alter
the microstructure of the pea fiber, and compared to native PeaF, the structure of the
ISMS-treated PeaF became looser and thinner. There was a flattened structure with some
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band-like sheets at the edge for Pre-PeaF (Figure 3B). After ISM treatment at low pressure,
the fibers were highly distorted, and ISM-60 PeaF was tightly packed into a flat plate with
a large surface (Figure 3C). When the treatment pressure reached 90 MPa, the fibers were
torn into flat lamellas with interwoven filaments (Figure 3D). Furthermore, the appearance
of a flimsy and crimped flake-like structure was observed for ISM-120 PeaF (Figure 3E)
and ISM-120-T2 PeaF (Figure 3F), implying that a greater degree of breaking pea fiber
was induced by high treatment intensity. The change of SEM morphology was more clear
than the observation of CLSM images to illustrate the effect of ISMS treatment on the pea
fiber, further implying that mechanical effect initiated by ISM could destroy and break the
architecture of the pea fiber. High-density energy could be produced by ISM treatment
owing to powerful shear, turbulence, high-velocity impaction, high-frequency vibration,
instantaneous pressure drop and cavitation forces which contributed to disrupt the pea fiber.
As ISM treatment intensity increased, different degrees of damage and disruption forms
of the fiber were observed. It was possible that the varied strength of mechanical forces
exerted an effect on tearing the fiber when different treatment intensities were imposed. The
appearance of a multi-branched flake-like structure most likely provided an explanation
for the changes in the absorption properties of the fiber.

Figure 3. SEM micrographs. Magnification was 800×.

3.4. Bulk Density

The visual image of the packed native PeaF and ISMS-treated PeaF powers was shown
in Figure 4A. ISMS treatment observably increased the packed volume of pea fiber in
varying degrees in light of the treatment intensity. Figure 4B illustrated bulk density
values of fibers versus the extent of ISMS treatment. The bulk density of native PeaF
was 2.20 mL/g, and pre-pulverizer treatment increased the bulk density of fiber by about
3.07 fold. While the fiber was subjected to ISM treatment at 60 MPa, the bulk density of fiber
rose, reaching 8.48 mL/g. Intriguingly, in comparison with ISM-60 PeaF, applying an ISM
pressure of 90 MPa resulted in a smaller increase in bulk density (6.79 mL/g). Moreover,
subsequent strengthening treatment induced a continuous increase in the bulk density,
which was 7.59 and 8.21 mL/g for ISM-120 PeaF and ISM-120-T2 PeaF, respectively. Indeed,
the bulk density of fiber was related to their morphological characteristics, as mentioned
by Wang, Sun, Zhou and Chen [17] and Wang, et al. [23]. It was universally acknowledged
that the compact structure occupied a small space, thus native PeaF with compact and
thick blocks had a low value of bulk density. As revealed in Figure 3, ISM-60 PeaF was a
large dimensional flat plate in a distorted and stacked state, which produced its high bulk
density. With regard to pea fibers treated by high intensity, there was more compressible
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space between fibers with loose flakes, thus ISM-90, ISM-120 PeaF and ISM-120-T2 PeaF
behaved at a lower value of bulk density than the ISM-60 PeaF.

Figure 4. The graph of appearance volume (A) and bulk density (B) of ISMS-treated PeaF. Different
letters in (B) indicated significant differences (p < 0.05) of bulk density between samples.

3.5. XRD Analysis

The fiber was mainly composed of cellulose, lignin and hemicellulose, and the crys-
talline structure was dominated by cellulose [24]. The X-ray patterns and crystallinity of
native PeaF and ISMS-treated PeaF are determined and displayed in Figure 5. There was
one strong diffraction peak near the 2θ diffraction angle of 22.40◦ and two weak ones at
about 16.5◦ and 35.2◦ in the XRD pattern of native PeaF. It was indicated that pea fiber
belonged to cellulose type I, where both crystalline and amorphous regions coexist [25]. No
significant difference in the peak position between native PeaF and ISMS-treated PeaF was
observed. Nevertheless, the intensity of the peak near 2θ at 16.5◦ was visibly attenuated,
and the peak near 2θ at 35.2◦ even disappeared with the increasing of ISMS treatment
intensity, implying that the crystalline structure of pea fiber was perturbed. The crystallinity
of fiber was gradually decreased from 28.60% to 21.99% along with the treatment intensity,
which also suggested that the fiber was decrystallized after ISMS treatment. The weakened
crystalline structure was accompanied with a reduction in the crystallinity, and this is most
likely because of the destruction of the original ordered cellulose structure as analyzed by
Sun, et al. [26]. Decrystallization could activate the cellulosic fiber for functionalization [18].
Therefore, the functional properties of pea fiber after ISMS treatment would be altered.
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Figure 5. X-ray diffraction patterns of ISMS-treated PeaF.

3.6. Hydration Properties

The ISMS treatment-induced reduction in particle size, the increase in surface area,
and changes in the microstructure and disruption of the crystalline structure could have an
effect on the hydration properties of pea fiber, including swelling capacity (SC) and water
retention capacity (WRC). SC and WRC of ISMS-treated PeaF is presented in Figure 6A,B,
respectively. The value of SC and WRC for the native PeaF was 4.40 mL/g and 4.19 g/g,
respectively. ISMS treatment significantly increased the SC and WRC of pea fiber. For
instance, the SC of Pre-Pea, ISM-60 PeaF, ISM-90 PeaF, ISM-120 PeaF and ISM-120-T2 PeaF
was 9.86, 14.90, 14.21, 13.85 and 16.73 mL/g, respectively. The change trend of WRC
was similar with that of SC as the treatment intensity strengthened. In particular, ISMS
treatment at 120 MPa for two passes resulted in a 3.8 fold and 2.1 fold increase of SC
and WRC, respectively, and this exhibited the largest values (16.73 mL/g and 8.73 g/g).
ISMS-treated PeaF occupied a larger sediment volume in Figure 2G owing to its small,
loose structure, which implied a greater tendency to absorb water. The transformation from
dense to loose microstructure and reduction in size owing to the mechanical effect initiated
by ISMS treatment endowed pea fiber with a larger surface area and more water binding
sites (polar groups etc.) to the surrounding water [27], thus leading to a strengthened
expansion in water and binding with water. Deleris and Wallecan [28] also pointed out that
the WRC of fiber suspensions was affected by the crystalline characteristics of cellulose,
since water molecules were not able to enter into the crystalline region of the cellulose. That
is, disrupting the crystalline structure by ISMS treatment also favored pea fiber to binding
water. Intriguingly, the values of WHC and SC were not gradually increased with the
increasing of intensity during the ISMS treatment for one pass, which was not inconsistent
with other studies [29,30] in which the hydration properties of insoluble dietary fiber were
increased or decreased along with the reduction in particle size. The results from this study
demonstrated that the hydration properties of pea fiber were dependent on several factors,
such as the alteration of the microstructure and crystallinity, and particle size did not play
a vital role.
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Figure 6. Swelling capacity (A) and water retention capacity (B) of ISMS-treated PeaF. Different
letters in (A,B) indicated significant differences (p < 0.05) of hydration properties between samples.

3.7. Oil Holding Capacity

The intake of low-fat products using dietary fiber as a fat replacement could satisfy the
requirement of lowering the amount of ingested fat and calories in the diet, so the capacity
of fiber to retain oil is crucial for fibre-rich foodstuffs to exert an effect on cholesterol
absorption and removing excess fat from the human body [31]. The OHC of ISMS-treated
PeaF is shown in Figure 7. The OHC of native PeaF was 3.01 g/g. Similar to the effect of
ISMS treatment on hydration properties, the OHC of fiber was significantly elevated. The
OHC of all ISMS-treated PeaF was twice as high as that of native PeaF, and the change trend
of OHC was similar to that of the bulk density with the increasing of treatment intensity.
After ISMS treatment, an increase in bulk density, a more looser structure, more exposure
of the fiber surface area and the disordering of the crystalline structure might increase
the capillary attraction and adsorption sites of pea fibre, thus improving the oil-holding
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capacity. The increased OHC implied the potential of ISMS-treated PeaF to be used as an
ingredient in meat products requiring oil absorption.

Figure 7. Oil holding capacity of ISMS-treated PeaF. Different letters in Figure 7 indicated significant
differences (p < 0.05) of oil holding capacity between samples.

4. Conclusions

ISMS treatment significantly changed the structure of pea fiber. CLSM images revealed
that fibers with a big and compact structure were disintegrated into slim and loose ones.
The morphology of pea fiber was changed from compact thick blocks to flimsy crimped
flakes. The crystalline structure was also destroyed, owing to the attacking of the original
ordered cellulose, thus leading to the reduction of crystallinity. The alterations of the
structure were accompanied with the narrowed particle size and the increased bulk density.
In the meantime, the SC, WRC and OHC of pea fibers were evidently increased after
the ISMS treatment. The improved hydration properties and the OHC of pea fiber was
related to destroying the compact structure, providing more surface area and disrupting
the crystalline structure by ISMS treatment, since more water binding and oil adsorption
sites were exposed. These results suggested that the technology of ISMS facilitated the
processing of pea fiber as the ingredient of foodstuffs such as meat products and jams at an
industrial level.
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