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Under healthy conditions, the pancreas responds to a glucose challenge by

releasing insulin. Insulin suppresses lipolysis in adipose tissue, thereby decreasing

plasma glycerol concentration, and it regulates plasma glucose concentration

through action in muscle and liver. Insulin resistance (IR) occurs when more

insulin is required to achieve the same effects, and IR may be tissue-specific. IR

emerges during puberty as a result of high concentrations of growth hormone

and is worsened by youth-onset obesity. Adipose, liver, and muscle tissue exhibit

distinct dose-dependent responses to insulin in multi-phase hyperinsulinemic-

euglycemic (HE) clamps, but the HE clamp protocol does not address potential

differences in the dynamics of tissue-specific insulin responses. Changes to the

dynamics of insulin responses would alter glycemic control in response to a

glucose challenge. To investigate the dynamics of insulin acting on adipose tissue,

we developed a novel differential-equations based model that describes the

coupled dynamics of glycerol concentrations and insulin action during an oral

glucose tolerance test in female adolescents with obesity and IR. We compared

these dynamics to the dynamics of insulin acting on muscle and liver as assessed

with the oral minimal model applied to glucose and insulin data collected under

the same protocol. We found that the action of insulin on glycerol peaks

approximately 67min earlier (p < 0.001) and follows the dynamics of plasma

insulin more closely compared to insulin action on glucose as assessed by the

parameters representing the time constants for insulin action on glucose and

glycerol (p < 0.001). These findings suggest that the dynamics of insulin action

show tissue-specific differences in our IR adolescent population, with adipose

tissue responding to insulin more quickly compared to muscle and liver.

Improved understanding of the tissue-specific dynamics of insulin action may

provide novel insights into the progression of metabolic disease in patient

populations with diverse metabolic phenotypes.
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Introduction

The obesity epidemic now affects a significant portion of the

world, causing insulin resistance and metabolic dysregulation in

multiple organs of the body. The worldwide prevalence of

overweight and obesity has approximately doubled from

1980 to 2015, affecting adults and children of all ages, and is

forecasted to reach levels over 50% by 2030 (Kelly et al., 2008;

Chooi et al., 2019). The metabolic syndrome as defined in the

National Health and Nutrition Examination Survey (NHANES)

is related to insulin resistance (IR) and shows an increased risk

for developing type 2 diabetes and cardiovascular disease. The

metabolic syndrome was calculated to affect 34.7% of the U.S.

population in 2016, with a significant increase in the incidence in

young adults from 2011 to 2016 (Aguilar et al., 2015; Hirode and

Wong, 2020). Related to this obesity and metabolic dysfunction,

approximately 34.2 million adults in the United States have type

2 diabetes (T2D) (Centers for Disease Control and Prevention,

2020), and among youth the incidence rate of T2D is also

increasing and expected to quadruple from 2010 to 2050

(Imperatore et al., 2012; Mayer-Davis et al., 2017; American

Diabetes, 2020). Of grave concern, T2D appears to be muchmore

aggressive in youth than in adults, including poor response to

interventions effective in adults, and early onset of diabetes

complications (RISE Consortium and Investigators, 2019;

Group et al., 2021; Utzschneider et al., 2021). Even when

dysglycemia is already present, adolescents secrete much

higher concentrations of insulin than adults, likely driven by

their marked IR (RISE Consortium, 2018; Utzschneider et al.,

2020). This highmorbidity and the unique physiologic features of

insulin sensitivity and secretion in youth drive the necessity to

specifically investigate the systems involved in metabolic disease

development in youth. By better understanding the unique

pathology of metabolic disease in youth, better treatments can

be developed and personalized for individuals.

Metabolic dysregulation often arises from an imbalance in

energy consumption and expenditure. During fasting, energy is

primarily provided from energy stored in adipose and hepatic

tissue. In a healthy individual, when energy is acquired through

ingesting food, the mechanisms that provide endogenous energy

sources are suppressed, so that the ingested fuel can be used and

stored. Insulin facilitates the transition from an endogenous to

exogenous energy source, and it manages glycerol, free fatty acid

(FFA), and glucose systems across different metabolic states. In

addition to suppressing the release of glucose from the liver and

stimulating glucose uptake in hepatic and peripheral tissues

(Petersen and Shulman, 2018), insulin is the most potent

antilipolytic hormone: it suppresses lipolysis, and reduces the

use of FFA as an energy source. IR is defined as a decreased

biological response to insulin, which leads to increased insulin

secretion, eventually causing pancreatic β-cell failure and T2D

(Ronald Kahn, 1978; Arner, 2002; Cree-Green et al., 2019a). IR is

tissue specific, and it may manifest in individual tissues at

different points in disease progression. It is hypothesized that

the development of IR in adipose tissue, resulting in excess

circulating FFA and glycerol, may induce IR in other tissues

(Arner and Rydén, 2015). Elevated FFA concentrations may

contribute to dysglycemia in multiple ways, including

impairing β-cell insulin secretion and vascular function, and

directly inducing hepatic and skeletal muscle IR (Arner, 2001;

Arner, 2002; Arner and Rydén, 2015; Sondergaard et al., 2017),

thereby emphasizing the importance of characterizing

adipose IR.

The gold standard in assessing insulin action on adipose

tissue is a low dose hyperinsulinemic euglycemic (HE) clamp

with stable isotope tracers. The HE clamp determines the steady

state concentration of insulin, that is, necessary to suppress FFA

and/or glycerol release into circulation. Using different insulin

infusion rates as part of a multi-step clamp with glucose and

glycerol tracers, the insulin sensitivity of adipose, liver, and

peripheral tissue can be determined (Conte et al., 2012).

While effective at quantifying some aspects of adipose health,

the HE clamp is resource intensive and narrow in application as it

relies on steady state values produced from glucose and insulin

infusions rather than the coordinated physiologic response that

occurs with oral nutrient ingestion (Sondergaard et al., 2017).

Moreover, the HE clamp does not provide insight into the

dynamics of insulin action on adipose, liver, or muscle tissue.

An insulin-modified frequently sampled intravenous glucose

tolerance test (IM-FSIVGTT) is a dynamic test where glucose

is administered intravenously followed by an insulin bolus,

showing metabolic dynamics under non-physiologic

circumstances. An oral glucose tolerance test (OGTT) is a

more physiologically complete dynamic test where

participants ingest glucose orally through a sugary drink,

allowing for the contribution of multiple gut hormones that

may also play a role in the coordinated response to nutrition.

Therefore, to focus on the dynamic response of adipose, liver, and

muscle tissue to insulin under a more physiologic state, we

quantify the dynamics of insulin action on glycerol and

glucose during an oral glucose tolerance test (OGTT).

Both glycerol and FFA are released during lipolysis, but

glycerol is a better marker of lipolysis due to differences in

recycling between glycerol and FFA. FFA can either be

released from adipose cells into the bloodstream or be

recycled within adipose cells in a process by which the FFA

are reincorporated into triacylglycerides and absorbed by

neighboring cells prior to entry to the bloodstream (Coppack

et al., 1999; Landau, 1999; Reshef et al., 2003; Wolfe and Chinkes,

2005; Magkos et al., 2012; Cree-Green et al., 2016; Cree-Green

et al., 2019a; Cree-Green et al., 2019b). The process of

intracellular and intratissue recycling complicates the

dynamics of FFA and must be considered when evaluating

adipose metabolism with FFA. In contrast, because adipose

tissue lacks the expression of glycerol kinase (Steinberg et al.,

1961), glycerol is not recycled in adipose tissue as it cannot be
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reincorporated into triacylglycerides. Instead, circulating glycerol

produced by lipolysis is taken up primarily by the liver via hepatic

glycerol kinase expression, allowing glycerol to be

phosphorylated and reincorporated into triacylglycerides

(Coppack et al., 1999; Jensen, 1999; Landau, 1999). The

absence of local glycerol recycling in adipose makes glycerol

an appealing metabolite to track adipose metabolism. Whereas

lipolysis from adipose tissues is the primary source for

intravascular glycerol, a small proportion of glycerol is also

produced via glycogenolysis and gluconeogenesis (Rotondo

et al., 2019). These synthetic processes are regulated by

glycerol-3-phosphate phosphatase and phosphoglycolate

phosphatase which control the amount of glycerol made by

glycogenolysis in the fasting state, and then gluconeogenesis

in the fed state (Possik et al., 2022). It is estimated that up to

10%–15% of intravascular glycerol during prolonged fasting may

be attributed to these processes, but the proportion attributed in

the fed state is not as clear. The fasting contribution from

glycogenolysis is higher with long fasting durations. In our

study, participants had a monitored fast of 12 h, so the

contribution from glycogenolysis is expected to be low. The

contribution from gluconeogenesis is related to serum glucose

concentrations. As none of our participants had diabetes, the

contribution from this pathway is also expected to be low.

Therefore, we consider changes in glycerol concentration to

primarily reflect insulin-mediated changes in lipolysis.

Mathematical models of glucose metabolism have

contributed a fundamental understanding of interactions in

glucose and insulin dynamics (Ajmera et al., 2013; Cobelli

et al., 2014). These models describe how insulin induces

glucose uptake by peripheral tissue and reduces glucose

production from endogenous sources under different

experimental conditions, and the Oral Minimal Model

(OMM) describes glucose dynamics during an OGTT

(Bergman et al., 1979; Bergman, 1989; Dalla Man et al., 2002;

Ha et al., 2016; Bartlette et al., 2021). Although insulin

concentrations may be modeled directly (Bergman RNB et al.,

1981; Picchini et al., 2005; Ramos-Roman et al., 2012; Ha et al.,

2016), an intermediate variable of insulin action is often

introduced to account for the delay between changes in

insulin concentrations and observed effects on glucose

concentrations (Bergman, 1989; Dalla Man et al., 2002), and

this delay may increase as insulin sensitivity decreases. The

concepts of glucose metabolic modeling have also been

extended to other tissues and metabolic systems including

adipose tissue (Roy and Parker, 2006; Periwal et al., 2008;

Ramos-Roman et al., 2012; Thomaseth et al., 2014; Li et al.,

2016; Young and Periwal, 2016). In previous work we modeled

glycerol dynamics with an implicit insulin effect on the glycerol

rate of appearance that was estimated using glycerol stable

isotope tracer data (Diniz Behn et al., 2020). Periwal and

colleagues proposed a model of interacting FFA and insulin

dynamics to measure adipose metabolism during an IM-

FSIVGTT (Periwal et al., 2008). Their model used a Hill

function to represent insulin action-dependent lipolysis and

described both glucose and FFA dynamics using a single

insulin action term, suggesting that the dynamics of insulin

action on glucose and FFA were similar in this study. These

models have been successfully employed to assess adipose

metabolism in translational studies utilizing IVGTTs (Adler-

Wailes et al., 2013; Levine et al., 2020).

To characterize the dynamics of orally-stimulated adipose

metabolism, we develop a differential-equations based

mathematical model that describes the interaction between

glycerol and insulin concentrations during an OGTT. We use

the modeling infrastructure of existing FFA models as a basis for

our glycerol-insulin model, and we explicitly represent the effects

of insulin on lipolysis. We apply the glycerol-insulin model and

the OMM to OGTT data from a population of obese and

overweight adolescent girls with and without polycystic ovary

syndrome (PCOS). This population is characterized by a

significant degree of IR and metabolic dysregulation (Bartlette

et al., 2021; Ware et al., 2022). To quantify tissue-specific insulin

action, we compare simulation results and model parameters

associated with the glycerol model and the OMM. The

differences in the dynamics of insulin action on glycerol and

glucose systems were the primary focus of this study.

Methods

Participants

The development of the glycerol model and analysis of

insulin action dynamics was conducted on data collected in

the APPLE (Androgens and Post-Prandial LivEr metabolism:

liver and fat regulation in overweight adolescent girls;

NCT02157954) study. This study was performed to explore

metabolic abnormalities associated with PCOS and develop

new adolescent specific models to understand IR. It was

approved by the Colorado Multiple Institutional Review

Board. All participants provided informed consent if they

were 18–21 years old or parental consent and participant

assent if they were 12–17 years old.

The participants were recruited for this cross-sectional study

from pediatric clinics at Children’s Hospital Colorado. The

inclusion criteria were age 12–21 years, female sex,

postpubertal Tanner Stage 5 status, at least 18 months post-

menarche, and overweight/obese status (BMI ≥ 90th percentile

for age and sex). The participants had a sedentary lifestyle (<3 h
routine exercise per week, validated with both a 3-day activity

recall and 7-day accelerometer use). The exclusion criteria were a

confirmed diagnosis of diabetes (HbA1c ≥ 6.5%), pregnancy,

anemia, liver diseases other than non-alcoholic fatty liver disease

(NAFLD), an alanine transferase (ALT) level greater than

125 IU/L, and use of medications known to affect insulin
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sensitivity or glucose metabolism (including systemic steroids

and antipsychotics) in the last 6 months. Metformin and oral

contraceptives were excluded in all participants except in

metformin (n = 6) and contraceptive (n = 10) sub-cohorts.

Participants with PCOS were defined according to the NIH

criteria: 1) an irregular menstrual cycle and 2) clinical and/or

biochemical evidence of hyperandrogenism (Zawadzki JD, 1992).

Total body fat and fat free mass percentages was assessed by

standard DEXA methods (Hologic, Waltham, MA).

From the ninety-two studied participants, the population

analyzed in this paper was a subset of sixty-six participants

(18 with normal menses and forty-eight with PCOS, described

in Table 1). Of the ninety-two study participants the following

were excluded: Sixteen with missing OGTT time points

precluding modeling and 10 participants randomized to

receive exanatide during the OGTT, because exenatide is

known to alter insulin dynamics.

Protocol

Each participant had two study-visits: 1) an initial

consent/screening for eligibility; 2) an overnight monitored

fast during the follicular phase of the menstrual cycle followed

by a six-hour OGTT. Before the metabolic study visit,

participants refrained from physical activity for 3 days. The

afternoon and evening prior to the OGTT, each participant

consumed an isocaloric diet (65% carbohydrate, 15% protein,

20% fat). After the evening meal, each participant refrained

from activity and followed a monitored inpatient 12-h fast,

followed by a frequently sampled OGTT. Baseline fasting

metabolite concentrations were determined prior to the

OGTT. At 8 a.m., participants ingested 75 g glucose and

25 g of fructose. Fructose was included to distinguish

abnormal hepatic fat metabolism. The drink was consumed

in a three-minute window at time 0 and blood samples were

taken at the following time points: −20, −10, 0, 10, 20, 30, 45,

60, 75, 90, 105, 120, 135, 150, 165, 180, 210, 240, 300, and

360 min. Blood glucose was measured at the bedside with the

StatStrip® Hospital Glucose Monitoring System (Novo

Biomedical, Waltham, MA, United States). Serum insulin

was measured with radioimmunoassay (Millipore, Billerica,

MA, United States). Serum glycerol concentrations were

obtained from an ELISA assay (R-Biopharm, Washington,

MO, United States).

Oral minimal model for glucose dynamics

OGTT glucose dynamics for each participant were described

using the Oral Minimal Model (OMM) (Dalla Man et al., 2002), a

one-compartment mathematical model that describes the effect

of insulin on glucose and provides an estimate of whole-body

insulin sensitivity (SI), as reported previously (Bartlette et al.,

2021). Figure 1 is a schematic that shows how insulin action

affects the uptake term of the glucose dynamics.

The oral minimal model equations are

_G � −[SG +XG]G + SGGb + Rameal

V
(1)

_XG � { −pG
2 XG , I(t)< Ib

−pG
2 XG + p3(I(t) − Ib) , I(t)≥ Ib

(2)

TABLE 1 Population description. These values are reported as
population numbers or means ± the standard deviation.

Variable Values

Physical characteristics

Number (n) 66

Age (years) 15.6 ± 2

Race (n) White/Black 59/7

Ethnicity (n) Hispanic/non-Hispanic 35/31

Disease State (n) Obese Control/PCOS/PCOS + drug 18/33/15

BMI (kg/m2) 35.5 ± 5.7

Weight (kg) 95.8 ± 16.9

Fat Free Mass (kg) 49.6 ± 7.3

Fat Mass (kg) 42.9 ± 10.8

Height (cm) 164.1 ± 7.1

Waist Circumference (cm) 106.5 ± 11.9

Metabolic Characteristics

6h Insulin Sensitivity (dL/kg/min per μU/mL) 2.9 ± 2.4 × 10–4

Fasting glucose (mg/dl) 90 ± 9

2-h glucose (mg/dl) 142 ± 25

Fasting glycerol (μmol/L) 118 ± 26

Fasting FFA (μmol/L) 625 ± 139

Fasting Insulin (μU/mL) 26 ± 15

Peak Insulin (μU/mL) 361 ± 207

Peak Insulin Time (min) 84 ± 47

FIGURE 1
Schematic of oral minimal model (OMM).
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where G(t) is glucose concentration in mg/dL; XG(t) is insulin
action on glucose; I(t) is the insulin concentration; Gb and Ib are

basal glucose and insulin concentrations, respectively; SG is the

glucose effectiveness; pG
2 is a time constant of insulin action; p3 is

a constants of insulin action clearance and appearance; and

Rameal(α, t) is a piecewise-linear function describing the rate

of appearance of exogenous glucose in the bloodstream. The

initial values for the OMM are G(0) � Gb and XG(0) � 0. Six-

hour OGTT data from this population were fit to the OMM

implemented in SAAM II (SAAM II software v 2.2, The Epsilon

group, Charlottesville, VA, United States) as we previously

detailed in Bartlette et al. (2021). The parameters we

determined in this prior study were used to model the glucose

dynamics for all participants in the present study. The insulin

action profiles generated from the best-fit parameters were the

focus of comparison between insulin-mediated glucose and

glycerol dynamics.

Glycerol dynamics model

Informed by models of FFA dynamics, we developed a

differential equations-based model for glycerol dynamics that

utilizes the concept of insulin action as an intermediate variable

between measured insulin and its action on adipose tissue.

Figure 2 is a schematic of insulin action on glycerol dynamics

that illustrates insulin action on glycerol production. By contrast

with insulin action’s role to activate glucose uptake in OMM,

insulin action in the glycerol model suppresses glycerol

production. The equations for the glycerol model are as follows:

_g � −Sgg + l0 + l2

1 + (Xg

X2
)A (3)

_Xg � { −pg
2 Xg , I(t)< Ib

−pg
2 Xg + pg

2 (I(t) − Ib) , I(t)≥ Ib
(4)

where g(t) is the concentration of glycerol in μ mol/L; Xg(t) is
insulin action on glycerol; pg

2 is a time constant of insulin action;

I(t) is the insulin concentration; Ib is the basal insulin

concentration; Sg is the effectiveness of glycerol uptake; l0 is

the insulin independent lipolysis rate; l2 is the insulin dependent

(suppressible) lipolysis rate; X2 scales insulin action; and A

affects how aggressively changes in insulin action result in

changes of lipolysis suppression. Lipolysis is modeled as the

sum of an insulin independent lipolysis rate, l0, and a Hill

function representing insulin action-dependent lipolysis and

describing the transition from maximum lipolysis rate, l0 + l2,

to the minimum lipolysis rate, l0, as insulin action increases. The

Hill function is the functional form that was determined to best

fit the dynamics of FFA suppression (Periwal et al., 2008).

Glycerol model fitting process

Before the glycerol model was fit to glycerol data for each

participant, the data were truncated to reflect the time period

from the drink ingestion (t = 0) to the time at which the

participant’s glucose concentration reached a nadir

concentration following the glucose excursion induced by the

drink. The choice to fit data from t = 0 to the glucose

concentration nadir avoided physiological complications due

to the high prevalence of reactive hypoglycemia in this

population, and it provided a standard check point by which

to compare participants. More details are included in the

Discussion.

The basal concentration of insulin was determined by

averaging the concentrations at timepoints −20, −10, and

0 min. The model was then fit to the truncated data in

MATLAB (Mathworks, Natick, MA) using the interior point

algorithm FMINCON and the built-in ode solver ODE23S with

an absolute tolerance of 1e-10. The FMINCON algorithm

minimized an objective function analogous to the objective

function described in Periwal et al. (2008); Li et al. (2016).

Briefly, this objective function uses single spectrum analysis

with only one eigenvalue retained to generate a representative

smoothing of the data. Variance of the data is calculated by

squaring the standard deviation of the squared difference

between the experimental data and the representative smooth

curve generated from the single spectrum analysis. The error

term is the sum of the square differences between the

experimental data and the numeric solution produced by

ODE23S divided by the calculated variance. As in previous

work, we fixed the parameter A to 2 because the model was

not sensitive to this parameter and fixing it improved model

identifiability (Li et al., 2016).

Lipolysis parameters were seeded in a physiological range

between 0 and approximately 200% of the analogous parameter

values reported by Periwal and colleagues (Periwal et al., 2008).

The Sg and pg
2 parameters were seeded between 0 and 1. If the

initial parameters did not produce a valid model state (i.e., model

states were not real or positive), all parameters would be

FIGURE 2
Schematic of glycerol model.
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randomly reseeded until the initial model state was valid. For the

optimization, all parameters were constrained to be nonnegative

and parameters representing proportions, Sg and pg
2 were

restricted to range between 0 and 1. The glycerol and insulin

concentration data for each participant were fit with FMINCON

75 times. The solution with the lowest objective function value of

the 75 runs was selected as the best fit parameter set.

Analysis of insulin action dynamics

All analysis was done in MATLAB (Mathworks, Natick,

MA). To quantify the differences in insulin action dynamics

associated with glucose and glycerol, we defined three metrics on

the insulin action profiles. The first metric determines the

difference in time between the insulin action peak for each

metabolite and the peak insulin concentration. The

magnitudes of each delay were computed for both glucose

and glycerol for all participants and compared with a

Wilcoxon signed rank test. The Wilcoxon test was chosen to

compare the two distributions because the data are paired and

not normally distributed. Since the dynamics of glucose and

glycerol come from the same participant, using the same insulin

concentrations as a forcing function, the samples are not

independent.

The second metric determines the difference in time between

the insulin action peak for glucose and the insulin action peak for

glycerol. This measure describes the relative timing of insulin

action for each metabolite. The difference in timing for glucose

and glycerol action was evaluated using a one-sample Student’s

t-test to establish if the difference was equal to zero. The third

metric determines the difference in the normalized insulin

actions at the time point associated with the glucose nadir

(i.e., the lowest glucose value after the glucose peak). This

measure quantifies the relative strength of insulin on the

glucose system compared to the glycerol system at the time of

the glucose nadir. To compute this measure, the insulin action

curves for each metabolite were normalized by the peak insulin

action values, respectively, and then the insulin action values at

the time point associated with the glucose nadir were determined.

The normalized glycerol insulin action nadir value was

subtracted from the normalized glucose insulin action nadir

value to obtain the relative difference in insulin actions at the

nadir. The relative difference in the normalized insulin actions at

the nadir was evaluated with a one-sample Student’s t-test to test

if the difference was equal to zero.

In addition to these metrics comparing the insulin action

profiles, and we also compared the estimated parameters pG
2 and

pg
2 that govern the insulin action dynamics for glucose and

glycerol, respectively. Qualitatively, larger insulin action time

constants reflect smaller delays from the insulin concentration

profile while smaller insulin action time constants reflect larger

delays from the insulin concentration profile. Since the insulin

action time constants have an exponential effect on insulin

action, we compared the magnitude of time constant values

for each metabolic system using log10(pG
2 ) and log10(pg

2 ). The
log10(pg

2 ) and log10(pG
2 ) parameter distributions were not

approximately normal. We compared log10(pG
2 ) and

log10(pg
2 ) with a Wilcoxon signed rank test.

Results

Mathematical modeling of glucose and
glycerol dynamics

For each participant we fit OMM and the glycerol model to

OGTT data. Following ingestion of the drink, glucose and insulin

concentrations increased and glycerol concentrations decreased

for all participants. Although the functional form for insulin

action was the same for both models, we found that obtaining

good fits to the glucose and glycerol data required separate

representations of the dynamics of insulin action on each

metabolite. Figure 3 shows the OMM and glycerol model fits

to glucose and glycerol dynamics, respectively, for two

representative individuals from our cohort. These participants

were selected to show different dynamic features associated with

varying degrees of glycemic dysregulation in this population. The

first participant’s insulin profile has a single insulin peak (SIP).

The second participant’s insulin profile has a secondary peak

prior to the main peak resulting in a double insulin peak (DIP).

The SIP participant reaches peak insulin concentration at 75 min

while the DIP participant’s insulin peaks at 90 min. The

magnitude of the insulin response for the DIP participant is

large compared to that of the SIP participant, more than doubling

peak insulin from the approximately 300 μ U/mL in the SIP

participant to approximately 700 μ U/mL in the DIP participant.

In addition, the DIP participant exhibits an insufficient initial

insulin response, an extended period of hyperglycemia, and an

excursion below the basal glucose level to a nadir glucose level of

58 mg/dl of glucose, all indicators of poor control of central

metabolism. The DIP participant is one a subset of individuals in

our cohort who exhibits a hypoglycemic response. Both

participants show an increase in glycerol concentrations above

basal levels after the glucose nadir.

Dynamics of glucose insulin action are
delayed relative to dynamics of glycerol
insulin action

Each simulated glucose and glycerol profile has a

corresponding insulin action profile. Insulin action profiles for

the representative participants are shown in Figure 4. Both

glucose and glycerol insulin action time traces rely on the

same insulin concentration time series as a forcing function,
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FIGURE 3
Numerical solutions and OGTT data for glucose and glycerol in two representative participants. (A,B). The numerical solutions for glucose
(black) are shown relative to the data (blue) and insulin (red) concentrations for two representative participants demonstrating a single insulin peak (A)
and a double insulin peak (B), respectively. (C,D). The numerical solutions for glycerol (black) are shown relative to the data (blue) and insulin (red)
concentrations for the same representative participants and show the suppression of glycerol concentrations in response to insulin
concentrations. The lowest glucose concentration following the glucose excursion is taken to be the end point for the glucose and glycerol
numerical solutions for each individual.

FIGURE 4
Time courses of insulin action on glucose and glycerol for two representative participants. (A,B). The time course of insulin action on glucose
plotted against insulin concentrations for two representative participants demonstrating a single insulin peak (A) and a double insulin peak (B),
respectively. (C,D). The time course of insulin action on glycerol plotted against insulin concentrations for the same two representative participants.
All insulin action concentrations are normalized by their maximum value. Insulin concentrations not normalized, and the DIP participant has
higher insulin secretion compared to the SIP participant.
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but distinct dynamics for glucose and glycerol in response to

insulin give rise to qualitatively different insulin action time

traces. For both individuals, the glucose insulin action time trace

shows a greater delay relative to the insulin time trace while the

dynamics of the glycerol insulin action time trace follow insulin

dynamics more closely. This observation that glucose insulin

action has a greater delay relative to changing insulin

concentration than the glycerol insulin action is consistent

throughout the population and can be quantified using several

metrics.

The results from three metrics comparing distinct features of

the insulin action profiles for glucose and glycerol in all

participants are depicted in the histograms in Figure 5. The

differences between glucose insulin action and insulin peak

timing are larger and more variable compared to the

differences between glycerol insulin action and insulin peak

timing (Wilcoxon signed rank test, p < 0.001) reflecting the

relatively later timing of the glucose insulin action peak (Figures

5A,B). This relatively later timing of glucose insulin action is also

seen in the difference in the timing of insulin action peaks for

glucose and glycerol, where the glycerol insulin action peak time

is subtracted from the glucose insulin action peak time

(Figure 5C). The glycerol insulin action peak time was

determined to be earlier compared to the glucose insulin

action peak time with a difference between peak times

significantly different from 0 (Student’s t-test, p < 0.001, 95%

confidence interval: 67.38 ± 13.52). The normalized glucose

insulin action is greater than the normalized glycerol insulin

action at the glucose concentration nadir (Figure 5D). The

difference in normalized insulin action was positive and

significantly different from 0 (Student’s t-test, p < 0.001, 95%

confidence interval: 0.3120 ± 0.0736). This difference indicates

that glycerol insulin action terminates earlier compared to

glucose insulin action relative to the timing of the glucose

excursion. All of these metrics suggest that the timing of

insulin action differs between tissues: glycerol insulin action

on adipose tissue initiates and terminates earlier relative to

glucose insulin action on hepatic tissue and muscle.

Differences in the insulin action time
constant

For glucose and glycerol insulin action models, the insulin

action time constant parameters, pG
2 and pg

2 , respectively, govern

the dynamics of insulin action. As the insulin action time

constant parameters approach one, the insulin action curve

approaches the plasma insulin curve. When the distributions

FIGURE 5
Metrics comparing the dynamics of insulin action on glucose and glycerol across all participants. (A,B). Histograms of the differences between
glucose (A) and glycerol (B) insulin action peak timing from insulin peak timing show that insulin peaks are closer to glycerol insulin action peaks
compared to glucose insulin action peaks (Wilcoxon signed rank test, p < 0.001). (C). A histogram of the differences between glucose and glycerol
insulin action peak timing show that this difference is significantly greater than 0 (Student’s t-test, p < 0.001, 95% confidence interval: 67.38 ±
13.52), indicating that peak glucose insulin action occurs at a later time compared to peak glycerol insulin action. (D). A histogram of the differences
between normalized insulin actions for glucose and glycerol at the glucose nadir shows that the normalized insulin action for glucose is greater than
the normalized insulin action for glycerol at this time point (Student’s t-test, p < 0.001, 95% confidence interval: 0.3120 ± 0.0736) and indicates that
insulin action on glucose has stronger relative action at the glucose nadir.
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of pG
2 and pg

2 were compared across all participants, the pg
2 values

for the glycerol model were much greater and were distributed

across the range 0–1. To evaluate the effect of pG
2 and pg

2 on each

model, the parameters were base 10 log transformed and

compared. The distribution of the log transformed pG
2 and pg

2

values in all participants are shown in Figure 6. The estimates of

the log-transformed parameters were significantly different

(Wilcoxon signed rank test, p < 0.001) and show a distinct

difference in magnitude with pg
2 approximately two orders

larger in magnitude than pG
2 . The difference in estimated

glycerol pg
2 and glucose pG

2 parameters indicates that insulin

has a more immediate effect on glycerol insulin action than on

glucose insulin action.

Summary of differences in insulin action
dynamics

To illustrate how insulin action changes relative to each

metabolite, trajectories were considered in the metabolite-

insulin action phase plane. Phase planes for each

representative participant are shown in Figure 7. In each

FIGURE 6
Histograms of insulin action time constants for glucose and glycerol across all participants. The time constants for insulin action on glucose, pG

2 ,
(A) are consistently smaller than the time constants for insulin action on glycerol, pg

2, (B) (Wilcoxon signed rank test, p < 0.001). This indicates that the
time course of insulin action on glucose is more delayed than the time course of insulin action on glycerol relative to insulin concentration data.

FIGURE 7
Metabolite phase plane trajectories summarize qualitative differences in glucose and glycerol dynamics relative to insulin action. Plotting
normalizedmetabolite concentrations against normalized insulin action concentrations for the representative participants SIP (A) and DIP (B) reveals
that glycerol concentrations change in a diagonal out-and-back pattern while the glucose concentrations change in a cyclic clockwise pattern
reflecting the different dynamics of the responses.
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phase plane, the insulin action and metabolite were normalized

by their maximum value. The phase planes show that changes in

glycerol tracked more closely with changes in glycerol insulin

action compared to changes in glucose and glucose insulin

action. Specifically, the trajectory for the glycerol model

showed an out and back diagonal path with glycerol and

glycerol insulin action changing together. By contrast, the

trajectory for the glucose model showed a cyclic path

reflecting a time lag in changes in glucose insulin action

relative to changes in glucose concentration.

Discussion

Summary of results

This study introduced a model of interacting glycerol and

insulin dynamics in response to an OGTT and compared the

dynamics of insulin acting on glucose and glycerol in a population

of adolescent girls with obesity and with or without PCOS. To our

knowledge, this glycerol model is the first mathematical model to

describe interactions between glycerol and insulin dynamics. It

successfully simulated glycerol concentration data over time from

the ingestion of the drink to the post-excursion glucose nadir, and

it demonstrated a suppression in glycerol concentrations in

response to insulin action. Comparison of results from the

glycerol model to results from OMM simulations of glucose

and insulin dynamics showed that the dynamics of insulin

action on glucose were delayed when compared to the

dynamics of insulin action on glycerol.

Differential dynamics for glucose and
glycerol in adolescent girls

We quantified the dynamics of insulin action on glucose and

glycerol based on model parameters and characteristics of the

modeled insulin action using several metrics. All of these metrics

showed that the dynamics of insulin action on glucose were

delayed relative to the dynamics of insulin action on glycerol

during the OGTT, and distinct representations of insulin action

on glucose and glycerol were necessary to describe the metabolite

data from our adolescent cohort.

Although we represent adipose metabolism through glycerol

instead of FFA, the difference in dynamics we observe for insulin

acting on glucose compared to insulin acting on glycerol likely

reflects the extreme IR with compensatory hyperinsulinemia in

our adolescent cohort. Our cohort has a significant degree of IR,

accompanied by impaired glucose tolerance, with an average two-

hour glucose measurement ≥ 140 mg/dl. Low insulin sensitivity

suggests a slower insulin response, possibly increasing the delay in

insulin action on the glucose system compared to the action of

insulin on the glycerol system. The delayed timing of the insulin

peaks in our cohort reflects extreme IR consistent with similar

populations of adolescents with dysmetabolism (Cree-Green et al.,

2018a; RISE Consortium, 2018). In normoglycemic non-obese

youth, peak insulin concentrations occur at 30 min post drink,

while the insulin peak is at 120 min in adolescents with prediabetes

and diabetes (RISE Consortium, 2018; Tommerdahl et al., 2021).

Our cohort has an insulin peak at 84 ± 47 min. However, the

higher insulin concentrations required as a result of IR may also

play a role in the observed delay of insulin action on the glucose

system. The average peak insulin concentration for a healthy

adolescent insulin profile is approximately 55 μ U/mL

(Tommerdahl et al., 2021). The individuals in our cohort have

an average peak insulin concentration of 361 μU/mL.Whereas the

insulin concentration needed to suppress lipolysis in this

population, 40–50 μ U/mL, is reached quickly after consuming

the drink, there is a much longer delay associated with reaching the

peak insulin concentration which drives maximal glucose uptake

(Cree-Green et al., 2016).

Adolescents have different metabolic characteristics compared

to adults due to pubertally-mediated changes in insulin sensitivity,

which present in addition to effects of obesity (RISE Consortium,

2018). Growth hormone alters both lipolysis and glucose

metabolism, reducing insulin sensitivity in muscle and

peripheral tissue, with concentrations peaking during the rapid

growth phase of puberty (Moller and Jorgensen, 2009; Kim and

Park, 2017). Growth hormone may preferentially influence IR in

glucose metabolism compared to adipose metabolism producing a

distinct metabolic phenotype in adolescents compared to

phenotypes where IR is induced by other metabolic pathways.

A tissue-specific difference in IR in adolescents could produce

differential metabolic dynamics and is consistent with our findings

that data in this cohort requires separate models for insulin action

on glucose and glycerol during an OGTT.

By contrast, Periwal and colleagues described glucose and

FFA dynamics in an IM-FSIVGTT and a mixed meal tolerance

test (MMTT) in African American and Caucasian

premenopausal women using a single model with one form of

insulin action (Periwal et al., 2008; Li et al., 2016). In addition to

the dissimilarities between study populations, distinct dynamics

of glucose, insulin, glycerol and FFA among experimental

protocols may contribute to the differences in our findings. In

an IM-FSIVGTT, plasma glucose concentrations peak at the

beginning of the protocol, and the initial early peak in insulin

reflects the injection of exogenous insulin and may interact with

the endogenous glucose-insulin dynamics and diminish

endogenous insulin release. In an OGTT, ingested glucose is

slowly absorbed and typically peaks at least 20 min after the

administration of the drink (Cree-Green et al., 2018b; RISE

Consortium, 2018); endogenous insulin is released in response

to increased plasma glucose concentrations and acts on glycerol

and glucose in a concentration-dependent manner. In an

MMTT, the absorbance of glucose is slower compared to an

OGTT due to the presence of fat and protein (Li et al., 2016).
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Thus, although, the glucose and FFA model captured the

dynamics of two very disparate methods of increasing glucose

and insulin in an adult population, the temporality of changes in

glucose, insulin, and FFA were similar within each protocol (all fast

in an IM-FSIVGTT and all slow in aMMTT). By contrast, anOGTT

may highlight distinct dynamics between adipose and glucose

metabolism by producing physiologic interactions between

glucose and endogenous insulin dynamics in the context of

glucose absorbance, that is, slower compared to an IM-FSIVGTT

and faster compared to an MMTT. Thus, differences in study

populations and protocols likely contributed to the differences in

temporality and rate of changes between glucose, insulin, and

glycerol and necessitated distinct representations of insulin action

on glucose and glycerol in our study compared to previous work

with FFAs (Periwal et al., 2008; Li et al., 2016).

Possible physiologic basis for difference in
dynamics

Insulin regulation of the metabolic pathways for glucose and

glycerol occurs through distinct mechanisms. The elevation of

glucose concentration triggers the release of insulin. The insulin

then acts so that glucose concentrations decrease back to basal

levels. When glucose concentrations return to normal, insulin

secretion also decreases. Thus, the interaction between glucose

and insulin is bidirectional. Conversely, the interaction between

glycerol and insulin is unidirectional. Insulin induces the

suppression of lipolysis by regulating the activity of hormone

sensitive lipase (Stralfors and Honnor, 1989; Arner, 2001). When

insulin concentrations decrease, activation of hormone sensitive

lipase stops, and glycerol concentrations increase. However,

glycerol concentration has no effect on insulin concentration.

Limitations

This model makes several simplifying assumptions about

glycerol biochemistry. First, although we expect lipolysis to be

the primary source of glycerol in our protocol, glycolysis may

play a role (Rotondo et al., 2019). Second, the structure of this

glycerol model assumes that the maximum lipolysis rate occurs in

the initial fasted state, and, therefore, it cannot describe rebounds in

glycerol concentrations above basal levels. In many participants in

our cohort (both SIP and DIP), glycerol concentrations post-

suppression rose above basal levels, suggesting the involvement of

other metabolic pathways. This post-suppression rebound was

particularly pronounced in the approximately 10% of participants

demonstrating reactive hypoglycemia (RHG) (Ware et al., 2022).

Hypoglycemia is characterized as a condition where blood sugar falls

below 60 mg/dl, resulting in warning symptoms and the secretion of

counterregulatory hormones working to rapidly increase blood

sugar levels (Desouza et al., 2010; Casertano et al., 2021; Ware

et al., 2022). Along with glucagon, catecholamines are released

during a RHG response, stimulating lipolysis (Fanelli et al.,

2020). The current glycerol model does not account for these

additional metabolic pathways, so we truncated the data at the

glucose nadir to avoid trying to represent two distinct physiological

conditions (the initial glucose excursion and the recovery of lipolysis

above basal rates) with a single set of parameters. Future work

should consider extensions of the glycerolmodel that account for the

counterregulatory response.

There are several additional limitations to this study. This

model was developed in a highly IR population of adolescent girls

with a high incidence of non-alcoholic fatty liver disease

(NAFLD), a condition associated with adipose dysmetabolism.

Application of the model to data from healthy populations as well

as other IR or dysglycemic populations is important to verify the

generalizability of this glycerol-insulin model to the range of

dynamics associated with adipose metabolism. For example, in a

healthy individual, glycerol may be suppressed earlier in response

to a smaller plasma insulin peak.

Summary and implications

In summary, we have proposed a novel differential equations-

basedmodel of interactions between glycerol and insulin dynamics

that provides a better understanding of glycerol dynamics relative

to other metabolic processes like glucose metabolism. In addition,

this model demonstrates that during an OGTT, insulin action on

glucose is more delayed compared to insulin action on glycerol in

our cohort of IR adolescent girls. Although tissue-specific actions

of insulin are known to be concentration dependent, to our

knowledge this is the first study to establish a difference in the

dynamics of distinct insulin actions. Future work examining the

mechanisms implicated in this difference and the significance of

altered relative glycerol and glucose dynamics to metabolic disease

development and progression is needed to alleviate the growing

burden of metabolic dysregulation.

Data availability statement

The datasets presented in this article are not readily available

because an appropriate institutional data sharing agreement is

required. Requests to access the datasets should be directed to

Melanie Cree-Green, Melanie.Green@childrenscolorado.org.

Ethics statement

The studies involving human participants were reviewed and

approved by the Colorado Multiple Institutional Review Board.

Written informed consent to participate in this study was

provided by the participants’ legal guardian/next of kin.

Frontiers in Physiology frontiersin.org11

Hampton et al. 10.3389/fphys.2022.895118

http://Melanie.Green@childrenscolorado.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.895118


Author contributions

GSH, MCG, and CDB contributed to conception and design

of the study. KJN and MCG collected the data. GSH, KB, and

CDB implemented the mathematical models. GSH and CDB

performed the statistical analysis. GSH wrote the first draft of the

manuscript. MCG and CDBwrote sections of the manuscript. All

authors contributed to manuscript revision, read, and approved

the submitted version.

Funding

This research was supported by National Institutes of

Health (NIH) grants BIRCWH K12HD057022, NIDDK

K23DK107871; Doris Duke Foundation 2015212;

Children’s Hospital Colorado/Colorado School of Mines

Collaborative Pilot Award; Mines Undergraduate Research

Fellowship; Boettcher Foundation; Boettcher-Webb Warring

grant; National Science Foundation Grant DMS 1853511;

Nutrition and Obesity Research Core Pilot Grant P30

DK048520; and University of Colorado NIH CTSI protocol

micro-grant. This research was also supported by NIH/

NCATS Colorado CTSA Grant Number UL1 TR001082.

Acknowledgments

The authors would like to thank Laura Pyle for helpful

discussions of the statistical approach. The authors would like to

thank Yesenia Garcia-Reyes, Gregory Coe, and Haseeb Rahat for

assistance in the APPLE study. The authors would like to thank the

participants, their families and the CTRC nurses and staff.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Adler-Wailes, D. C., Periwal, V., Ali, A. H., Brady, S. M., McDuffie, J. R.,
Uwaifo, G. I., et al. (2013). Sex-associated differences in free fatty acid flux of
obese adolescents. J. Clin. Endocrinol. Metab. 98 (4), 1676–1684. doi:10.1210/jc.
2012-3817

Aguilar, M., Bhuket, T., Torres, S., Liu, B., and Wong, R. J. (2015). Prevalence of
the metabolic syndrome in the United States, 2003-2012. JAMA 313 (19),
1973–1974. doi:10.1001/jama.2015.4260

Ajmera, I., Swat, M., Laibe, C., Le Novere, N., and Chelliah, V. (2013). The impact
of mathematical modeling on the understanding of diabetes and related
complications. CPT. Pharmacometrics Syst. Pharmacol. 2, e54. doi:10.1038/psp.
2013.30

American Diabetes, A. (2020). 13. Children and adolescents: Standards of medical
care in diabetes-2020. Diabetes Care 43 (1), S163–S182. doi:10.2337/dc20-S013

Arner, P. (2001). Free fatty acids - do they play a central role in type 2 diabetes?
Diabetes Obes. Metab. 3, 11–19. doi:10.1046/j.1463-1326.2001.00031.x

Arner, P. (2002). Insulin resistance in type 2 diabetes: role of fatty acids. Diabetes.
Metab. Res. Rev. 18 (2), S5–S9. doi:10.1002/dmrr.254

Arner, P., and Rydén, M. (2015). Fatty acids, obesity and insulin resistance. Obes.
Facts 8 (2), 147–155. doi:10.1159/000381224

Bartlette, K., Carreau, A. M., Xie, D., Garcia-Reyes, Y., Rahat, H., Pyle, L., et al.
(2021). Oral minimal model-based estimates of insulin sensitivity in obese youth
depend on oral glucose tolerance test protocol duration. Metabol. Open 9, 100078.
doi:10.1016/j.metop.2021.100078

Bergman, R. N., Ider, Y. Z., Bowden, C. R., and Cobelli, C. (1979). Quantitative
estimation of insulin sensitivity. Am. J. Physiol. 236 (6), E667–E677. doi:10.1152/
ajpendo.1979.236.6.E667

Bergman, R. N. (1989). Lilly lecture 1989. Toward physiological understanding of
glucose tolerance. Minimal-model approach. Diabetes 38 (12), 1512–1527. doi:10.
2337/diab.38.12.1512

Bergman RNB, C. R., and Cobelli, C. (1981). “The Minimal Model approach to
quantification of factors controlling glucose disposal in man,” in Carbohydrate
metabolism. Editor R. N. CCB (John Wiley & Sons), 13, 269–296.

Casertano, A., Rossi, A., Fecarotta, S., Rosanio, F. M., Moracas, C., Di Candia, F.,
et al. (2021). An overview of hypoglycemia in children including a comprehensive
practical diagnostic flowchart for clinical use. Front. Endocrinol. 12, 684011. doi:10.
3389/fendo.2021.684011

Chooi, Y. C., Ding, C., and Magkos, F. (2019). The epidemiology of obesity.
Metabolism. 92, 6–10. doi:10.1016/j.metabol.2018.09.005

Cobelli, C., Dalla Man, C., Toffolo, G., Basu, R., Vella, A., Rizza, R., et al. (2014).
The oral minimal model method. Diabetes 63 (4), 1203–1213. doi:10.2337/db13-
1198

RISE Consortium and Investigators, R. C. (2019). Effects of treatment of impaired
glucose tolerance or recently diagnosed type 2 diabetes with metformin alone or in
combination with insulin glargine on beta-cell function: Comparison of responses
in youth and adults. Diabetes 68 (8), 1670–1680. doi:10.2337/db19-0299

RISE Consortium (2018). Metabolic contrasts between youth and adults with
impaired glucose tolerance or recently diagnosed type 2 diabetes: I. Observations
using the hyperglycemic clamp.Diabetes Care 41 (8), 1696–1706. doi:10.2337/dc18-
0244

Conte, C., Fabbrini, E., Kars, M., Mittendorfer, B., Patterson, B. W., Klein, S., et al.
(2012). Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care 35
(6), 1316–1321. doi:10.2337/dc11-1951

Centers for Disease Control and Prevention (2020). National diabetes statistics
report. Atlanta, GA: Centers for Disease Control and Prevention, US Department of
Health and Human Services.

Coppack, S. W., Persson, M., Judd, R. L., and Miles, J. M. (1999). Glycerol
and nonesterified fatty acid metabolism in human muscle and adipose tissue
in vivo. Am. J. Physiol. 276 (2), E233–E240. doi:10.1152/ajpendo.1999.276.2.
E233

Cree-Green, M., Bergman, B. C., Cengiz, E., Fox, L. A., Hannon, T. S., Miller, K.,
et al. (2019). Metformin improves peripheral insulin sensitivity in youth with type
1 diabetes. J. Clin. Endocrinol. Metab. 104 (8), 3265–3278. doi:10.1210/jc.2019-
00129

Cree-Green, M., Bergman, B. C., Coe, G. V., Newnes, L., Baumgartner, A. D.,
Bacon, S., et al. (2016). Hepatic steatosis is common in adolescents with obesity and

Frontiers in Physiology frontiersin.org12

Hampton et al. 10.3389/fphys.2022.895118

https://doi.org/10.1210/jc.2012-3817
https://doi.org/10.1210/jc.2012-3817
https://doi.org/10.1001/jama.2015.4260
https://doi.org/10.1038/psp.2013.30
https://doi.org/10.1038/psp.2013.30
https://doi.org/10.2337/dc20-S013
https://doi.org/10.1046/j.1463-1326.2001.00031.x
https://doi.org/10.1002/dmrr.254
https://doi.org/10.1159/000381224
https://doi.org/10.1016/j.metop.2021.100078
https://doi.org/10.1152/ajpendo.1979.236.6.E667
https://doi.org/10.1152/ajpendo.1979.236.6.E667
https://doi.org/10.2337/diab.38.12.1512
https://doi.org/10.2337/diab.38.12.1512
https://doi.org/10.3389/fendo.2021.684011
https://doi.org/10.3389/fendo.2021.684011
https://doi.org/10.1016/j.metabol.2018.09.005
https://doi.org/10.2337/db13-1198
https://doi.org/10.2337/db13-1198
https://doi.org/10.2337/db19-0299
https://doi.org/10.2337/dc18-0244
https://doi.org/10.2337/dc18-0244
https://doi.org/10.2337/dc11-1951
https://doi.org/10.1152/ajpendo.1999.276.2.E233
https://doi.org/10.1152/ajpendo.1999.276.2.E233
https://doi.org/10.1210/jc.2019-00129
https://doi.org/10.1210/jc.2019-00129
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.895118


PCOS and relates to De novo lipogenesis but not insulin resistance. Obes. (Silver
Spring) 24 (11), 2399–2406. doi:10.1002/oby.21651

Cree-Green, M., Cai, N., Thurston, J. E., Coe, G. V., Newnes, L., Garcia-Reyes, Y.,
et al. (2018). Using simple clinical measures to predict insulin resistance or
hyperglycemia in girls with polycystic ovarian syndrome. Pediatr. Diabetes 19
(8), 1370–1378. doi:10.1111/pedi.12778

Cree-Green, M., Wiromrat, P., Stuppy, J. J., Thurston, J., Bergman, B. C.,
Baumgartner, A. D., et al. (2019). Youth with type 2 diabetes have hepatic,
peripheral, and adipose insulin resistance. Am. J. Physiol. Endocrinol. Metab.
316 (2), E186–E195. doi:10.1152/ajpendo.00258.2018

Cree-Green, M., Xie, D., Rahat, H., Garcia-Reyes, Y., Bergman, B. C., Scherzinger,
A., et al. (2018). Oral glucose tolerance test glucose peak time is most predictive of
prediabetes and hepatic steatosis in obese girls. J. Endocr. Soc. 2 (6), 547–562. doi:10.
1210/js.2018-00041

Dalla Man, C., Caumo, A., and Cobelli, C. (2002). The oral glucose minimal
model: Estimation of insulin sensitivity from a meal test. IEEE Trans. Biomed. Eng.
49 (5), 419–429. doi:10.1109/10.995680

Desouza, C. V., Bolli, G. B., and Fonseca, V. (2010). Hypoglycemia, diabetes, and
cardiovascular events. Diabetes Care 33 (6), 1389–1394. doi:10.2337/dc09-2082

Diniz Behn, C., Jin, E. S., Bubar, K., Malloy, C., Parks, E. J., Cree-Green, M., et al.
(2020). Advances in stable isotope tracer methodology part 1: hepatic metabolism
via isotopomer analysis and postprandial lipolysis modeling. J. Investig. Med. 68 (1),
3–10. doi:10.1136/jim-2019-001109

Fanelli, C. G., Lucidi, P., Bolli, G. B., and Porcellati, F. (2020). Hypoglycemia.
Springer International Publishing, 615–652.

Group, T. S., Bjornstad, P., Drews, K. L., Caprio, S., Gubitosi-Klug, R., Nathan, D.
M., et al. (2021). Long-term complications in youth-onset type 2 diabetes. N. Engl.
J. Med. Overseas. Ed. 385 (5), 416–426. doi:10.1056/nejmoa2100165

Ha, J., Satin, L. S., and Sherman, A. S. (2016). A mathematical model of the
pathogenesis, prevention, and reversal of type 2 diabetes. Endocrinology 157 (2),
624–635. doi:10.1210/en.2015-1564

Hirode, G., and Wong, R. J. (2020). Trends in the prevalence of metabolic
syndrome in the United States, 2011-2016. JAMA 323 (24), 2526–2528. doi:10.1001/
jama.2020.4501

Imperatore, G., Boyle, J. P., Thompson, T. J., Case, D., Dabelea, D., Hamman, R.
F., et al. (2012). Projections of type 1 and type 2 diabetes burden in the U.S.
population aged <20 years through 2050: dynamic modeling of incidence, mortality,
and population growth. Diabetes Care 35 (12), 2515–2520. doi:10.2337/dc12-0669

Jensen, M. D. (1999). Regional glycerol and free fatty acid metabolism before and
after meal ingestion. Am. J. Physiol. 276 (5), E863–E869. doi:10.1152/ajpendo.1999.
276.5.E863

Kelly, T., Yang, W., Chen, C. S., Reynolds, K., and He, J. (2008). Global burden of
obesity in 2005 and projections to 2030. Int. J. Obes. 32 (9), 1431–1437. doi:10.1038/
ijo.2008.102

Kim, S. H., and Park, M. J. (2017). Effects of growth hormone on glucose
metabolism and insulin resistance in human. Ann. Pediatr. Endocrinol. Metab. 22
(3), 145–152. doi:10.6065/apem.2017.22.3.145

Landau, B. R. (1999). Glycerol production and utilization measured using stable
isotopes. Proc. Nutr. Soc. 58 (4), 973–978. doi:10.1017/s0029665199001287

Levine, J. A., Han, J. M., Wolska, A., Wilson, S. R., Patel, T. P., Remaley, A. T.,
et al. (2020). Associations of GlycA and high-sensitivity C-reactive protein with
measures of lipolysis in adults with obesity. J. Clin. Lipidol. 14 (5), 667–674. doi:10.
1016/j.jacl.2020.07.012

Li, Y., Chow, C. C., Courville, A. B., Sumner, A. E., and Periwal, V. (2016).
Modeling glucose and free fatty acid kinetics in glucose and meal tolerance test.
Theor. Biol. Med. Model. 13, 8. doi:10.1186/s12976-016-0036-3

Magkos, F., Fabbrini, E., Conte, C., Patterson, B. W., and Klein, S. (2012).
Relationship between adipose tissue lipolytic activity and skeletal muscle insulin
resistance in nondiabetic women. J. Clin. Endocrinol. Metab. 97 (7), E1219–E1223.
doi:10.1210/jc.2012-1035

Mayer-Davis, E. J., Lawrence, J. M., Dabelea, D., Divers, J., Isom, S., Dolan, L.,
et al. (2017). Incidence trends of type 1 and type 2 diabetes among youths, 2002-
2012. N. Engl. J. Med. 376 (15), 1419–1429. doi:10.1056/NEJMoa1610187

Moller, N., and Jorgensen, J. O. (2009). Effects of growth hormone on glucose,
lipid, and protein metabolism in human subjects. Endocr. Rev. 30 (2), 152–177.
doi:10.1210/er.2008-0027

Periwal, V., Chow, C. C., Bergman, R. N., Ricks, M., Vega, G. L., Sumner, A. E.,
et al. (2008). Evaluation of quantitative models of the effect of insulin on lipolysis

and glucose disposal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295 (4),
R1089–R1096. doi:10.1152/ajpregu.90426.2008

Petersen, M. C., and Shulman, G. I. (2018). Mechanisms of insulin action and
insulin resistance. Physiol. Rev. 98 (4), 2133–2223. doi:10.1152/physrev.00063.2017

Picchini, U., De Gaetano, A., Panunzi, S., Ditlevsen, S., and Mingrone, G. (2005).
Amathematical model of the euglycemic hyperinsulinemic clamp. Theor. Biol. Med.
Model. 2 (1), 44. doi:10.1186/1742-4682-2-44

Possik, E., Schmitt, C., Al-Mass, A., Bai, Y., Cote, L., Morin, J., et al. (2022).
Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase
to control stress and healthspan in C. elegans. Nat. Commun. 13 (1), 177. doi:10.
1038/s41467-021-27803-6

Ramos-Roman, M. A., Lapidot, S. A., Phair, R. D., and Parks, E. J. (2012). Insulin
activation of plasma nonesterified fatty acid uptake in metabolic syndrome.
Arterioscler. Thromb. Vasc. Biol. 32 (8), 1799–1808. doi:10.1161/ATVBAHA.112.
250019

Reshef, L., Olswang, Y., Cassuto, H., Blum, B., Croniger, C. M., Kalhan, S. C., et al.
(2003). Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278
(33), 30413–30416. doi:10.1074/jbc.R300017200

Ronald Kahn, C. (1978). Insulin resistance, insulin insensitivity, and insulin
unresponsiveness: A necessary distinction.Metabolism. 27 (12), 1893–1902. doi:10.
1016/s0026-0495(78)80007-9

Rotondo, F., Ho-Palma, A. C., Romero, M. D. M., Remesar, X., Fernandez-Lopez,
J. A., Alemany, M., et al. (2019). Higher lactate production from glucose in cultured
adipose nucleated stromal cells than for rat adipocytes. Adipocyte 8 (1), 61–76.
doi:10.1080/21623945.2019.1569448

Roy, A., and Parker, R. S. (2006). Dynamic modeling of free fatty acid, glucose,
and insulin: An extended "minimal model. Diabetes Technol. Ther. 8 (6), 617–626.
doi:10.1089/dia.2006.8.617

Sondergaard, E., Espinosa De Ycaza, A. E., Morgan-Bathke, M., and Jensen, M. D.
(2017). How tomeasure adipose tissue insulin sensitivity. J. Clin. Endocrinol. Metab.
102 (4), 1193–1199. doi:10.1210/jc.2017-00047

Steinberg, D., Vaughan,M., Margolis, S., Price, H., and Pittman, R. (1961). Studies
of triglyceride biosynthesis in homogenates of adipose tissue. J. Biol. Chem. 236 (6),
1631–1637. doi:10.1016/s0021-9258(19)63276-x

Stralfors, P., and Honnor, R. C. (1989). Insulin-induced dephosphorylation of
hormone-sensitive lipase. Correlation with lipolysis and cAMP-dependent protein
kinase activity. Eur. J. Biochem. 182 (2), 379–385. doi:10.1111/j.1432-1033.1989.
tb14842.x

Thomaseth, K., Brehm, A., Pavan, A., Pacini, G., and Roden, M. (2014).
Modeling glucose and free fatty acid kinetics during insulin-modified
intravenous glucose tolerance test in healthy humans: role of
counterregulatory response. Am. J. Physiol. Regul. Integr. Comp. Physiol.
307 (3), R321–R331. doi:10.1152/ajpregu.00314.2013

Tommerdahl, K. L., Brinton, J. T., Vigers, T., Cree-Green, M., Zeitler, P. S.,
Nadeau, K. J., et al. (2021). Delayed glucose peak and elevated 1-hour glucose on the
oral glucose tolerance test identify youth with cystic fibrosis with lower oral
disposition index. J. Cyst. Fibros. 20 (2), 339–345. doi:10.1016/j.jcf.2020.08.020

Utzschneider, K. M., Tripputi, M. T., Kozedub, A., Barengolts, E., Caprio, S.,
Cree-Green, M., et al. (2021). Differential loss of beta-cell function in youth vs.
adults following treatment withdrawal in the Restoring Insulin Secretion
(RISE) study. Diabetes Res. Clin. Pract. 178, 108948. doi:10.1016/j.diabres.
2021.108948

Utzschneider, K. M., Tripputi, M. T., Kozedub, A., Mather, K. J., Nadeau, K. J.,
Edelstein, S. L., et al. (2020). β-cells in youth with impaired glucose tolerance or
early type 2 diabetes secrete more insulin and are more responsive than in adults.
Pediatr. Diabetes 21 (8), 1421–1429. doi:10.1111/pedi.13113

Ware, M., Carreau, A., Garcia-Reyes, Y., Rahat, H., Diniz Behn, C., and Cree-
Green, M. (2022). Reactive hypoglycemia following a sugar challenge is
accompanied by higher insulin in adolescent girls with obesity. J. Investig. Med.
70, 112-337.

Wolfe, R. R., and Chinkes, D. L. (2005). Isotope tracers in metabolic research:
Principles and practice of kinetic analysis. 2nd ed. (Hoboken, N.J.: Wiley-Liss),
474. vii.

Young, L. H., and Periwal, V. (2016). Metabolic scaling predicts posthepatectomy
liver regeneration after accounting for hepatocyte hypertrophy. Liver Transpl. 22
(4), 476–484. doi:10.1002/lt.24392

Zawadzki JD, A. (1992). “Diagnostic criteria for polycystic ovary syndrome:
towards a rational approach,” in Polycystic ovary syndrome (Boston: Blackwell
Scientific Publications), 39–50.

Frontiers in Physiology frontiersin.org13

Hampton et al. 10.3389/fphys.2022.895118

https://doi.org/10.1002/oby.21651
https://doi.org/10.1111/pedi.12778
https://doi.org/10.1152/ajpendo.00258.2018
https://doi.org/10.1210/js.2018-00041
https://doi.org/10.1210/js.2018-00041
https://doi.org/10.1109/10.995680
https://doi.org/10.2337/dc09-2082
https://doi.org/10.1136/jim-2019-001109
https://doi.org/10.1056/nejmoa2100165
https://doi.org/10.1210/en.2015-1564
https://doi.org/10.1001/jama.2020.4501
https://doi.org/10.1001/jama.2020.4501
https://doi.org/10.2337/dc12-0669
https://doi.org/10.1152/ajpendo.1999.276.5.E863
https://doi.org/10.1152/ajpendo.1999.276.5.E863
https://doi.org/10.1038/ijo.2008.102
https://doi.org/10.1038/ijo.2008.102
https://doi.org/10.6065/apem.2017.22.3.145
https://doi.org/10.1017/s0029665199001287
https://doi.org/10.1016/j.jacl.2020.07.012
https://doi.org/10.1016/j.jacl.2020.07.012
https://doi.org/10.1186/s12976-016-0036-3
https://doi.org/10.1210/jc.2012-1035
https://doi.org/10.1056/NEJMoa1610187
https://doi.org/10.1210/er.2008-0027
https://doi.org/10.1152/ajpregu.90426.2008
https://doi.org/10.1152/physrev.00063.2017
https://doi.org/10.1186/1742-4682-2-44
https://doi.org/10.1038/s41467-021-27803-6
https://doi.org/10.1038/s41467-021-27803-6
https://doi.org/10.1161/ATVBAHA.112.250019
https://doi.org/10.1161/ATVBAHA.112.250019
https://doi.org/10.1074/jbc.R300017200
https://doi.org/10.1016/s0026-0495(78)80007-9
https://doi.org/10.1016/s0026-0495(78)80007-9
https://doi.org/10.1080/21623945.2019.1569448
https://doi.org/10.1089/dia.2006.8.617
https://doi.org/10.1210/jc.2017-00047
https://doi.org/10.1016/s0021-9258(19)63276-x
https://doi.org/10.1111/j.1432-1033.1989.tb14842.x
https://doi.org/10.1111/j.1432-1033.1989.tb14842.x
https://doi.org/10.1152/ajpregu.00314.2013
https://doi.org/10.1016/j.jcf.2020.08.020
https://doi.org/10.1016/j.diabres.2021.108948
https://doi.org/10.1016/j.diabres.2021.108948
https://doi.org/10.1111/pedi.13113
https://doi.org/10.1002/lt.24392
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.895118

	Mathematical modeling reveals differential dynamics of insulin action models on glycerol and glucose in adolescent girls wi ...
	Introduction
	Methods
	Participants
	Protocol
	Oral minimal model for glucose dynamics
	Glycerol dynamics model
	Glycerol model fitting process
	Analysis of insulin action dynamics

	Results
	Mathematical modeling of glucose and glycerol dynamics
	Dynamics of glucose insulin action are delayed relative to dynamics of glycerol insulin action
	Differences in the insulin action time constant
	Summary of differences in insulin action dynamics

	Discussion
	Summary of results
	Differential dynamics for glucose and glycerol in adolescent girls
	Possible physiologic basis for difference in dynamics
	Limitations
	Summary and implications

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


