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Abstract: Numerous prediction models of SARS-CoV-2 pandemic were proposed in the past. Un-
known parameters of these models are often estimated based on observational data. However, lag
in case-reporting, changing testing policy or incompleteness of data lead to biased estimates. More-
over, parametrization is time-dependent due to changing age-structures, emerging virus variants,
non-pharmaceutical interventions, and vaccination programs. To cover these aspects, we propose a
principled approach to parametrize a SIR-type epidemiologic model by embedding it as a hidden
layer into an input-output non-linear dynamical system (IO-NLDS). Observable data are coupled to
hidden states of the model by appropriate data models considering possible biases of the data. This
includes data issues such as known delays or biases in reporting. We estimate model parameters
including their time-dependence by a Bayesian knowledge synthesis process considering parameter
ranges derived from external studies as prior information. We applied this approach on a specific
SIR-type model and data of Germany and Saxony demonstrating good prediction performances. Our
approach can estimate and compare the relative effectiveness of non-pharmaceutical interventions
and provide scenarios of the future course of the epidemic under specified conditions. It can be
translated to other data sets, i.e., other countries and other SIR-type models.

Keywords: COVID-19 epidemiologic models; parametrization; extended multi-compartment SIR-
type model; input-output non-linear dynamical system; Bayesian knowledge synthesis

1. Introduction

Predicting the spread of an infectious disease is a pressing need as demonstrated for
the present SARS-CoV-2 pandemic. Due to the worldwide high disease burden, a plethora
of mathematical epidemiologic models was proposed. This includes auto-regressive time
series methods, Bayesian techniques, and application of deep learning methods, but also
mechanistic models and hybrid models combining some of these approaches (see [1] for a
review). Among mechanistic models, based either on agents [2–4] or on compartments [5],
the most commonly proposed and published model type is the classical SIR (S = susceptible,
I = infected, R = recovered) type compartment model, which was presented with different
modifications often considering further aspects and details such as disease states, age struc-
ture, contact patterns, and intervention effects. Major aims of these models are to predict (1)
the dynamics of infected subjects, (2) requirements of medical resources during the course
of the epidemic, or (3) the effectiveness of non-pharmaceutical intervention programs
(NPI) [6,7]. Examples for models addressing these aims are a SECIR model (E = exposed, C
= cases) proposed by Khailaie et al. [8], a SEIR type model proposed by Barbarossa et al. [9],
models from The Robert-Koch institute [10], and from Dehning et al. [11].

A good prediction performance does not only depend on the precise structure of
the model but on its parametrization. This, however, is a non-trivial and often underes-
timated task due to the following issues applicable to other infectious diseases as well:
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key epidemiologic parameters are often unknown or only known within ranges. There-
fore, parametrization based on observational data is a common approach. However,
reported official data bases are heterogeneous and often biased due to (1) lag in reporting
of cases/events [12], (2) changing testing policy either due to limited testing capacities,
which might depend on the pandemic situation itself or by changing risk profiles of people
to be tested (e.g., defined risk groups, dependence on symptoms, degree of prophylactic
testing) [13], and (3) incompleteness of data [14]. Moreover, parametrization depends
on further epidemiologic issues to be considered, comprising (1) changing age-structure
of the infected population with impact on symptomatology, hospital or intensive care
requirements and mortality, (2) spatial heterogeneity of the spread of the disease driven
by local conditions and outbreaks, (3) new pathogen variants becoming prevalent, (4) non-
pharmaceutical interventions continuously updated in response to the pandemic situation,
and finally, (5) the progress of vaccination programs and its effectiveness.

Due to these interacting complexities, it is close to impossible to construct a fully
mechanistic model covering all these aspects in parallel. Therefore, we here propose a
framework of epidemiologic model parametrization, which accounts for these issues in
a more phenomenological, data-driven way applicable even for limited or biased data
resources.

In detail, we here propose to integrate a mechanistic epidemiologic model as a hidden
layer into an input-output non-linear dynamical system (IO-NLDS), i.e., the true epidemio-
logic dynamics cannot be directly observed. This allows distinguishing between features
explicitly modelled (in our case different virus variants, vaccination) and changing factors
of the system which are difficult to model mechanistically (in our case changes of contacts,
e.g., due to non-pharmaceutical interventions or changing contact behavior, changing
age-structure of the infected population and changes in testing policy, in the following
abbreviated as NPI/behavior). These factors are imposed as external inputs of the system.

We then estimate parameters by a knowledge synthesis process considering prior
information of parameter ranges derived from different external studies and other avail-
able data resources such as public data. We are thus going beyond previous modeling
approaches that only used point estimates for parameters [15,16]. Specifically, we use
Bayesian inference for the parameter estimation, which could also be time-dependent. We
analyze the structure of available public data in detail and translate it to model outputs
linked by an appropriate data model to the hidden states of the IO-NLDS, i.e., the epidemi-
ologic model. We demonstrate this approach on an example epidemiologic model of SECIR
type for SARS-CoV-2 and data of Germany and Saxony, but our method can be translated
to other countries, other models or even other infectious disease contexts.

2. Materials and Methods
2.1. General Approach

We consider input-output non-linear dynamical systems (IO-NLDS) originally pro-
posed as time-discrete alternatives to physiological pharmacokinetic and –dynamics differ-
ential equations models [17]. This class of models couples a set of input parameters such
as external influences and factors with a set of output parameters, i.e., observations by a
hidden model structure to be learned (named core model in the following). This coupling
is not necessarily fully deterministic, i.e., data are not required to represent directly state
parameters of the model. This represents a major feature of our approach in order to
account for different types of biases in available observational time series data.

We here demonstrate our approach by using an epidemiological model as core of the
IO-NLDS. Non-pharmaceutical interventions, changes of testing policy, age distributions
and severity of disease courses were phenomenologically modelled by external control
parameters imposed on the epidemiologic model via the input layer of the IO-NLDS.
Random influxes of infected subjects e.g., by travelling activities or outbreaks are also
considered by this approach. Number of reported infections, intensive care (IC) cases, and
deaths are considered as output parameters not directly representing the hidden states of
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the model due to several data issues including reporting delays. The model is then fitted
to data by a full information approach, i.e., all data points were evaluated by a suitable
likelihood function.

The single steps of this process are explained in detail below.
Assumptions of the core model
We adapted a standard SECIR model (SECIR = susceptible, exposed, cases, infectious,

recovered) for pandemic spread. We introduced an asymptomatic compartment in order
to account for infected patients, which do not have symptoms, a common condition of
SARS-CoV-2 infection. A compartment of patients requiring intensive care (IC) was added
to model respective requirements and we distinguished between deceased and recovered
patients.

We subdivided most of the compartments into three sub-compartments with first
order transitions to model time delays. Transition rates between sub-compartments are
the same for each respective compartments for the sake of parsimony. This approach is
extensively used in pharmacological models [10]; it is equivalent to a Gamma-distributed
transit time [11]. To allow for two concurrent virus variants with differing properties,
compartments of asymptomatic and symptomatic infected subjects are duplicated. This
allows us, for example, to simulate the take-over of the more infectious B.1.1.7 (Alpha), and
later, B1.617.2 (Delta) variant observed e.g., in all European countries [12].

The general scheme of the IO-NLDS system is shown in Figure 1. We make the
following assumptions:

1. The input layer consists of external modifiers influencing (1) reporting policy (e.g., chang-
ing testing policy), (2) rates of infections (affected by non-pharmaceutical interven-
tions, age structure, influx of cases), and (3) risks of severe disease conditions such as
IC requirements and deaths, also depending on the changing age structure of infected
subjects.

2. The output layer of observable data is linked to the hidden layers of the core model
by specific data models (see later).

3. Susceptible, non-infected people (Sc): We assume that 100% of the population is
susceptible to infection at the beginning of the epidemic.

4. The latent state E comprises infected but non-infectious people.
5. The asymptomatic infected state IA has three sub-compartments (I_(A,1), I_(A,2) and

I_(A,3)). From I_(A,1), transitions to the symptomatic state or the second asymp-
tomatic state are possible. From I_(A,2), only transitions to I_(A,3) and then to the
recovered state R are assumed.

6. The symptomatic infected state IS is also divided into three compartments (I_(S,1),
I_(S,2), and I_(S,3)). The sub-compartment I_(S,1) comprises an efflux toward the
sub-compartment C_1 representing deteriorations toward critical disease states. Oth-
erwise, the patient transits to I_(S,2). From I_(S,2), a patient can either die representing
deaths without prior intensive care or transit to I_(S,3). Finally, the efflux of I_(S,3)
flows into R representing resolved disease courses.

7. Both cases I_A and I_S contribute to new infections but with different rates to account
for differences in infectivity and quarantine probabilities.

8. The compartment C represents critical disease states requiring intensive care. We
assume that these patients are not infectious due to isolation. Again, the compartment
is divided into three sub-compartments, C_1, C_2, and C_3. In C_1, a patient can
either die or transit to C_2, C_3, and finally, R.

9. Patients on the recovered stage R are assumed to be immune against re-infections.
10. We duplicate the compartments E, I_(A,1), . . . , I_(A,3), I_(S,1), . . . , I_(S,3) to account

for two concurrent virus variants. We assume different infectivities for the two
variants. All other parameters are assumed equal. No co-infections are assumed.
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Figure 1. General scheme of our IO-NLDS model. The epidemiologic SECIR model is integrated
as a hidden layer. Respective equations are provided in Appendix A. The input layer consists of
external modifiers including parameter changes due to changes in testing policy, non-pharamceutical
interventions, and age-structures. The output layer is derived from respective hidden layers via
stochastic relationships (see later). The output layer is compared with real-world data. The superscript
Mu denotes new virus variants.

These assumptions are translated into a difference equation system (see Appendix A).
Model compartments and their properties are explained in Table 1.

Table 1. Description of model compartments. We describe the compartments of the model and
their biological meaning. Compartments E, IA, and IS are duplicated to account for two concurrent
virus variants.

Compartment Name Sub-Compartments Description

Sc Susceptible

E Latent stage (not infectious)

IA

IA,1

Asymptomatic infected state 1, can either develop symptoms, i.e., transit to IS,1
with probability psymp and rate r4b or stays asymptomatic with probability
1− psymp and transits to IA,2 with rate r4

IA,2 Asymptomatic infected state 2, transits to IA,3 with rate r4

IA,3 Asymptomatic infected stage 3 transits to R with rate r4

IS IS,1

Symptomatic infected state 1.
Can either become critical, i.e., transits to C1 with probability pcrit and rate r6
or stays sub-critical with probability 1− pcrit and transits to IS,2 with rate r5
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Table 1. Cont.

Compartment Name Sub-Compartments Description

IS,2
Symptomatic infected state 2, can either die, i.e., transits to D with probability
pdeath,S or transits to IS,3 with probability

(
1− pdeath,S

)
and rate r5

IS,3 Symptomatic infected state 3, transits to R with rate r5

C

C1

Critical state 1, not infectious.
Can either die, i.e., transits to D with probability pdeath and transit rate r8 or
stays critical with probability 1− pdeath and transits to C2 with rate r7

C2 Critical state 2, transits to C3 with rate r7

C3 Critical state 3, transits to R with rate r7

R Recovered (absorbing state)

D Dead (absorbing state)

All model parameters of the model are described in Table 2. Complete dynamics of
the epidemic in Germany is shown in Figures 2 and 3.

Table 2. Basic model parameters. We present prior values and ranges derived from the literature as
well as estimated values derived from parameter fitting. Transit rate means reverse of transit time of
the respective compartment. Posteriors can be found in Figure 4. §: Further details and definitions on
parameters are given in the Appendix A Equations (A1) and (A2), where also a justification of priors
is provided, (Appendix H).

Parameter Unit Description Source Reference Value Prior Mean Min Max

influx Subjects
per day

Initial influx of
infections into
compartment E until
first interventions

Estimated § 3171 - - -

r1 Day−1 Infection rate through
asymptomatic subjects Estimated § 1.19 - - -

r2 Day−1 Infection rate through
symptomatic subjects

Set equal to rb1,2·r1
(parsimony) § 0.451 - - -

rb1,2 -

Proportion of infection
rate symptomat-
ics/asymptomatics
r1/r2

Estimated § 0.379 - 0 -

r3 Day−1
Transit rate for
compartment E (latent
time)

prior constraint §, [10,18–21] 0.272 1/3 1/4 1/2

r4 Day−1
Transit rate for
asymptomatic
sub-compartments

prior constraint §,[22–25] 0.636 3/5 3/10 3/4

r4,b Day−1
Rate of development of
symptoms after
infection

prior constraint §, [10,18–21,26–28] 0.456 2/55 1/5 1

r5 Day−1
Transit rate for
symptomatic
sub-compartments

prior constraint § 0.946 6/5 6/15 6/3

r6 Day−1
Rate of development of
critical state after being
symptomatic

prior constraint §, [10,29–31] 0.186 1/5 1/7 1/4
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Table 2. Cont.

Parameter Unit Description Source Reference Value Prior Mean Min Max

r7 Day−1 Transit rate for critical
state sub-compartment prior constraint §,[10,32–34] 0.159 3/17 3/35 3/8

r8 Day−1
Death rate of patients in
critical
sub-compartment 1

prior constraint §, [29,35,36] 0.104 1/8 1/14 2/13

psymp -
Probability of symptoms
development after being
infected

Set or prior
constrained
(overfitted if

estimated
unconstrained)

§,[37–39] 0.5 - 0.3 0.8

pcrit
(pcrit,0)

-

Initial value pcrit,0 of
step function pcrit, the
probability of becoming
critical after developing
symptoms

Estimated §, [9,27] 0.0765 - 0 1

pdeath
(pdeath,0) -

Initial value pdeath,0 of
step function pcrit, the
probability of dying
after becoming critical

Estimated §, [32] 0.119 - 0 1

pdeath,S -

Probability of death
after developing
symptoms without
becoming critical

Set equal to
pdeath,S,0 ·pdeath

(parsimony)
§, [32] - - 0 1

pdeath,S,0

Proportionality factor
for probability of death
after developing
symptoms without
becoming critical

Estimated § 0.587

PS,M - Fraction of unreported
cases prior constraint §, [40,41] 0.499 0.5 0.1 0.90

mur

Ratio of r1Mu/r1 =
r2Mu/r2 reflecting
higher infectivity of
B.1.1.7 variant

Set § 1.65 - - -

2.2. Input Layer

The input layer represents external factors acting at the SECIR model, effectively
changing its parameters [42]. We define step functions b1 and b2 as time-dependent input
parameters modifying the rate of infections caused by asymptomatic, respectively symp-
tomatic subjects. To identify dates of change, we used a data-driven approach based on a
Bayesian Information Criterion informed by changes in non-pharmaceutical interventions
for Germany based on Government decisions, changing testing policies as well as events
with impact on epidemiological dynamics such as holidays or sudden outbreaks. Details
can be found in Appendix B.

We also accounted for changes in the probabilities of critical courses and mortality,
which can be explained by changes in testing policies covering asymptomatic cases to a
different extent (for example symptomatic testing only vs. introduction of screening tests,
e.g., rapid antigen tests), respectively shifts in the age-distribution of patients or changes
in patient care efficacy (new pharmaceutical treatment, overstretched medical resources).
Again, this is implemented by step functions pcrit, respectively pdeath. Number of steps
are determined on the basis of a Bayesian Information Criterion. Details can be found in
the Appendix B as well as in Table A5 from Appendix I and Table A8 from Appendix J.
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The parameter PS,M represents the percentage of reported infected symptomatic subjects
in relation to all symptomatic subjects. This value is assumed to be constant (50%) in
the present version of the model. We describe the parameters defining the input layer in
Table 3.

Table 3. Parameters used to define the input layer. These parameters were used to empirically model
changing NPIs or changing contact behavior, changes in testing policies and changing age-structures
during the course of the epidemic. Respective input functions constitute the input layer of our
IO-NLDS model.

Parameter Unit Description Source Remarks

Ntr -
Number of time points of
changes of NPI/contact
behavior

Empirically
defined

13 intensifications, 15 relaxations
identified
(determined by information criterion)

btr,j, j = 1, . . . , Ntr - Relative infectivity of subjects
in the time interval [tr, tr + 1] Estimated assumed to be the same for symptomatic

and asymptomatic patients

Trj, j = 1, . . . , Ntr Days Time points of NPI/contact
behavior changes

Estimated or
fixed Strictly monotone sequence

Ncrit - Number of time steps of
pcrit(t)

Empirically
defined 18 (determined by information criterion)

αcrit,j, j = 1, . . . , Ncrit - Value of pcrit between two
time steps Estimated Within the interval [0, 1]

Tpcrit,j, j = 1, . . . , Ncrit Days Time points of changes of pcrit Estimated Strictly monotone sequence

Ndeath - Number of time steps of
pdeath(t)

Empirically
defined 19 (determined by information criterion)

αdeath,j, j = 1, . . . , Ndeath - Value of pdeath between two
time steps Estimated Within the interval [0, 1]

Tpdeath,j, j = 1,
. . . , Ndeath

Days Time points of changes of
pdeath(t)

Estimated Strictly monotone sequence

Deltr Days Delay of activation of NPI Fixed 2 days

2.3. Output Layer and Data

We fit our model to time series data of reported numbers of infections IS,M, deaths DM,
and occupation of ICU beds CM representing the output layer of our IO-NLDS model. Data
source of infections and deaths were official reports of the Robert-Koch-Institute (RKI) in
between 4 March 2020 and 29 March 2021. Number of critical cases were retrieved from
the German Interdisciplinary Association of Intensive and Emergency Medicine (Deutsche
Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin e.V.—DIVI) in between
25 March 2020 and 29 March 2021. Time points in proximity to Christmas and the turn of
the year (19 December 2020 to 19 January 2021) were heavily biased and therefore omitted
during parameter fitting.

However, also for the considered time intervals several sources of bias need to be
considered. We handled these issues as explained in the following:

Infected cases: We first smoothed reported numbers of infections with a sliding window
of seven days centered on the time point of interest to control for strong weekly periodicity.
We assume that these numbers correspond to a certain percentage PS,M of symptomatic
patients. This is justified by the fact that the majority of reported infected cases develop
symptoms (about 85% according to the RKI [43]), but there is also a large amount of
asymptomatic cases (approximately 55–85% of infections [37–39]. In the present model,
we assume PS,M as constant. The exact equation linking states of the SECIR model with
the measured numbers of infected subjects IS,M can be found in Appendices B and C
Equation (A7). We further accounted for delays in the reporting of case numbers by
introducing a log-normally distributed delay time as explained in Appendix C.
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Critical cases: The number of critical COVID-19 cases (DIVI reported ICU) is available
since end of March 2020 [44]. We assumed that these data are complete since 16 April 2020
when reporting became mandatory by law in Germany. Earlier data were up-scaled from
the number of reporting hospitals to the number of ICU-beds of all hospitals according
to the reported ICU capacity available for 2018. We coupled the sum of the critical sub-
compartments Ci (i = 1,2,3) to these numbers directly.

Deaths: Deaths are reported by the RKI but daily reports do not reflect true death dates,
which needs to be accounted for. Available daily death data of the RKI are retrospectively
updated with a delay between true death date and reported date (death report delay—
DRD). We assume that the DRD is normally distributed with an average of 7.14 days and
a standard deviation of 4 days as reported by Delgado et al. [45]. Details can be found in
Appendix C.

Occurrence of B.1.1.7 variant: In January 2021, the variant B.1.1.7 became endemic in
Germany and quickly replaced all other variants. Onset of this development was modeled
by an instantaneous influx of 5% of newly infected subjects into the EMu compartment on
26 January 2021 estimated from published data [46].

2.4. Parametrization

We carefully searched the literature to establish ranges for our model parameters.
These ranges are used as prior constraints during parametrization of our model (Table 2).
Justification of prior values is provided in Appendix H. Parameters are then derived by
fitting the predictions of the model to reported data of infected subjects, ICU occupation,
and deaths using the link functions of model and data explained in the previous section.
This is achieved via likelihood optimization. Likelihood is constructed using the same
principles as reported [47]. In short, the likelihood consists of three major parts, namely the
likelihood of deviations from prior values, the likelihood of residual deviations from the
data, and a penalty term to ensure that model parameters are within the prescribed ranges,
as explained in Appendix D. We follow a full-information approach intended to use all
data collected during the epidemic as explained in Appendices E–G. As a result, our model
fits well to the complete dynamics of the epidemic in Germany in the above mentioned
time period (Figures 2 and 3).

To ensure identifiability of parameters, we checked a number of parsimony assump-
tions. For example, we assumed that the dynamical infection intensities of asymptomatic
(b1·r1(t)) and symptomatic subjects (b2·r2(t)) are proportional with factor rb1,2. We also
determined Bayesian Information criteria (BIC) for different partitioning numbers of the
external jump functions (Ncrit and Ndeath) to keep these as small as possible. Details can be
found in Appendix B.

Likelihood optimization is achieved using a stochastic approximation of an estimation-
maximization algorithm (SAEM) [48]. The algorithm is based on a stochastic integration of
marginal probabilities without using likelihood approximations such as linearization or
quadrature approximation or sigma-point filtering [17].

Confidence intervals of model predictions are derived by Markov-Chain-Monte-Carlo
simulations, i.e., alternative parameter settings were sampled from the parameter space
around the optimal solution (Appendices B, F and G). We use these parameter sets to
simulate alternative epidemic dynamics. This resulted in a distribution of model predictions
from which empirical confidence intervals are derived.

2.5. Implementation

The model and respective parameter estimations are implemented in the statistical
software package R from which external publicly available functions are called. The
model’s equation solver is implemented as C++ routine and called from R code using the
Rcpp package. The code and data for simulation of the output layers using the reported
parameter settings will be made available via our Leipzig Health Atlas: (https://www.

https://www.health-atlas.de/models/40
https://www.health-atlas.de/models/40
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health-atlas.de/models/40, accessed on 26 June 2022) and GitHub (https://github.com/
GenStatLeipzig/LeipzigIMISE-SECIR, accessed on 26 June 2022) [49].

3. Results
3.1. Explanation of Epidemiologic Dynamics

We used the full data set to explain the course of infections, ICU occupations, and
deaths between 4 March 2020 and 29 March 2021 in Germany. A total of three parameters
were assumed time-dependently, namely Infectivity b1 and the probability of a critical
disease course (pcrit) and death (pdeath). We identified nine fixed and 19 empirically identified
time points of NPI/behavioral changes (Table A1 from Appendix I). Regarding pcrit and
pdeath, we identified 18 respectively 19 time steps (See Tables A2 and A3 from Appendix I
and Table A7 from Appendix J). Throughout the epidemic, we observed a good agreement
of our model and incident (Figure 2) and cumulative data (Figure 3). Corresponding
residual errors are provided for all observables (Table A4 from Appendix I). As shown
in Table A2 from Appendix I, we estimated 14 static and three dynamically changing
parameters using 1170 data points (390 daily measurements of registered cases, registered
deaths and ICU occupancy) for Saxony as well as for Germany.

Figure 2. Agreement of model and incident data. We show incident infections, deaths, and daily ICU
occupancy during the course of the epidemic in Germany in between 4 March 2020 and 29 March
2021. Comparison of IO-NLDS model (magenta curve) and data (thin grey curves = raw data, solid
black curve = data averaged by sliding window) is provided in the upper column. A good agreement
is observed (shaded area = prediction uncertainty, vertical lines = changes in NPI/contact behavior).
The middle row represents the corresponding input layer, i.e., the estimated time course of the
time-dependent input parameters, namely infectivity and probabilities of critical disease course and
death. Time steps correspond to the lines of changing NPI/contact behavior as displayed in the
upper row. In the lower row, we present percentages of B.1.1.7 among infected subjects (first figure),
subjects older than 80 years among infected corresponding to high death tolls (second), and subjects
in the age categories 35–59, respectively 60–79 among critical cases (last figure of last row).

3.2. Parameter Estimates and Identifiability

Parameter estimates of the SECIR model are presented in Table 2, while those required
to define the input layer are presented in Table 3 and Tables A1 and A3 from Appendix I. For
those parameters for which we used prior information for fitting purposes, we compared
the respective expected posteriors with their best priors (see Figure 4). Statistics are
provided in Table A5 from Appendix I. No significant deviations between expected values
of posteriors and priors were detected. All relative errors of parameters of the SECIR
model are smaller than 10% demonstrating excellent identifiability of all epidemiologic
parameters. As expected, identifiability of the external control functions is reduced. Largest

https://www.health-atlas.de/models/40
https://www.health-atlas.de/models/40
https://github.com/GenStatLeipzig/LeipzigIMISE-SECIR
https://github.com/GenStatLeipzig/LeipzigIMISE-SECIR
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standard errors of steps are in the order of 70% still demonstrating reasonable identifiability
(Table A3 from Appendix I).

Figure 3. Agreement of model and cumulative data. We show cumulative infections and deaths dur-
ing the course of the epidemic in Germany in between 4 March 2020 and 29 March 2021. Comparison
of IO-NLDS model (magenta curve) and data (solid black curve) is provided. A good agreement is
observed (shaded area = prediction uncertainty, vertical lines = changes in NPIs/contact behavior).

Figure 4. Comparison of prior and posterior values of estimated parameters of the SECIR model.
We present prior vs. posterior distributions of estimated parameters of the SECIR model. Ranges
for priors represent assumed minimum and maximum values. Ranges for posteriors represent
95%-confidence intervals. Numbers are provided in Table A8 from Appendix J.

3.3. Plausibilization of Estimated Step Functions of Infectivity

We estimated the infectivity as an empirical step function through the course of the
epidemic. This step function should also roughly reflect NPI effectivity. We therefore
compared our infectivity step function with the Governmental stringency index of NPI as
estimated on the basis of Hale et al. [50]. Results are displayed at Figure 5 and revealed a
reasonable agreement.

3.4. Model Predictions

We regularly used our model to make predictions regarding the future course of
the epidemic. Predictions were specifically made for the Free State of Saxony, a federal
state of Germany and were published at the Leipzig Health Atlas [49]. We here present
comparisons of our predictions with the actual course of the epidemic for two scenarios
to demonstrate utility of our approach. Parameter values for Saxony were obtained in
the same way as for Germany restricting available data of infected subjects, ICU cases,
and deaths to this state. Estimated parameter values are presented in Tables A6–A8 from
Appendix J.
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Figure 5. Relationship between estimated step function of infectivity of asymptomatic subjects and
the Federal Government stringency index (GSI). The GSI [50] is a composite measure based on nine
response indicators including school closures, workplace closures, and travel bans, rescaled to a value
from 0 to 100 (100 = strictest). If policies vary at the level of federal states, the index is shown for the
state with the strictest measures. For background info see also [51]. Colors of curves correspond to
different y-axes.

While Saxony was almost spared from the first wave of SARS-CoV-2 in Germany, the
second wave hit the country particularly hard resulting in the highest relative death toll
of all German states (1 out of 400 inhabitants of Saxony died from COVID-19 during the
second and the immediately following B.1.1.7-driven third wave). The second wave was
on its peak in the middle of December 2020. A hard lock-down was initiated at this time
including closure of schools, prohibition of all team-based leisure activities, and night-time
curfew. We were asked by the government to estimate the length of lock-down required
to break the second wave. Stringency of lock-down was comparable to the first wave.
Thus, we simulated four scenarios: an optimistic assumption of a lock-down efficacy of
60% reduction in infectivity, a more realistic scenario with 40% reduction, a pessimistic
assumption of only 20% lock-down efficacy, and finally, 0% reduction (no lock-down) as
control scenario. Results are shown in Figure 6 and revealed a good agreement of our
prediction with the actual course for the 40% scenario considered likely.

At the beginning of February 2021, the second wave was broken in Saxony and
first relaxations of NPIs were conducted. At this time, the more virulent B.1.1.7 variant
became endemic in Germany. At 14 February, the true percentage of the B.1.1.7 variant
was unknown due to lack of sequencing capacities. Moreover, there were uncertainties
with respect to the increase in infectivity by the B.1.1.7 variant. We therefore simulated
three scenarios (optimistic: 10% initial proportion of B.1.1.7, infectivity increased by factor
1.7, expected: 20% initial proportion, 1.8-times increase in infectivity, pessimistic: 30%
initial proportion, 2-times increase in infectivity). Results are shown in Figure 7. The actual
course of the epidemic was close to the pessimistic scenario, i.e., the second wave was
directly followed by a third wave due to the B.1.1.7 variant. Indeed, later data revealed
that the proportion of B.1.1.7 was already close to 30% (pessimistic assumption) at the
time the simulation was performed. Moreover, our model correctly predicted the variant
replacement by B.1.1.7.
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Figure 6. Comparison of predicted and observed decline of the second wave in Saxony according
to the initiated lock-down. Our model was used to fit the observed data until 21 December 2020
(shown as grey curve (raw data) and black curve (smoothed) of reported test-positives). Estimated
step functions b1 and b2 describing the infectivity of asymptomatic and symptomatic subjects were
reduced by 0% (yellow: no lock-down = control scenario), 20% (green: pessimistic scenario), 40%
(blue: realistic scenario), and 60% (magenta: optimistic scenario) to simulate four scenarios of the
future course of the epidemic under lock-down conditions. The observed numbers of test-positives
after the 21 December 2020 are shown in red (light red = raw data, dark red = smoothed) closely
followed the expected scenario of 40% lock-down efficacy. Shaded areas represent 95% prediction
intervals. The predictions and parameters were reported in our regular bulletin deposited at Leipzig
Health Atlas, ID: 85AH9JMUFM-4.

Figure 7. Simulation of third wave scenarios for Saxony/Germany: Upper row: The model was
used to fit all observed data until 14 February 2021 (grey curve = raw data of reported testpositives,
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black curve = smoothed). Three scenarios were simulated differing in assumed initial proportion of
B.1.1.7 which was not exactly known at this time point (10%, 20%, and 30%, respectively) and in the
assumptions regarding increased virulence of B.1.1.7 (parameter mur = 1.7, 1.8 and 2, respectively).
Predicted course of subjects infected with the respective variants are shown as shaded areas. The
observed total numbers of testpositives (light red = raw data of reported testpositives, dark red
= smoothed curve) closely followed the pessimistic scenario 3. Lower row: When comparing the
proportion of B.1.1.7 as retrieved from [52] from 18 July 2021, initial proportion of B.1.1.7 was indeed
close to that assumed for scenario 3. Blue curves represent 95% confidence intervals of the B.1.1.7
proportion predicted for the different scenarios. All predictions were reported in our bulletin at the
20 February 2021 deposited at our Leipzig Health Atlas [53].

4. Discussion

In this paper, we propose a method of parametrization of COVID-19 epidemiologic
models and applied it to an extended SECIR-type model to explain the course of the
epidemic in Germany and one of its federal state, the Free State of Saxony. Moreover, we
demonstrated how the model can be used to make relevant predictions, which could be
validated on the basis of subsequent observational data.

A key idea of our approach is the embedding of differential equations-based epidemic
modelling into an input-output dynamical system (IO-NLDs). This has two major advan-
tages. First, the approach allows combining explicit mechanistic models of epidemic spread
and phenomenological considerations of external impacts on model parameters via the
input layer. This allows parametrizing models of different complexity. For example, in our
model we non-explicitly considered the effect of age structures of the diseased population
by time-dependent input parameters such as probabilities of critical disease courses and
deaths. This could easily be replaced for example by age-structured models. We believe
that such a combined empirical/mechanistic approach is well suitable to address the com-
plexity of COVID-19 epidemic dynamics for which it is impossible to consider all relevant
mechanisms explicitly and in parallel.

The second major advantage of our approach is that we assumed a non-direct link
between state parameters of the embedded SECIR model and observables. This allows
interposing a data model considering known biases of the available data resources. We
aimed at identifying relevant bias sources as far as possible and considered them in our
proposed data models. However, these data models could be subjected to changes in the
future for example if better data of COVID-19-related death will be released. Improved
data models could be easily integrated into our framework.

Note that the IO-NLDS implementation translates the embedded differential equations
model to a discrete scale (i.e., days in our case), which however appears to be sufficient for
describing an epidemic.

We also want to note that the SECIR model used here is by far neither unique nor
the most comprehensive one. For example, The Robert-Koch institute developed a model
for the purpose of estimating the effect of different vaccination strategies which could
easily be included into our SECIR-type models [54]. Although integration of differential
equations-based models into our IO-NLDS context is more straightforward, our approach
is also applicable to agent-based models. In general, the aspect of parameter estimation of
such models is underdeveloped in view of the highly biased data resources used and to
our knowledge, no generic concept was proposed so far.

Based on our IO-NLDS formulation and data models, we parametrized our model on
the basis of data of infection numbers, critical cases, and deaths available for Germany and
Saxony. Here, we chose a full-information approach considering all data in between start of
the epidemic 4 March 2020 to 29 March 2021. We also applied a Bayesian learning process
by considering other studies to inform model parameter’s settings. Thus, we combine
mechanistic model assumptions with results from other studies and observational data.
This approach is very popular in pharmacology [55] but despite its importance it is yet
rarely applied in epidemiology [11]. It resulted in a complex likelihood function, which is



Viruses 2022, 14, 1468 14 of 37

optimized on the basis of Markov-Chain Monte Carlo (MCMC) algorithms, as we described
in Appendices B and F. If the likelihood has a unique maximum, most of the samples
eventually accumulate in its vicinity after a certain number of “burn-in” steps. This allows
an effective MCMC search of the best parameter estimates as well as approximations of their
standard errors (standard deviations of the sample) and the degree of overfitting. However,
if parameters are interdependent, MCMC algorithm samples manifolds of alternative
solutions, resulting in large standard errors of the overfitted parameters. We successfully
addressed this issue by a modified version of Maire’s algorithm [56]. Central to this
approach is the idea that the proposal distribution adapts to the target by locally adding a
mixture component when the discrepancy between the proposal mixture and the target
is deemed to be too large. In other words, this algorithm samples multidimensional
parameters sets, approximating it as a mixture of multivariate Gaussian distribution. Such
approaches enable adequate sampling of model parameters and detection of overfitting
as well as of multiple local maxima of the likelihood. Our results revealed small standard
errors indicating lack of overfitting, see Tables A1 and A3 from Appendix I, Tables A6
and A7 from Appendix J. We also applied rigorous information criteria to limit the number
of steps of our input functions. As a consequence, it was possible to identify both, the
fixed parameters of the SECIR model and the time-variable input functions representing
changing NPI/contact behavior and age-structures.

Model parametrization resulted in a good and unbiased fit of data for the period
considered for Germany. Fixed parameter values of the SECIR model did not significantly
deviated from their prior values if available. It required 18 respectively 19 steps of changes
of the probabilities to develop critical stage and to die respectively. A total of 13 intensifica-
tion and 15 relaxation events were necessary to describe the epidemic dynamics over the
time course of observations. Estimated infectivity roughly correlated with the Governmen-
tal Stringency Index [51]. We regularly contributed forecasts of our model to the German
forecast Hub [57].

We also demonstrated utility of our model by several mid-term simulations of sce-
narios of epidemic development in Saxony, a federal state of Germany. We could show
that predictions of reported infections were in the range of later observations for scenarios
considered likely.

As future extensions and improvements of our model, we will consider stochastic
effects on a daily scale, for example to model random influxes of cases or to model random
extinctions of infection chains. These effects are relevant to be considered in times of low
incidence numbers such as those observed in Germany in the summers 2020 and 2021. Our
IO-NLDS framework is well suited to implement such extensions [17].

In future versions of our model, we will also include age-structures and implement a
vaccination and waning model in analogy to other research groups. In the current version
of the model, we assumed a constant proportion of symptomatic patients reported as
infected. This does not consider for example changing testing policies (i.e., symptomatic vs.
prophylactic testing). We plan to refine our model in this regard in the future. Finally, we
will consider the Delta and Omicron variants emerging in 2021 [53] in the next update of
our SECIR model.

In summary, the primary focus of the paper is an adequate parametrization of epi-
demiological models on the basis of complex, possibly biased data, as well as its coupling
with structurally unknown dynamical external influences. This approach allows for a
clear separation of mechanistic model compartments from random or time-dependent
non-mechanistic influences and biases in the data. We believe that this approach is useful
not only for the parametrization of the SECIR model presented here but also for other
epidemiologic models including other disease contexts and data structures.
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Appendix A. Equations of the SECIR Model

We here present the equations of the SECIR model serving as hidden layer of our
input-output non-linear dynamical system (IO-NLDS). To fit in this context, the ordinary
differential equations of the SECIR model are approximated by a difference equation
system describing compartment changes at single days, i.e., time-steps ∆t equals one day.
Compartments of the model are explained in Table 1 of the main paper. Parameters are
explained in Table 2 of the main paper.
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With the abbreviations

In f luxE = r1·b1·Sc·(IA,1 + IA,2 + IA,3) + r2·b2·Sc·(IS,1 + IS,2 + IS,3)

In f luxMu
E = Mur

(
r1·b1·Sc·

(
IMu
A,1 + IMu

A,2 + IMu
A,3

)
+ r2·b2·Sc·

(
IMu
S,1 + IMu

S,2 + IMu
S,3

))
At this, we assume that asymptomatic and symptomatic compartments have different

time-dependent infectivity (r1 * b1, r2 * b2), with b1 and b2 later defined on the basis of
time-dependent NPI/behavioral changes and, for parsimony, b1 = b2. Hence, the ratio of
the products (r1 * b1) and (r2 * b2) is assumed constant. Factor of increased infectivity of
new virus variant mur: this factor is multiplied to r1 and r2 reflecting higher infectivity of
the B.1.1.7 variant compared to the previous variants. The superscript Mu denotes new
virus variants.

The functions X represent decisions regarding the further disease course defined
below.

Analogously, the equations for the concurrent variant compartments are as follows:
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In some of the compartments, there is a decision between recovery or deterioration of
the disease course. For example, patients in C1 can either die or recover with different rates
ri and rj. To model this decision, we split the number of patients in the compartment by a
respective probability p and determine the decision factor X as follows.

ri X
rj (1− X)

=
p

1− p

Thus
X
(
ri, rj, p

)
=

rj p
ri·(1− p) + rj·p

(A3)

To start the epidemic in Germany, we assumed an entry of infected cases by a linearly de-
creasing function starting at 4 March 2020 and becoming zero at 10 March 2020. Occurrence of
the B.1.1.7 variant was initialized by a single influx to EMu, IMu

A,1 , IMu
A,2 , IMu

A,3 , IMu
S,1 , IMu

S,2 , IMu
S,3 at the

26 February 2021. We assume that the ratio between these influxes are the same as those for
the normal variant compartments at this day. The sum of EMu, IMu

A,1 , IMu
A,2 , IMu

A,3 , IMu
S,1 , IMu

S,2 , IMu
S,3

at 26 February 2021 was fitted to be 5.3% of the corresponding sum of the normal compart-
ments at the same day.

Appendix B. Input Layer

The input layer of our IO-NLDS is designed to describe the effects of non-pharmaceutical
interventions (NPI) and other impacts on infectivity such as behavioral changes, changes
in age-structure, testing policy, seasonal effects, or larger outbreaks (abbreviated as NPI/
contact behaviour). Since these effects typically affect contact matrices in different ways,
we model this phenomenologically by time-dependent reductions or increases of infection
rates caused by symptomatic and asymptomatic subjects as explained in Equation (A1).

We make the following assumptions for non-pharmaceutical interventions:
1. We introduce the relative infectivity function b(t), which changes according to

NPI/contact behavior modifications. This is modelled by a linear increase (in case of relax-
ation) or decrease (in case of tightening) within a fixed time Deltr of two days. Otherwise,
b(t) is constant. We denote {Ttr,s}Ntr

s=1 as the time points with changes in non-pharmaceutical
interventions with Ntr the total number of time points with changes. We collected dates of
changing non-pharmaceutical intervention measures for Germany based on government
decisions, changing testing policies as well as events with impact on epidemiological dy-
namics such as holidays and sudden outbreaks(such as thin peak of new infections in June
affected mostly workers of the meat industry). We also assumed additional time points
with changes determined by BIC.

Again, for the sake of parsimony, we assume that the relative infection intensities
of asymptomatic (b1(t)) and symptomatic subjects (b2(t)) are the same, hence, respective
proportionality rb1,2 is constant and estimated during model fitting.
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Thus, b(t) is defined as follows:
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The time point t = 0 corresponds to the 3 March 2020.
2. Likewise, rates toward critical disease states and deaths are also assumed to vary

through the course of the epidemic due to changes in testing policy resulting in different
percentages of unreported cases and asymptomatic subjects, changes in age distribution of
infected subjects, improvement of patient care due to new treatment options and due to
possible over-stretched medical resources (not the case in Germany but other countries). In
our model, this is also accounted for phenomenologically by assuming the probabilities
pcrit and pdeath as time-dependent input parameters.

We assume that both functions are step functions:

pcrit(t) = pcrit,0·
Ncrit−1

∑
j=0

αcrit,j·χ[Tpcrit,j ,Tpcrit,j+1)
(t) (A5)

where
{

Tpcrit,j
}Ncrit

j=1 are empirical dates and
{

αcrit,j
}Ncrit

j=1 the respective relative changes of

pcrit. Both,
{

Tpcrit,j
}Ncrit

j=1 as well as
{

αcrit,j
}Ncrit

j=1 are parameters to be estimated. The initial

value of pcrit is pcrit,0. Functions χ[tj ,tj+1)
(t) are indicator functions being 1 in the interval[

Tpcrit,j, Tpcrit,j+1
)

and 0 else.
The step functions for pdeath(t) and pdeath,S(t) are defined analogously:

pdeath(t) = pdeath,0·
Ndeath−1

∑
j=0

αdeath,j·χ[Tpdeath,j ,Tpdeath,j+1))
(t)

pdeath,S(t) = pdeath,S,0·pdeath(t)
(A6)

The partitions of pcrit and pdeath are assumed independent. Respective numbers of
jumps Ncrit and Ndeath can differ.

In order to find an optimal tradeoff between parsimony and goodness of fit we
calculated Bayesian Information criteria (BIC) for different partition numbers Ntr, Ncrit,
and Ndeath and chose partitions minimizing BIC.

When new data become available, we attempt to update the numbers of partitions
every two weeks by considering adding a new break-point within the last month. The time
point as well as the corresponding jump value are considered as two new parameters. We
added a new break point only if it improves BIC after the updated parameters estimation.

Appendix C. Output Layer

We here describe, how the state parameters of the hidden SECIR model are linked
with data via the output layer of the IO-NLDS.

Modeling of daily registered infected cases IS,M: The total number of daily registered in-
fected cases IS,M is coupled to the efflux of the first asymptomatic compartments IA,1 and
IA,1

Mu toward symptomatic compartments multiplied with PS,M.

IS,M(T) =
T

∑
t=0

PS,M·X
(
r4,b, r4, psymp

)
·r4,b·

(
IA,1(t) + IMu

A,1 (t)
)
(t) (A7)
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However, we assume a delay of the registered vs. reported cases by introducing an
empirical distribution of the reporting delay: When a person has a positive PCR SARS-CoV-
2 test result at a date d1, this will result in a registered case at a later date d2. The difference
d = d2 − d1 is the reporting delay and is assumed log-normally distributed. This distribution
of delays is determined on the basis of data provided by the Robert-Koch-Institute from the
period 27 April 2020 to 13 November 2020. The parameters of this distribution are derived
by minimizing the Kullback–Leibler divergence between the parametric representation and
the empirical distribution. Results are displayed in Figure A1.

Figure A1. Approximation of reporting delay by a log-normal distribution: We present the log-
normal distribution best fitting the empirical distribution of reporting delays. Estimated parameters
of the log-normal distribution are as follows: µ = 1.77 days, σ = 0.531 days.

Modeling delay of death reporting: In contrast to the newly infected cases, neither infor-
mation of delays in COVID-19 associated death reporting nor actual dates of deaths were
available to us. Therefore, we used a data model proposed by Delagdo et al. [45]. In detail,
we assumed that the delay is normally distributed with an average of 7.14 days and a
standard deviation of 4 days.

Since we consider time as an integer, we discretize this normal distribution by the

approximation DRD(d) =
N7.14,4(d)

∑100
i=1 N7.14,4(i)

for integers d ≤ 100 and 0 else, where N is the

Gaussian distribution function with mean 7.14 days and standard deviation of 4 days,
i.e., we neglect delays larger than 100 days. Using this approximation, we derive the actual
number of new deaths at time point t:

Da(t) = ∑
t1<t

Dr(t)·DRD(t− t1)

Here, Dr(t) is the number of reported new deaths at time t. The function Da(t) is
linked to our compartment D.
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Appendix D. Parameter Estimation

Free parameters of the model are determined by minimizing the negative log-likelihood
function of observed data. The negative likelihood is constructed in analogy to [47]. It
constitutes of the sum of three components:

nLL = nLLpri + nLLresid + Constr (A8)

The terms nLLpri
i and nLLresid

i correspond to prior constraints of parameters and to the
residual errors of the data as explained below in detail. The term Constr is a penalty term
to keep values in eligible ranges or orders (see “Penalization“). We assume independence
between parameters throughout.

Parameter distributions and transformations: Most of the parameters are confined to
certain ranges. During estimation (with possible prior constraints), we transform these
parameters to the space of real numbers. We assume that these transformed values are
normally distributed during Markov-Chain Monte Carlo (MCMC) sampling (see below).
To ensure this, parameters confined to a finite interval (a,b) are transformed by the logit-
function. Parameters with positive values are transformed by a log-normal transformation.
Thus,

ϕs = hk(ψs)hs(ψs) =

 eψs , f or parameters > 0

a + (b− a)· eψs

1 + eψs
, f or parameters within [a, b]

, s = 1, . . . , Npar (A9)

where ϕs is the s-th parameter and ψs is the respective transformed parameter and Npar is
the total number of parameters to be estimated.

The negative likelihood contribution of the priors nllpri
i is defined as follows:

nLLpri =
Npar

∑
s=1

δs·

(
ψs − ψ

pri
s

)2

ω2
pri,s

(A10)

where δs equals 1, if a prior is assumed for the s-th parameter and 0 otherwise. The
prior information is represented by the “best value” ψ

pri
s and an uncertainty expressed

as standard deviation of possible values ωpri,s. We assume that parameter estimates are
random variables normally distributed around their respective prior values. Thus,

ψs ∼ N
(

ψ
pri
s , ωpri,s

)
= N

(
hs

(
ϕ

pri
s

)−1
, ωpri,s

)
(A11)

Prior “best values” and ranges of parameters are provided at Table 2 of the main paper.
The uncertainties ωpri,k are set to 2 for all parameters. This heuristic setting is based on
a tradeoff between avoidance of overfitting including implausible parameter values and
good data fitting properties.

Penalization: We penalize with a high value of 108 in cases when times of non-
pharmaceutical interventions are either too close (closer than 3 days) or non-monotonic. In
the same way, we penalize too high dynamical pdeath values (more than 0.66) by multiplica-
tion of max(pdeath-0.66,0) with 100.

Residual errors of observed vs. predicted data: We fit data for daily registered cases,
cumulative registered cases, deaths, cumulative deaths, and ICU occupation as explained
in sub-section “output layer” and the methods section of the main paper. The respective
term of the negative log-likelihood nllresid

i corresponds to the residual errors of these data.
Thus,
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where Yout represents the output layers (“dY” corresponds to daily counts, while “Y” corre-
sponds to cumulative counts). Subscript S denotes simulation results, while D corresponds
to the data. We sum the negative log-likelihoods of the three outputs considered (infected
subjects, critical cases and deaths). Thus, Yout represents one of these three entities x with
number of data points Nx at time points

{
tj,x
}

(j = 1, . . . ,Nx) and residual errors ax. We
introduce weights wecumul for the cumulative terms as compared with the daily counts
and set it to 0.2. The cumulative terms were introduced to avoid biases of cumulative
data occurring after fitting daily data only. Cumulative data for ICU occupation were not
fitted, i.e., weICU = 0. The parameter trYout corresponds to the power transformation used
to compare model and data. In the present model version, it is set to 0.5. It constitutes
a tradeoff between fitting precision of large and small numbers. All weights wedYout and
weYout were set to 1.

Thus, we assume that for each output and for each data point the entities dY
trdYout
out,D and

Y
trdYout
out,D are normally distributed random variables around respective simulated values with

standard deviations being the respective residual errors:

dY
trdYout
out,D

(
tj,dYout

)
∼ N

(
dY

trdYout
out,S

(
tj,dYout, ψ

)
, adYout

)
Y

trdYout
out,D

(
tj,Yout

)
∼ N

(
Y

trYout
out,S

(
tj,Yout, ψ

)
, aYout

) (A13)

The algorithm to minimize the negative log-likelihood is explained in the next section.
Differences of estimated values and their respective priors can be tested by calculating

Z-scores
ψs − ψ

pri
s

ωpri,s
.

Appendix E. Algorithm for Parameter Estimations and Prediction Sampling

Due to nonlinearity of (Equations (A8), (A11) and (A12)), parameters ψ and residual er-
rors θ cannot be estimated simultaneously. For such situations an expectation-maximization
(EM) algorithm was proposed by Dempster et al. [58]. This algorithm is a widely applied
approach for the iterative computation of maximum likelihood (correspondingly minimum
of negative log-likelihood) estimates in incomplete-data statistical problems. In detail, the
random parameters ψ = {ψs}

Npar
s=1 are considered as non-observed data, while observed

data y in our case are defined as follows:

y =

{{
ID
M
(
tj,IM

)}NIM

j=1
,
{

DD(tj,D
)}ND

j=1
,
{

dID
M
(
tj,IM

)}NdIM

j=1
,
{

dDD(tj,D
)}NdD

j=1
,
{

dICUD
M
(
tj,ICU

)}NdICU

j=1

}
(A14)

Complete data of the model is (y, ψ). The unknown residual errors θ describe the
uncertainty of parameters ψ.

Therefore nLL(y, ψ; θ) is a marginal negative log-likelihood likelihood. The complete
likelihood nLL is defined as follows:

nLL(y; θ) =
∫
Ω

nLL(y, ψ; θ)dψ (A15)
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The EM algorithm minimizes nLL(y; θ) iteratively: At the k-th iteration of EM, the ex-
pectation step computes the conditional expectation of the complete negative log-likelihood
Qk(θ) = E(nLL(y, ψ; θ)|y, θk−1) by generating ψ(k) based on previous estimates θk−1, and
the maximization step computes the value θk maximizing Qk(θ). The EM sequence (θk)
converges to a stationary point under general regularity conditions [58].

In nonlinear cases, the expectation step cannot be performed in a closed form. There-
fore, we applied the Stochastic Approximation algorithm of EM (SAEM). SAEM is a maxi-
mum likelihood estimator of the population parameters [48] based on stochastic integration
of marginal probabilities without likelihood approximation such as linearization or quadra-
ture approximation or sigma-point filtering [17]. Our implementation is inspired by and
is very similar to that of earlier versions of Monolix (Lixoft) software (http://lixoft.com/,
accessed on 16 November 2018)

The stochastic approximation version of standard EM algorithm (SAEM) proposed
by [48] replaces the usual E-step at an iteration k by a stochastic procedure as follows:

1. Simulation step: draw mk realizations of ψ(k) =
{

ψ
(k)
s

}Npar

s=1
from the conditional

distribution p(·|y; θk ) using MCMC algorithm.
2. Stochastic approximation: update Qk(θ)

Qk(θ) = Qk−1(θ) + γk·
(

1
mk

mk

∑
j=1

log
(

p
(

y, ψ(k); θ
))
−Qk−1(θ)

)
, (A16)

where γk is a decreasing sequence of positive numbers.
3. Maximization-step (correspondingly, minimization for negative log-likelihood): up-

date θk according to
θk+1 = Arg min

θ
(Qk(θ)) (A17)

Remarks:

1. Our stochastic approximation step is an improved version of the stochastic approxi-
mation of the integration of marginal distribution on the multidimensional domain Ω
of possible parameter values:

Qk(θ) = E(log(p(y, ψ; θ))|y, θk−1) =
∫
Ω

log
(

p
(

y, ψ(k); θk−1

))
dψ(k) (A18)

2. In analogy to Monolix software, we selected γk as follows:

γk = 1, k ≤ K1

γk =
1

k− K1 + 1
, k > K1

(A19)

We choose K1 equal to 4 and run the algorithm until convergence with a tolerance
0.1% of estimates of population parameters (see below).

3. We performed MCMC sampling 4000 times at each stage with a burn-in phase of
1000 steps. Thus, mk = 3000.

Exact estimates of different components of θk are:

a(k)dIM =

√√√√ 1
NdIM

NdIM
∑

j=1

∫
Ω

(
dIS

M
(
tj,IM, ψ(k)

)
− dID

M
(
tj,IM

))2dψ(k)

a(k)dD =

√
1

NdD

NdD
∑

j=1

∫
Ω

(
dDS

(
tj,D, ψ(k)

)
− dDD

(
tj,D
))2dψ(k)

a(k)dICU =

√
1

NdICU

NdICU
∑

j=1

∫
Ω

(
dICUS

(
tj,ICU , ψ(k)

)
− dICUD

(
tj,ICU

))2dψ(k)

(A20)

http://lixoft.com/
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Therefore, respective stochastic approximations and maximizations θk are as follows:

s1,j,k = s1,j,k−1 + γk·
(

1
mk

mk
∑

r=1

(
dIS

M

(
tj,IM, ψ(k,r)

)
− dID

M
(
tj,IM

))2
− s1,j,k−1

)
, j = 1, · · · , NdIM

a(k)dIM =

√√√√∑
NdIM
j=1 s1,i,j,k

NdIM

(A21)

s2,j,k = s2,j,k−1 + γk·
(

1
mk

mk
∑

r=1

(
dDS

(
tj,IM, ψ(k,r)

)
− dDD(tj,IM

))2
− s2,j,k−1

)
, j = 1, · · · , NdD

a(k)dD =

√√√√∑NdD
j=1 s2,i,j,k

NdD

(A22)

s3,j,k = s3,j,k−1 + γk·
(

1
mk

mk
∑

r=1

(
dICUS

(
tj,IM, ψ(k,r)

)
− dICUD(tj,IM

))2
− s3,j,k−1

)
, j = 1, · · · , NdICU

a(k)dICU =

√√√√∑NdICU
j=1 s3,i,j,k

NdICU

(A23)

In the same way, the respective terms for the cumulative data approximations are
derived.

Appendix F. MCMC Algorithm for the Expectation Step

Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sam-
pling from a probability distribution [59]. By constructing a Markov chain that has the
desired distribution as its equilibrium distribution, one can obtain a sample of the desired
distribution by recording states from the chain. It is well-known that a proper choice of a
proposal distribution for MCMC methods is a crucial factor for convergence of the algo-
rithm [60]. For the sake of increasing the acceptance rate, a number of adaptive Metropolis
(AM) algorithms were proposed by different groups. Here the proposal distribution is
learned along the process using the full information cumulated so far. We implemented
the adaptive MCMC version with Gaussian proposal distribution described in [60] as well
as adaptive incremental Mixture MCMC [56] called AIMM, which we modified slightly.
Strictly speaking, these methods are not really Markov chains, because proposal distribu-

tion of the next step depends on all preceding states
{→

Xt

}t

0
rather than only the previous

one. The algorithm of Haario et al. is simpler and it assumes the existence of a global
minimum of nLL. In contrast, the algorithm of Maire et al. could be useful for cases when
the nLL has a complex topology due to overfitting.

Let π denote the target distribution (i.e., negative log- likelihood) given by Equation (A8).
At each iteration step the new parameter vector Y is generated by a transition kernel
representing the proposal distribution. This candidate vector is accepted with probability

α

(→
Xt−1, Y

)
= min

1,
π(Y)

π

(→
Xt−1

)
 (A24)

The transition kernel of Haario’s MCMC version is an empirical covariance matrix of
previous samples stabilized by an identity matrix multiplied by a small number ε:

C(k)
t = sd·

(
cov
(

ψ(k,1), · · · , ψ(k,t−1)
)
+ ε·Id

)
, t ≤ mk, (A25)
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where t is a sampling number and sd =
2.4√
Nind

par

. Here, we choose ε = 0.0001. This

parameter is required to ensure ergodic property of the Markov chain. When k > 1, we
added samples from the previous step to the covariance matrix:

C(k)
t = sd·

(
cov
(

ψ(k−1,1), · · · , ψ(k−1,mk), ψ(k,1), · · · , ψ(k,t−1)
)
+ ε·Id

)
, t ≤ mk (A26)

At each iteration k we used a sample from the previous iteration providing a small
value of nLL as starting point.

In the AIMM, the proposal distributions Qt are mixtures of multivariate normal
distributions. Roughly spoken, this is a generalization of Haario’s algorithm when multiple
local minima of the nLL exist in few clusters. The candidate vector is accepted with
probability

α

(→
Xt−1, Y

)
= min


1,

π(Y)
Qt

π

(→
Xt−1

)
Qt−1


(A27)

This algorithm minimizes discrepancies between proposal and target probability i.e., a
sequence {Qt} converges to π by approximating it through mixtures of multivariate normal
distributions. The elements of this series Qt are defined as follows:

Qt =
∑Mt

l=1 βl ·ϕl

∑Mt
l=1 βl

,

where Mt is the number of components at the iteration t. The elements {ϕ1, · · · , ϕMt}
represent the incremental mixture components, {β1, · · · , βMt} are the respective weights.
Each mixture component consists of a mean vector and a covariance matrix. The sampling

from Qt proceeds as follows: We choose the r-th component with a probability
βr

∑Mt
l=1 βl

by

generating a uniformly distributed random number and accepting the r-th component if

this number is in between

(
βr−1

∑Mt
l=1 βl

,
βr

∑Mt
l=1 βl

]
if r > 1 or in between

[
0,

βr

∑Mt
l=1 βl

]
if r > 1.

After the choice of the r-th component, a random parameter vector Y is generated around
the r-th mean according to the r-th covariance matrix as in Haario’s algorithm. If Y is

accepted, it becomes
→
Xt.

→
Xt can either stay in the r-th cluster or give origin for the new

cluster ϕMt with Mt = 1 + Mt−1. A new cluster is created when the match of ϕMt to the

r-th cluster is insufficient based on Mahalanobis distance. If
→
Xt stays in the r-th cluster, it

updates the r-th covariance matrix in a similar way as in Haario’s algorithm [60], Equation
(A26).

We here modified the conditions for new cluster formation compared to [56] as follows.
In our algorithm, a new cluster is formed when one of the following conditions hold:

• The Mahalanobis distance of
→
Xt to the cluster from which it was generated is less

than 0.025 or larger than 0.975. That is
→
Xt diverges significantly from the current

multivariate normal distribution of the r-th cluster

• π

(→
Xt

)
is significantly larger than π of the current cluster center. That is

→
Xt does not

correspond to the local maximum of π in the neighbourhood of the r-th cluster.

If one of the above conditions holds,
→
Xt becomes the center of a new cluster. The

respective Gaussian component is the covariance matrix of the r-th (i.e., previous) cluster.
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This matrix will be further updated every time when new members of the new cluster are
accepted in future proposals.

The weights {β1, · · · , βMt} are proportional to π of the respective cluster centers to
the power of γ, where γ is a positive number less than 1. All weights are updated every
time when a new cluster emerges.

In summary, AIMM accepts proposals with discrepancies to the target distribution.
As a consequence, proposal distributions are multivariate normal mixtures. Every cluster’s
mean is a local maximum of π. Sampling of proposal distributions from clusters depends
on π. New clusters emerge when an accepted proposal either significantly diverges from
the respective cluster’s probability or when a significantly better optimal value is found in
this cluster.

After thorough comparison of adaptive MCMC and the adaptive incremental mixture
MCMC, we found the latter to be superior. Higher values of π were found in a shorter time.
It also generates higher acceptance rates (0.2–0.3 versus 0.1) and finds more alternative
solutions. We therefore used this method for our parameter estimations.

We applied Geweke convergence diagnostics for Markov chains [61] as implemented
in the R-package coda (https://cran.r-project.org/web/packages/coda/coda.pdf, accessed
on 01 October 2020). This method is based on a test for equality of the means of the first and
last part of a Markov chain (by default the first 10% and the last 50%). If the samples are
drawn from a stationary distribution of the chain, the two means are equal and Geweke’s
statistic has an asymptotical standard normal distribution. The test statistic is a standard Z-
score: the difference between the two sample means divided by its estimated standard error.
The standard error is estimated from the spectral density at zero taking autocorrelation into
account. The Z-score is calculated under the assumption that the two parts of the chain
are asymptotically independent. We applied this diagnostic for the nLL resulting from the
last run of the implemented adaptive MCMC algorithm, resulting in a chain of 2620 steps.
We considered default fractions of the chain, i.e., 0.1 and 0.5 of the beginning and from
end of chain, respectively. The resulting Z-score is −0.2536, corresponding to p-value of
0.4, i.e., no deviations of means were detected suggesting that a stationary distribution is
achieved.

Figure A2 (generated by function geweke.plot from the coda package) shows the
development of Geweke’s Z-score when successively larger numbers of iterations are dis-
carded from the beginning of the chain. The Z-score remains always in the 95% confidence
interval, suggesting a successful convergence.

Figure A2. Development of Geweke’s Z-score when successively larger numbers of iterations are
discarded from the beginning of the MCMC chain. Dashed lines corresponds to quantiles of 0.025 and
0.095 for the Z-score. No local trends are detected, i.e., a stationary sampling distribution is achieved.

https://cran.r-project.org/web/packages/coda/coda.pdf
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Appendix G. MCMC Simulation for Prediction and Controlling Goodness of Fit

The estimates of residual errors are determined at the last step and are used for MCMC
sampling of parameters ψ. The resulting means and standard deviations are considered
as respective average estimates and their standard errors. Simulations of these parameter
samples provides a set of alternative predictions. From these, we collected the best fitting
solution, the average solution and confidence intervals for different confidence limits α.

Appendix H. Justification of Prior Parameters and Ranges

We here provide justifications of assumed prior values and parameter ranges. Details
of parameters definition and fitting can be found in Appendices B and D, respectively.

Initial influx of people per day Influx: The initial influx was estimated from the data
without prior assumptions to a value of 6937 people per day in order to initialize the
simulation. Later, the parameter is no longer relevant for simulation outcomes.

Infection rate through asymptomatic subjects per day r1: This infection rate was es-
timated from the data without prior assumptions. It represents the basic transmission
probability of the SARS-CoV-2 virus from an asymptomatic infectious person to a suscepti-
ble contact.

Infection rate through symptomatic subjects per day r2: This infection rate was es-
timated from the data without prior assumptions. It represents the basic transmission
probability of the SARS-CoV-2 virus from a symptomatic infectious person to a susceptible
contact.

Relative infection intensity of asymptomatic subjects per day b1(t): The infectivity of
asymptomatic infected subjects was assumed as a time-dependent step-function due to
changing NPIs/contact behavior and other factors influencing infection probabilities. Steps
were estimated from the data without prior assumptions.

Relative infection intensity of symptomatic subjects per day b2(t): The infectivity of
symptomatic infected subjects was assumed as a time-dependent step-function due to
changing NPIs/contact behavior and other factors influencing infection probabilities. Steps
were estimated from the data without prior assumptions.

Ratio of b1(t) and b2(t) (rb1,2). We assumed a fixed ratio of the infectivities of asymp-
tomatic and symptomatic infected subjects for the sake of parsimony. The ratio was
estimated from the data without prior assumptions.

Fixed dates for updates of infectivity functions: We used several fixed dates of changes
in infectivity functions due to known changes in NPIs, testing policy or outbreaks. Note
that even fixed time points were checked for necessity to assume changes in infectivity for
the sake of parsimony, i.e., respective steps were only assumed if significantly improving
model fit. The first three fixed time-points, tr1 (10 March 2020), tr2 (15 March 2020), and tr3
(22 March 2020) reflect German governmental interventions including regulation of the size
of public events, travel restrictions, and contact restriction. Fixed time-points tr6 (30 April
2020), tr7 (7 May 2020), and tr8 (21 May 2020) reflect German governmental interventions
related to the step-wise relaxation of NPIs, in particular regarding leisure sports, contacts,
and schools. Time point tr17 (2 November 2020) reflects governmental NPIs in response
to the German second wave, including restrictions of public life and social contacts, also
referred as “soft lockdown”. Time point tr21 (16 December 2020) reflects further stricter
governmental NPIs in response to the ongoing increase of the German second wave, also
referred as “hard lockdown”, strongly limiting public and private contacts including school
closures. Finally, time point tr28 (23 February 2021) reflects release of many governmental
NPIs in response to the decline of the German second wave.

Transit rate for compartment E (latent time) r3: The transition rate r3 for the compart-
ment of exposed subjects is the inverse of the latent time, i.e., the time being infected but
not yet infectious. The mean of the prior distribution for the latent time was set to 3 days
and the minimum and maximum of the distribution was set to 2 and 4 days, respectively, in
accordance with previous reports [10]. Note that minimum and maximum of a parameter’s
distribution in this section always refer to the distribution of the mean of the parameter,
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not of the distribution of the parameter itself. Further justification of this parameter is
discussed in the following when considering the rate r4b.

Transit rate for asymptomatic sub-compartments r4: The transition rate r4 for the
asymptomatic infectious compartment to the recovered compartment is a third of the
inverse of the time being asymptomatic and infectious, as this compartment is split into
three sub-compartments. The mean of the prior distribution of r4 was set to 3/5 per
day and the minimum and maximum of the distribution was set to 3/10 and 3/4 per
day, respectively. These values are based on general considerations regarding timelines
of the germinal center reaction [25] and further supported by reports from the literature
estimating relevant infectiousness periods in general or asymptomatic/mildly symptomatic
COVID-19 patients as in between 3.5 and 9.5 days [22–24].

Rate of development of symptoms after infection r4b: The inverse of this rate is equal
to the time from being infectious to start of developing symptoms. The mean of the prior
distribution of r4b was set to 1

2 .5 per day and the minimum and maximum of the distribution
was set to 1/5 and 1/1 per day, respectively. This is in line with previous reports [10,26,27].
Note that the serial interval, i.e., the average time between successive cases in a chain of
transmission is composed of two parameters of our model. In detail, the serial interval
is the sum of the average latent time (1/r3) and half of the average time being infectious
when assuming random occurrence of subsequent infections during time of infectiousness.
Exemplarily, if the serial interval would be considered in a scenario where symptomatic
individuals are immediately and effectively quarantined, the serial interval would be 1/r3
+ 0.5*1/r4b. The serial interval was estimated by the RKI [28] to have a median of 4 days
(interquartile range 3–5 days) based on the literature [18–21], which is in accordance with
our choices for r3 and r4b. However, the serial interval (and other parameters like the time
being infectious) are to some extent also time dependent, reflecting e.g., behavioral changes.
Although we do not model a time dependence for these specific parameters, our model
can, to a certain extent, cope for this by data-driven adaptation of other time-dependent
parameters such as b1 and b2.

Probability of developing symptomatic disease after infection psymp: This probability
was estimated from the literature, reporting a percentage of symptomatic COVID-19 cases
in between 55% and 85% [37–39]. We used a percentage of 50% as mean of the prior distribu-
tion, accounting for the fact that minor symptoms are frequently ignored or considered as
symptoms of a common cold. Minimum and maximum was set to 0.3 and 0.8, respectively.

Transit rate of symptomatic sub-compartments r5: The transition rate r5 for the three
symptomatic sub-compartments towards recovery is a third of the inverse of time being
symptomatic and infectious. The mean of the prior distribution of r5 was set to 3/2.5
per day and the minimum and maximum of the distribution was set to 3/7.5 and 3/1.5
per day, respectively. These values are based on the assumption that symptomatic and
asymptomatic subjects are similar with respect to time of contagiousness. Hence, values of
the distribution of r5 equal that of r4 subtracted by the mean value of r4b.

Rate of development of critical state after becoming symptomatic r6: The inverse of
this rate is assumed equal to the time of developing a critical state after being infectious
and symptomatic. The mean of the prior distribution of r6 was set to 1/5 per day and the
minimum and maximum of the distribution was set to 1/7 and 1/4 per day, respectively,
according to previous reports [10,29–31]. Note that the probability of people becoming
critical is affected by the function pcrit.

Probability of becoming critical after developing symptoms pcrit: This probability is as-
sumed as a time-dependent step-function reflecting for example changing age-distributions
of infected subjects or treatment efficacy. Steps were estimated from the data within the
range of 0 to 1 without assuming a specific prior. The initial value of pcrit,0 was estimated
as 0.075, which is within the range of reported values [10,62].

Transit rate for critical state sub-compartments r7: The transition rate r7 for the critical
state sub-compartments is a third of the inverse of the time treated in intensive care unit
(ICU) for survivors, as the critical compartment is also split into three sub-compartments.
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The mean of the prior distribution of r7 was set to 3/17 per day and the minimum and
maximum of the distribution was set to 3/35 and 3/8 per day, respectively. These values
are informed by previous reports focusing on data of 35 to 79-year-old patients, the most
frequent population in ICU [10,32–34].

Death rate of patients in critical sub-compartment r8: This transition rate represents
the rate from the first ICU sub-compartment to the death compartment. It is the inverse
of the time of patients in ICU that passed away. The mean of the prior distribution of r8
was set to 1/8 per day and the minimum and maximum of the distribution was set to 1/14
and 1/6.5 per day, respectively. This reflects the shorter time in ICU for patients with fatal
disease outcome informed by previous reports [29,35,36]. The number of people with fatal
disease course is affected by two additional parameters pdeath and pdeath,S explained below.

Probability of death after becoming critical pdeath: This is the probability of death
for patients at ICU. It is assumed as a time-dependent step-function estimated from data.
Values are restricted within the range 0 to 1 without specific prior assumptions. Changes in
time reflect for example changes in age-composition of ICU patients as well as changes in
treatment regimens. The initial value is pdeath,0 = 0.118.

Probability of death after developing symptoms without becoming critical pdeath,S:
To reflect COVID-19 related deaths outside of ICU (especially relevant for the oldest
age-groups [32]), we introduced the probability pdeath,S of transitioning from the second
symptomatic sub-compartment to the death compartment. This probability was estimated
from the data pdeath,S = 0.0448.

Fraction of unreported cases pS,M: For the fraction of infected cases that are symp-
tomatic but not reported, we used a prior distribution with a mean of 0.5, a minimum of
0.3 and a maximum of 0.9. This choice was informed by studies of SARS-CoV-2 seropreva-
lence in Germany [40,41]. Note that the total percentage of unreported infected people is
1-pS,M·psymp according to the definition of psymp.

The factor mur is multiplied to r1 and r2 reflecting higher infectivity of the B.1.1.7 vari-
ant compared to the previous variants. This parameter was estimated from sequencing data
reporting the dynamics of the increase of variant B.1.1.7 in the UK, Denmark, Belgium, Su-
isse, and the United States, available from https://github.com/tomwenseleers/newcovid_
belgium/, accessed on 13 April 2022) and Germany, available from “Mutationstracking-
Projekt von Sven Schmidt” at https://tinyurl.com/36xnmxat, accessed on 17 May 2022).
Thereby, mur was calibrated to match the observed average dynamic of the increase of
B.1.1.7 across countries resulting in a value of mur = 1.7.

Appendix I. Parameter Values for Germany

Table A1. Time points of changes in infectivity and respective steps. We used fixed (known due
to Governmental decisions or random events) and estimated time points of NPI/contact behavior
changes and events and respective changes in infectivity of asymptomatic subjects. We provide
estimates and relative standard errors of the infectivity. For estimated time points, we also provide
the respective standard error (last column).

Number Type of NPI/Contact
Behaviour Change

Estimated
New Infectivity

Relative Standard
Error, % Date Source of

Time Point
Standard

Error (Days)

1 Intensification 0.676 0.738 10 March 2020 Fixed -

2 Intensification 0.150 3.99 15 March 2020 Fixed -

3 Relaxation 0.214 0.711 22 March 2020 Fixed -

https://github.com/tomwenseleers/newcovid_belgium/
https://github.com/tomwenseleers/newcovid_belgium/
https://tinyurl.com/36xnmxat
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Table A1. Cont.

Number Type of NPI/Contact
Behaviour Change

Estimated
New Infectivity

Relative Standard
Error, % Date Source of

Time Point
Standard

Error (Days)

4 Intensification 0.131 2.79 29 March 2020 Estimated 0.280

5 Relaxation 0.172 2.78 23 April 2020 Estimated 0.164

6 Relaxation 0.200 0.462 30 April 2020 Fixed -

7 Intensification 0.109 5.78 7 May 2020 Fixed -

8 Relaxation 0.177 5.13 14 May 2020 Fixed -

9 Intensification 0.163 0.278 22 May 2020 Estimated 0.322

10 Relaxation 0.434 0.644 5 June 2020 Estimated 0.387

11 Intensification 0.142 3.67 13 June 2020 Estimated 0.360

12 Relaxation 0.270 2.80 1 July 2020 Estimated 0.251

13 Intensification 0.193 1.06 11 August
2020 Estimated 0.244

14 Relaxation 0.256 1.01 28 August
2020 Estimated 0.264

15 Relaxation 0.357 1.06 1 October
2020 Estimated 0.119

16 Intensification 0.246 0.967 19 October
2020 Estimated 0.334

17 Intensification 0.198 3.98 2 November
2020 Fixed -

18 Relaxation 0.213 0.991 11 November
2020 Estimated 1.08

19 Relaxation 0.256 0.550 24 November
2020 Estimated 0.262

20 Intensification 0.248 1.61 1 December
2020 Estimated 0.303

21 Intensification 0.118 2.18 16 December
2020 Fixed -

22 Relaxation 0.421 1.40 26 December
2020 Estimated 0.238

23 Intensification 0.154 3.48 1 January
2021 Estimated 0.118

24 Relaxation 0.182 11.0 12 January
2021 Estimated -

25 Relaxation 0.237 3.09 6 February
2021 Estimated -

26 Intensification 0.211 4.08 15 February
2021 Estimated -

27 Relaxation 0.233 2.98 25 February
2021 Estimated -

28 Relaxation 0.228 23.2 18 March 2021 Fixed -
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Table A2. Determination of the number of time steps of input step functions. We analyzed different
numbers of steps for the step functions pcrit (Ncrit) and pdeath (Ndeath). Npar = number of parameters
to be estimated, nLL = negative log-likelihood, BIC = Bayesian information criterion. A total of
1714 data points were analyzed (348 new cases and death cases measurements daily and cumulative,
322 measurements of daily critical cases). The combination Ncrit = 18 and Ndeath = 19 resulted in the
lowest BIC, i.e., best compromise between model parsimony and fit. The best solution resulted from
estimation of 134 parameters as follows: 15 basic parameters (Table A5), 28 of infectivity changes at
19 time points (Table A1), 18 values for αcrit,i with respect to 17 time points and 19 values for αdeath,i
with respected to 18 time points. Alternative assumptions on Ncrit and Ndeath resulted in respective
changes of the total number of parameters. The best results are in bold.

Ncrit Ndeath Npar nLL BIC

18 19 134 2620 6238

17 17 132 2661 6298

17 19 133 2645 6280

18 18 133 2633 6256

19 20 136 2616 6245

19 19 135 2618 6241

Table A3. Step functions of pcrit and pdeath. We present estimates for the single steps of the functions
pcrit and pdeath at the specified dates and respective standard errors. We also provide the standard
error of the estimated time point (last column).

Parameter Description Estimate Relative Standard
Error. %

Date Respective
Controls

Standard Error
(Days)

αcrit,1

Relative values of pcrit
starting at the respective
date

1.05 0.317 20 March 2020 0.0844

αcrit,2 2.48 3.18 1 April 2020 0.14

αcrit,3 2.24 3.46 6 May 2020 1.06

αcrit,4 1.22 3.20 4 June 2020 2.03

αcrit,5 0.884 0.626 6 July 2020 3.75

αcrit,6 0.344 2.07 30 July 2020 1.14

αcrit,7 0.340 0.381 24 August 2020 6.94

αcrit,8 0.301 4.25 20 September 2020 0.705

αcrit,9 0.238 1.15 6 October 2020 1.52

αcrit,10 0.330 1.03 23 October 2020 1.42

αcrit,11 0.382 0.801 8 November 2020 0.870

αcrit,12 0.419 1.70 20 November 2020 6.20

αcrit,13 0.633 1.53 23 December 2020 1.43

αcrit,14 0.651 1.51 1 January 2021 0.506

αcrit,15 0.929 1.12 22 January 2021 3.43

αcrit,16 0.647 3.41 13 February 2021 3.08

αcrit,17 0.394 0.972 5 March 2021 6.15

αcrit,18 0.441 62.8 18 March 2021 -
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Table A3. Cont.

Parameter Description Estimate Relative Standard
Error. %

Date Respective
Controls

Standard Error
(Days)

αdeath,1

Relative values of pdeath
starting at the respective
date

2.39 1.88 26 March 2020 0.164

αdeath,2 3.58 1.17 23 April 2020 0.283

αdeath,3 1.94 4.55 19 May 2020 1.45

αdeath,4 0.743 1.19 10 June 2020 0.393

αdeath,5 0.296 3.25 5 July 2020 5.72

αdeath,6 0.401 0.635 27 July 2020 6.15

αdeath,7 0.142 1.22 25 August 2020 4.51

αdeath,8 0.473 7.46 17 September 2020 1.20

αdeath,9 0.314 6.39 8 October 2020 1.56

αdeath,10 0.638 0.966 1 November 2020 2.18

αdeath,11 1.41 0.748 22 November 2020 1.17

αdeath,12 1.64 2.53 11 December 2020 1.89

αdeath,13 2.54 1.35 29 December 2020 0.499

αdeath,14 2.66 3.01 7 January 2021 6.02

αdeath,15 3.48 6.42 18 January 2021 1.43

αdeath,16 2.31 4.80 5 February 2021 0.794

αdeath,17 1.22 3.15 27 February 2021 2.315

αdeath,18 0.807 2.15 09 March 2021 3.75

αdeath,19 1.09 69.1 19 March 2021 -

Table A4. Residual errors of observables. We present the residual errors of fitting our model to the
time frame 3 March 2020 to 21 March 2021. dIM = daily incident cases, IM = cumulative, dICU = daily
occupation of ICU beds dD = daily death, D = cumulative delay. Case numbers were square root
transformed, i.e., units of values are cases to the power of 0.5.

Parameter Value for Germany Value for Saxony

adIM 3.62 0.921

aIM 5.69 1.03

adICU 1.19 0.442

adD 3.04 0.377

aD 0.99 1.14

Table A5. Parameter estimates and comparison with average priors. We present estimated parameters
of the SECIR model and initial conditions of control parameters and their respective standard errors
for Germany. We also perform a formal comparison of estimates and expected priors using t-test.

Parameter Description Posterior
Estimate

Relative Standard
Error, % Prior Value p-Value

influx Initial influx of infections into compartment E until
first interventions 3171 3.12 - -

r1 Infection rate through asymptomatic subjects 1.19 0.582 - -

r3 Transit rate for compartment E (latent time) 0.272 0.0571 1/3 0.213
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Table A5. Cont.

Parameter Description Posterior
Estimate

Relative Standard
Error, % Prior Value p-Value

r4 Transit rate for asymptomatic sub-compartments 0.636 0.734 3/5 0.429

r4,b Rate of development of symptoms after infection 0.456 2.17 1/2.5 0.346

r5 Transit rate for symptomatic sub-compartments 0.946 2.33 3/2.5 0.499

r6
Rate of development of critical state after being
symptomatic 0.186 0.405 1/5 0.457

r7 Transit rate for critical state sub-compartment 0.159 0.336 3/17 0.402

r8 Death rate of patients in critical sub-compartment 1 0.104 0.409 1/8 0.441

rb1,2
Proportionality coefficient of
inten-sifications/relaxations between b1 and b2

0.379 9.18 - -

PS,M Fraction of reported cases 0.499 0.102 1/2

pcrit
(

pcrit,0)
Probability of becoming critical after developing
symptoms (initial value) 0.0765 0.706 - -

pdeath
(

pdeath,0 ) Probability of death after becoming critical
(initial value) 0.119 1.24 - -

pdeath,S,0

Proportionality coefficient for evaluating probability
of death after developing symptoms without
becoming critical, see (A6)

0.587 8.04 - -

Appendix J. Parameter Values for Saxony

Table A6. Time points of changes in infectivity and respective values for Saxony. We used fixed
(known due to Governmental decisions or random events) and estimated time points of changes of
NPI/contact behavior and events and respective changes in infectivity of asymptomatic subjects. We
provide estimates and relative standard errors of the infectivity starting with the date mentioned
(3 to 5 column).

Numbers Type of NPI/
Behavior Change

Estimated
New Infectivity

Relative Standard
Error, % Date Source Standard

Error (Days)

1 Intensification 0.606 0.877 10 March 2020 Fixed -

2 Intensification 0.120 5.41 15 March 2020 Fixed -

3 Intensification 0.0904 1.15 22 March 2020 Fixed -

4 Relaxation 0.103 1.98 2 April 2020 Estimated 0.541

5 Intensification 0.0907 3.12 14 April 2020 Estimated 0.237

6 Relaxation 0.302 0.965 30 April 2020 Fixed -

7 Intensification 0.0606 6.08 7 May 2020 Fixed -

8 Intensification 0.0385 4.21 14 May 2020 Fixed -

9 Relaxation 0.0601 0.199 19 May 2020 Estimated 0.487

10 Relaxation 0.817 0.505 4 June 2020 Estimated 0.603

11 Intensification 0.0344 4.18 11 June 2020 Estimated 0.456

12 Relaxation 0.219 3.23 30 June 2020 Estimated 0.298
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Table A6. Cont.

Numbers Type of NPI/
Behavior Change

Estimated
New Infectivity

Relative Standard
Error, % Date Source Standard

Error (Days)

13 Intensification 0.149 1.13 16 August 2020 Estimated 0.312

14 Relaxation 0.213 2.29 26 August 2020 Estimated 0.578

15 Relaxation 0.297 0.78 4 October 2020 Estimated 0.209

16 Intensification 0.185 1.26 21 October 2020 Estimated 0.352

17 Intensification 0.152 5.93 30 October 2020 Fixed -

18 Relaxation 0.201 0.826 11 November 2020 Estimated 1.21

19 Relaxation 0.207 0.652 19 November 2020 Estimated 0.318

20 Intensification 0.201 2.13 22 November 2020 Estimated 0.554

21 Intensification 0.0672 1.87 10 December 2020 Fixed -

22 Relaxation 0.228 1.36 18 December 2020 Estimated 0.426

23 Intensification 0.0937 5.09 1 January 2021 Estimated 0.141

24 Relaxation 0.120 9.78 14 January 2021 Estimated -

25 Relaxation 0.229 10.1 5 February 2021 Estimated -

26 Intensification 0.150 11.5 15 February 2021 Estimated -

27 Relaxation 0.199 0.95 26 February 2021 Estimated -

28 Relaxation 0.210 25.7 18 March 2021 Fixed -

Table A7. Step functions of pcrit and pdeath for Saxony. We present estimates for the steps of the
functions pcrit and pdeath at the specified dates and respective standard errors for Saxony. We also
provide the standard error of the estimated time point (last column).

Parameter Description Estimate Relative Standard
Error, %

Date Respective
Controls

Standard Error
(Days)

αcrit,1

Relative values of pcrit starting at
the respective date

2.15 0.98 24 March 2020 0.34

αcrit,2 1.99 4.22 10 April 2020 0.672

αcrit,3 1.01 3.54 11 May 2020 1.25

αcrit,4 2.54 2.49 5 June 2020 3.73

αcrit,5 1.50 1.26 2 July 2020 4.36

αcrit,6 1.19 3.41 27 July 2020 0.75

αcrit,7 0.764 0.478 29 August 2020 4.93

αcrit,8 0.398 5.12 18 September 2020 2.96

αcrit,9 0.300 2.09 25 September 2020 2.12

αcrit,10 0.528 2.16 13 October 2020 0.49

αcrit,11 0.908 3.72 26 October 2020 1.15

αcrit,12 0.999 2.43 1 December 2020 5.31

αcrit,13 1.76 1.91 26 December 2020 2.06

αcrit,14 2.01 1.56 10 January 2021 0.67

αcrit,15 2.99 0.98 25 January 2021 2.15

αcrit,16 2.68 5.77 13 February 2021 4.12

αcrit,17 1.11 1.33 5 March 2021 5.11

αcrit,18 0.700 79.2 4 March 2021 -
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Table A7. Cont.

Parameter Description Estimate Relative Standard
Error, %

Date Respective
Controls

Standard Error
(Days)

αdeath,1
Relative values of pdeath starting

at the respective date 0.655 2.26 4 April 2020 0.241

αdeath,2 3.58 6.81 24 April 2020 0.335

αdeath,3 1.94 5.32 17 May 2020 1.01

αdeath,4 0.743 1.07 8 June 2020 0.619

αdeath,5 0.296 4.32 7 July 2020 5.60

αdeath,6 0.401 1.56 4 August 2020 6.13

αdeath,7 0.142 6.77 26 August 2020 4.43

αdeath,8 0.473 9.05 27 September 2020 0.95

αdeath,9 0.314 1.42 3 October 2020 1.27

αdeath,10 0.638 0.84 2 November 2020 3.62

αdeath,11 1.41 0.9 16 November 2020 1.19

αdeath,12 1.64 2.31 1 December 2020 1.63

αdeath,13 2.54 1.555 20 December 2020 0.903

αdeath,14 2.66 3.89 8 January 2021 5.52

αdeath,15 3.48 5.53 19 January 2021 1.08

αdeath,16 2.31 4.9 09 February 2021 0.383

αdeath,17 1.22 2.76 26 February 2021 2.06

αdeath,18 0.807 4.03 7 March 2021 5.34

αdeath,19 1.09 70.1 11 March 2021 -

Table A8. Parameter estimates and comparison with average priors for the parameter settings for
Saxony. We present estimated parameters of the SECIR model and initial conditions of control
parameters and their respective standard errors for the parametrization of the epidemic in Saxony.
We also perform a formal comparison of estimates and expected priors using t-test.

Parameter Description Posterior Estimate Relative Standard
Error, % Prior Value p-Value

influx Initial influx of infections into compartment E
until first interventions 68.1 6.17 - -

r1 Infection rate through asymptomatic subjects 1.61 1.32 - -

r3 Transit rate for compartment E (latent time) 0.270 0.234 1/3 0.221

r4
Transit rate for asymptomatic
sub-compartments 0.697 0.691 3/5 0.357

r4,b
Rate of development of symptoms after
infection 0.294 3.27 1/2.5 0.489

r5
Transit rate for symptomatic
sub-compartments 1.11 2.13 3/2.5 0.236

r6
Rate of development of critical state after being
symptomatic 0.170 1.46 1/5 0.495

r7 Transit rate for critical state sub-compartment 0.198 0.659 3/17 0.372



Viruses 2022, 14, 1468 35 of 37

Table A8. Cont.

Parameter Description Posterior Estimate Relative Standard
Error, % Prior Value p-Value

r8
Death rate of patients in critical
sub-compartment 1 0.140 1.33 1/8 0.393

rb1,2
Proportional coefficient of
intensifications/relaxations between b1 and b2

0.248 15.5 - -

PS,M Fraction of reported cases 0.509 5.37 1/2

pcrit
(pcrit,0)

Probability of becoming critical after
developing symptoms (initial value) 0.0794 1.76 - -

pdeath
(pdeath,0)

Probability of death after becoming critical
(initial value) 0.137 0.957 - -

pdeath,S,0

Proportionality coefficient for evaluating
probability of death after developing
symptoms without becoming critical, see (A6)

0.719 7.3 - -
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