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Roles of Gut Microbiota and Associated Metabolites in Clostridioides difficile Infection
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A b s t r a c t

Clostridioides difficile infection (CDI), is the most common healthcare problem primarily involving the colon of individuals who’s gut 
microbiota has been disrupted. Proteobacteria (officially updated and recognized as Pseudomonadota), a minor gut-associated microbial 
community within a healthy host, could serve as a metric for CDI. However, the alterations of specific members of Proteobacteria in the 
context of CDI are not thoroughly understood. Based on the summary data of microbiome from 7,738 participants in the Dutch cohort, 
linkage disequilibrium score regression (LDSC) was used to explore the causal effect of 207 gut microbiome on CDI. Secondly, we per-
formed a Mendelian randomization analysis to investigate the causal relationship between 31 microbiota taxa affiliated with Proteobacteria 
and CDI. Finally, three significant taxa (p < 0.05, OR > 1) were utilized to conduct the mediation analysis of 1,400 metabolites based on 
a two-step Mendelian randomization study (two-step MR). The inverse-variance weighted method was conducted as a primary analysis 
to estimate the causal effect, and the robustness of the results was tested via sensitivity analysis using multiple methods. Bivariate LDSC 
analysis identified a strong correlation between four populations affiliated with Proteobacteria (Pasteurellaceae, Haemophilus, Pasteurel-
lales and Haemophilus parainfluenzae) and CDI. In two-step MR, Burkholderiales order exerted detrimental effects on CDI by decreasing 
the levels of 3-hydroxylaurate (OR 0.896; 95%CI, 0.803-0.998; p = 0.047), indicating that metabolite did act as mediator between gut 
microbiota and CDI. We conducted a study to assess the relations between genetically predicted gut microbiota and metabolite levels with 
CDI. These results highlight the potential of targeting Burkholderiales and 3-hydroxylaurate as a new antimicrobial strategy against CDI.
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Introduction

Clostridioides difficile is a ubiquitous anaerobic 
Gram-positive spore-forming and toxin-producing 
bacterium. C. difficile infection (CDI), is the most com-
mon healthcare problem in the developed world (Guh 
et al. 2020; Khanna 2021). It is a disease primarily in-
volving the colon of individuals whose gut microbiome 
has been disrupted and propagated by risk exposure 
factors. Alterations in the structure and function of the 
gut microbiome in the context of CDI create a favor-
able metabolic microenvironment for the life cycle of 
C. difficile, promoting the germination, expansion, and 

virulence of this important pathogen. The available ap-
proved antibiotic-based and microbiome-based medi-
cations for CDI currently have several drawbacks (Mc-
Donald et al. 2018). Antibiotics, such as vancomycin 
or fidaxomicin, may lead to collateral damage to the 
gut microbiome and fail to improve outcomes (Sehgal 
and Khanna 2021). Fecal microbiota transplantation, 
which addresses the pathophysiology of CDI, remains 
available in limited clinical settings as part of unclear 
exact mechanisms (Bednárik et al. 2025). Therefore, 
novel microbiome restoration therapies remain vital to 
curb the unmet CDI management needs.
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Changes in the gut-associated microbial communi-
ty composition are associated with CDI, but the mech-
anisms underlying this imbalance are not thoroughly 
understood. The main taxa within the balanced gut mi-
crobial community of human hosts are the classes Bac-
teroidetes (officially updated and recognized as Bac-
teroidia) and Clostridia (phylum Bacillota) (Tap et al. 
2009). An increased abundance of Proteobacteria (of-
ficially updated and recognized as Pseudomonadota) 
has been proposed to characterize gut microbial im-
balance (Shin et al. 2015). Proteobacteria are a minor 
gut-associated microbial community within a healthy 
host. However, a bloom of Proteobacteria is observed 
in patients with inflammatory bowel disease (Morgan 
et al. 2012), colorectal cancer (Wang et al. 2012) or 
necrotizing enterocolitis (Normann et al. 2013). Pre-
vious studies have also shown that reduced abundance 
of Bacteroidetes and Firmicutes (officially updated and 
recognized as Bacillota) as well as expansion of Proteo-
bacteria were exhibited in the gut microbiota of CDI 
patients (Reeves et al. 2011; Mooyottu et al. 2017). A 
systematic search of fecal microbiota transplantation 
(FMT) found an increased abundance in Bacteroidetes 
to the detriment of Proteobacteria after fecal micro-
biota transplantation for CDI treatment (van Nood et 
al. 2013). This indicates that Proteobacteria could also 
serve as a metric for CDI, offering insights into an indi-
vidual’s susceptibility to CDI. However, the alterations 
of specific members of Proteobacteria in the context of 
CDI are not entirely understood.

Gut microbiota can participate in critical metabol-
ic processes of the host and shape the metabolic en-
vironment (van Prehn et al. 2021). The dominance of 
Bacteroidetes and Firmicutes in the human intestine 
ensures the production of metabolites that maintain 
gut homeostasis. Bacteroidetes can break down glycans 
and non-digestible carbohydrates for sugar harvest. 
Firmicutes can ferment complex carbohydrates and 
amino acids into short-chain fatty acids (SCFAs) (Hou 
et al. 2022; Gurung et al. 2024). Risk factors, such as 
antibiotic usage, alter gut microbiota’s structure, caus-
ing changes in amino acids, fatty acids, and bile acids 
and increasing susceptibility to CDI (Vliex et al. 2024). 
Therefore, in addition to the specific gut microbiome, 
metabolites could serve as the hallmark of gut micro-
biota dysbiosis in CDI.

Nevertheless, the results of previous studies are not 
always consistent. For example, in a fecal metabolome 
study from the 186-person cohort, 4-MPA (4-methyl-
pentanoic acid) was identified to be elevated in patients 
with CDI, which was consistent with its production 

by C. difficile from leucine during Stickland metabo-
lism. Noncanonical, unsaturated bile acids were also 
depleted in patients with CDI (Robinson et al. 2019). 
Another cohort study demonstrated that levels of pri-
mary bile acids, some amino acids, and fatty acids me-
tabolites increased in feces from 30 cases of CDI com-
pared with 25 non-CDI patients (Gu 2016). Diverse 
general population attributes and different analytical 
approaches across studies may explain these inconsis-
tencies. Conducting studies that are less susceptible to 
selection bias, reverse causation, and confounding ef-
fect are critical.

We speculated that a specific metabolite might me-
diate the effect of Proteobacteria on CDI. Large-sample 
genome-wide association studies (GWAS) have iden-
tified hundreds of human single nucleotide polymor-
phisms (SNPs) associated with gut microbiota, facili-
tating the exploration of causal associations between 
Proteobacteria and CDI using Mendelian randomiza-
tion (MR). In MR analysis, the alleles are randomly 
transferred from parents to offspring when the gamete 
is formed (Burgess et al. 2015).

Thus, in order to better characterize specific mem-
bers of Proteobacteria and associated metabolite mark-
ers related to CDI susceptibility, we applied genetic in-
struments to assess the relations between genetically 
predicted gut microbiota and metabolite levels with 
CDI. Specifically, we applied bivariate linkage dis-
equilibrium score regression analysis (LDSC) and MR 
analysis leveraging data from different populations of 
two ethnicities. Two-step MR extends this approach 
to ease mediation analysis within an MR framework. 
The present study aimed to investigate the detailed mi-
crobial signature of the CDI environment, especially 
Proteobacteria and the associated metabolic microen-
vironment, which will highlight therapeutic strategies 
targeting microbes or molecules that disrupt or enforce 
metabolic networks associated with CDI.

Experimental

Materials and Methods

Study design. Firstly, LDSC was used to explore 
the causal effect of 207 human gut microbial taxa on C. 
difficile. Secondly, we performed MR analysis from 31 
microbiota taxa affiliated with Proteobacteria (7 Del-
taproteobacteria class, 10 Gammaproteobacteria class, 
and 14 Betaproteobacteria class) to C. difficile. Finally, 
three significant taxa (p < 0.05, OR > 1) were utilized 
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to conduct the mediation analysis of 1,400 metabolites 
based on a two-step MR study. OR > 1 refers to the 
odds ratio (OR) of (CDI) occurrence associated with a 
per-unit increase in the abundance of specific gut mi-
crobial taxa, which indicates that a higher abundance 
of the taxon is correlated with an elevated risk of CDI. 
The diagram of the study design, the causal interpreta-
tion of Mendelian randomization, and three necessary 
assumptions were illustrated in Fig. 1. The instrumen-
tal variables (IVs) must be strongly associated with the 
exposure factor. Then, the IVs should not be associated 
with any confounders of the exposure-outcome associ-
ation. The IVs can only influence the outcome variable 
through the exposure factor (Lawlor et al. 2008; Da-
vies et al. 2018). Our study is reported following the 
Strengthening the Reporting of Observational Stud-

ies in Epidemiology Using Mendelian randomization 
guidelines (STROBE-MR) (Skrivankova et al. 2021) 
(Table SI).

Data sources. The summary data of microbi-
ome was sourced from the study by Lopera-Maya et 
al. (2022), reporting 207 taxa and 205 pathways in-
volving 7,738 participants in the Netherlands cohort, 
spanning across five phyla, ten classes, 13 orders, 26 
families, 48 genera, and 105 species. Circulating plas-
ma metabolites originated in the study by Chen et al. 
(2023), analyzing 8,299 unrelated European subjects in 
the platform of Canadian Longitudinal Study on Ag-
ing (CLSA) (Raina et al. 2019; Chen et al. 2023). Sum-
mary statistics were deposited in the GWAS Catalog 
(https://www.ebi.ac.uk/gwas) (Cerezo et al. 2025). In 
the genome-wide association analysis, accession num-

Fig. 1. Assumptions and design of the bidirectional mediation Mendelian randomization (MR) analysis.
Firstly, a two-sample bidirectional MR was performed to investigate the causal relationships between gut microbiota (exposures) and 

Clostridioides difficile infection (outcomes). Secondly, 1,400 blood metabolites (mediator) were selected for subsequent mediation analysis. 
Finally, a two-step MR analysis was conducted to detect potential mediating metabolites (Step 1, the effect of gut microbiota on metabo-

lites; Step 2, the effect of metabolites on CDI). LDSC – linkage disequilibrium score regression; CLSA – Canadian Longitudinal Study on 
Aging; IVW – inverse variance weighted; CDI – C. difficile infection
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bers for European GWASs: GCST90199621-90201020, 
which included 1,091 blood metabolites (850 known 
substances and 241 unknown entities) and 309 metab-
olite ratios. The dataset for CDI was obtained from the 
FinnGen R10 (https://storage.googleapis.com/finn-
gen-public-data-r10/summary_stats/finngen_R10_C_
DIFFICILE_ENTEROCOLITIS.gz), which included 
3,384 CDI patients and 406,048 controls. Detailed in-
formation on data sources was provided in Fig. 1 and 
Table I.

Selection of genetic instrumental variables. In 
order to ensure the accuracy of results on the causal 
link between gut microbiome and CDI, the following 
quality control steps were used to select the superior 
instrumental variables (Xiang et al. 2021). Instrumen-
tal variables (IVs) associated with microbiota traits 
were identified using a genome-wide significance 

threshold of p < 1 × 10−5 across six taxonomic levels: 
phylum, class, order, family, genus, and species. To en-
sure robust and unbiased results, several filtering cri-
teria were applied. SNPs located on chromosome 23 
and those with multiple alleles (> 2) were excluded to 
prevent confounding effects. Additionally, SNPs with 
a minor allele frequency (MAF) < 0.01 were removed. 
To account for linkage disequilibrium (LD), we ex-
cluded SNPs with r² < 0.001 and a genomic distance 
> 10,000 kb (Sudmant et al. 2015; Myers et al. 2020). 
Furthermore, to minimize horizontal pleiotropy, SNPs 
significantly associated (p < 5 × 10−8) with confound-
ers or outcome traits were excluded, though no such 
SNPs were detected in our analysis. Lastly, to mitigate 
weak instrument bias, we calculated the F-statistic for 
each exposure and retained only SNPs with an F-sta-
tistic > 10 (Ning et al. 2022). These stringent selection 

Table I
Detailed information of studies and datasets used for analysis.

Data source Phenotype Sample size Cases Population

Dutch Microbiome Gut microbial 7,738 / Netherlands

European subjects in CLSA Metabolites 8,299 / European

FinnGen R10 CDI 409,432 3,384 European

CLSA – Canadian Longitudinal Study on Aging;  CDI – C. difficile infection

criteria ensured that the chosen IVs were robust and 
suitable for Mendelian randomization analysis.

Genetic analysis to elucidate causality by linkage 
disequilibrium score regression. In order to show 
the genetic correlation between gut microbiota and 
CDI, we performed bivariate LDSC using summary 
statistics. The genetic correlation between two traits 
was estimated by regressing the LD score of each SNP 
against the effect size of the two traits (Bulik-Sullivan et 
al. 2015b). This method could generate a score reflect-
ing whether the test statistic of a biologically relevant 
variant correlates with nearby variants in high linkage 
disequilibrium without sample overlap bias (Bulik-Sul-
livan et al. 2015a; Wielscher et al. 2021).

Genetic analysis to elucidate causality by bidi-
rectional Mendelian randomization. Based on LDSC 
analysis, Proteobacteria were identified as related to 
CDI. In order to further explore a causal relationship, 
we conducted a bidirectional MR analysis to explore 
the causal relationship between the Proteobacteria and 
CDI, including 31 taxons affiliated with Proteobacte-

ria (7 Deltaproteobacteria class, 10 Gammaproteobac-
teria class, 14 Betaproteobacteria class). The inverse 
variance weighted (IVW) method is considered as the 
most accurate and powerful method for estimating 
causal effects compared to other methods when the 
number of SNPs is ≥ 2 (Burgess et al. 2013; Bowden 
et al. 2016; Choi et al. 2019). We obtained an overall 
estimate of the impact of the microbiome on the risk 
of CDI through the IVW method. If only one SNP was 
available, the Wald ratio method was selected. Addi-
tionally, weighted median, MR Egger, weighted mode, 
simple mode methods were complemented, which 
were also reported in beta (β) value with standard error 
for the continuous outcome and odds ratio (OR) with a 
95% confidence interval (CI); p < 0.05 was considered 
significant. The weighted median method can provide 
consistent estimates of the causal effects though the 
weight of invalid IVs reaches 50% (or < 50%) (Bowden 
et al. 2016). Although others do not meet the require-
ments for causal inference using MR analysis, weight-
ed mode is still available when most SNPs with similar 
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individual causal effect estimates are valid instruments 
(Ooi et al. 2019; Lopera-Maya et al. 2022).

Mediation analysis link “gut microbiota-blood 
metabolites-CDI”. Summary statistics of blood me-
tabolites obtained from 8,299 individuals of European 
ancestry covering 1,091 metabolites and 309 metab-
olite ratios were utilized. To identify potential novel 
metabolites as mediators between gut microbiome and 
CDI, we performed a two-step MR to decompose the 
direct and indirect effects of the gut microbiome and 
blood metabolites on CDI. The two-step MR assumes 
no interaction between exposure and mediator (Wang 
et al. 2023). Two estimates were calculated: the causal 
effect of the gut microbiota on the blood metabolites 
and the causal effect of the blood metabolites on CDI. 

Sensitivity analysis. We assessed horizontal pleiot-
ropy using the MR-Egger intercept and MR-PRESSO 
global tests (Bowden et al. 2015; Verbanck et al. 2018). 
The MR-PRESSO test helped to identify and exclude 
SNPs that might introduce bias. While the deviation 
of MR-Egger intercept from the origin suggested no 
evidence of horizontal pleiotropy among the selected 
IVs if p-value ≥ 0.05 (Li et al. 2023). We also assessed 
heterogeneity using Cochran’s Q test, with a p-value 
≥ 0.05 indicating the absence of heterogeneity (Bowden 
et al. 2019). Besides, leave-one-out analysis was used 
to evaluate whether the significant results were driv-
en by a single SNP (Xu et al. 2022). All MR analyses 
were conducted in R (version 4.3.2) (R Core Team 
2023), using “LdlinkR packages” (Myers et al. 2020), 
“ggplot2” (Wickham 2016), “TwoSampleMR” (Hema-
ni et al. 2018), “tidyverse” (Wickham et al. 2019), and 
“MR-PRESSO packages” (Verbanck et al. 2018).

Ethics approval and consent to participants. Our 
analysis used publicly available GWAS summary data. 
Ethical approval was not required. All participants 
have duly provided their consent forms.

Results

Genetic instrumental variables without bias were 
selected. Following the criteria for IVs selection, we 
selected several SNPs used as IVs ranging from 3 to 
14 (median, 7) for Proteobacteria, which included 31 
taxons belonging to it from a pool of 7,738 Dutch par-
ticipants (Table SII). We extracted these SNPs’ effect al-
lele, other allele, beta, SE, and p-value for MR analysis. 
Importantly, all IVs exhibited F-statistics greater than 
10, indicating the absence of weak IVs in this study.

Linkage disequilibrium score regression analysis 
confirmed the genetic correlation between Proteo-
bacteria and CDI. Bivariate LDSC analysis was per-
formed to evaluate the genetic correlation between 207 
species-level gut microbiota and CDI. Owing to lim-
itations such as low heritability and sample size, some 
species cannot be used for the above analysis (Xu et al. 
2022). Finally, we researched the estimations of genet-
ic correlation between 113 species and CDI. Bivariate 
LDSC analysis identified a strong correlation between 
four taxons affiliated with Proteobacteria (Pasteurel-
laceae, Haemophilus, Pasteurellales and Haemophi-
lus_parainfluenzae), and CDI, Veillonellaceae, affiliated 
with Firmicutes and CDI in Fig. 2 and Table SIII. 

MR analysis identified a potential causal rela-
tionship between specific taxa affiliated with Proteo-
bacteria and CDI. In MR analysis, we evaluated the 
relationships between 31 microbiomes affiliated with 
Proteobacteria and CDI based on the IVW method 
(Fig. 3A). In order to explore the risk of Proteobacte-
ria to CDI, we studied the microbiome with OR > 1. 
Significant taxa were Sutterellaceae (OR 1.284; 95%CI, 
1.041-1.583; p = 0.020), Betaproteobacteria (OR 1.355; 
95%CI, 1.137-1.614; p  =  0.001) and Burkholderiales 
(OR 1.247; 95%CI, 1.052-1.478; p = 0.011) (Fig. 3B). 
They were all positively associated with CDI. In addi-
tion, only one taxon affiliated with Proteobacteria was 
negatively correlated with CDI, Parasutterella excre-
mentihominis was demonstrated to exert a potent pro-
tective effect on CDI (OR 0.861; 95%CI, 0.744-0.995; 
p  =  0.043). We did not detect significant horizontal 
pleiotropy and heterogeneity in the MR-Egger and 
Cochrane’s Q tests. The p-values of the MR-Egger in-
tercepts were between 0.09 and 0.569 (Table SIV). The 
Q-statistics of the IVW test and MR-Egger indicated 
no notable heterogeneity (p-values between 0.445 and 
0.896) (Table SV). The “leave-one-out” analysis results 
underscored the robustness of the association between 
gut microbiome and the risk of CDI, which did not 
reveal any interference with the results attributable to 
a single SNP (Fig. S1–S3). The scatter plots illustrated 
the microbiome’s overall effect on CDI (Fig. S4–S6). 
Besides, the forest plots indicated the causal associa-
tions between the intestinal microbiome and CDI (Fig. 
S7–S9).

Mediation analysis elucidated that Burkholderi-
ales order affiliated with Proteobacteria exerted det-
rimental effects on CDI by decreasing blood metab-
olite 3-hydroxylaurate. In this two-step MR analysis, 
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blood metabolites played a mediating role from gut 
microbiota to CDI. Firstly, we mediated three signif-
icant populations (Sutterellaceae, Betaproteobacteria, 
and Burkholderiales) with 1,400 metabolites from the 
cohort of 8,299 individuals of European ancestry from 
the Canadian Longitudinal Study on Aging via two-
step MR. Then, we conducted a causal analysis of sig-
nificant metabolites with CDI. Among the three taxa 
causally associated with CDI, Burkholderiales order 
was significantly associated with metabolites based on 
the IVW method (Table II). It exerted detrimental ef-
fects on CDI by decreasing the levels of 3-hydroxylau-
rate (OR 0.896; 95%CI, 0.803-0.998; p = 0.047) (Table 
SVI–SVII), indicating that the metabolite acted as a 
mediator between gut microbiota and CDI.

Discussion

In summary, our findings suggested that Proteo-
bacteria was genetically correlated with CDI by bivar-
iate LDSC analysis. MR analysis indicated a suggestive 
genetic correlation between Sutterellaceae, Betaproteo-
bacteria, Burkholderiales (affiliated with Proteobac-
teria), and CDI. Regarding a potential mechanism of 
metabolites, we uncovered 1,400 blood metabolites as-
sociated with the three gut microbiome taxa and CDI 
using two-step MR as mediation analysis. It is suggest-
ed that Burkholderiales order exerted its detrimental 
effects on CDI by decreasing 3-hydroxylaurate, which 
may provide references for the development of future 
interventions and potential therapeutic targets.

Fig. 2. Circular heatmap of suggestive genetic correlation between gut microbes and Clostridioides difficile infection.
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Previous studies have explored the association be-
tween increased Proteobacteria and CDI. A significant 
increase of Proteobacteria in 11 CDI patients compared 
with eight healthy donors enrolled in IHU-Méditer-
ranée Infection, Marseille, France, was shown in a 
metagenomic analysis of gut microbiota (Amrane et 
al. 2019). Moreover, after fecal microbiota transplan-
tation for recurrent CDI treatment, patients (16 pa-
tients in the infusion group) from the Academic Med-
ical Center in Amsterdam, the Netherlands, showed 
an overall decrease of Proteobacteria species (Ng et 
al. 2020). However, these studies were performed in 
limited cases and in different populations. Therefore, 

we conducted a bivariate LDSC analysis to detect the 
causal relationship between gut microbiome and CDI 
based on 7,738 participants in the Netherlands cohort 
and 3,384 CDI patients. We utilized single nucleotide 
polymorphisms (SNPs) from GWAS summary statis-
tics, incorporating 7,738 microbiome samples from 
the Netherlands and 409,432 European participants 
with (CDI), ensuring robust statistical power. Linkage 
disequilibrium score regression (LDSC) was employed 
to estimate genetic heritability and correlations by le-
veraging LD patterns from GWAS data (Bulik-Sullivan 
et al. 2015). First, univariate LDSC was used to assess 
the heritability of microbial taxa based on human ge-

Table II
Metabolites as intermediates in causal effects of gut microbiota on Clostridioides difficile infection (CDI).

Exposure βe-i ORe-i Pe-i Intermediate βi-o ORi-o Pi-o Outcome βe-o ORe-o

o_Burkholderiales −0.110 0.896 0.047 3-hydroxylaurate −0.616 0.540 0.010 CDI 0.220 1.247

Fig. 3. Suggestive causal effects of Proteobacteria on Clostridioides difficile infection (CDI).
A) MR results of casual association between gut microbes belonging to Proteobacteria and CDI; 

B) Significant casual estimates from genetically predicted Proteobacteria to CDI. MR – Mendelian randomization; OR – odds ratio
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netic variation. Subsequently, bivariate LDSC quan-
tified the genetic correlation between microbial taxa 
and CDI, accounting for population stratification and 
confounding factors that could bias GWAS estimates. 
This approach ensures that our findings reflect host 
genetic influences on microbiome composition and 
disease risk rather than bacterial genomic variation 
(Bulik-Sullivan et al. 2015). Pasteurellaceae has been 
reported to be positively correlated with new onset, 
treatment-naive Crohn’s disease (Clemente et al. 2018). 
Patients with ulcerative colitis and CDI contained a 
higher relative abundance of the genus Haemophi-
lus than patients with ulcerative colitis only. Besides, 
Veillonellaceae, affiliated with Firmicutes, was also cor-
related with CDI, which was also positively correlated 
with new onset, treatment-naive Crohn’s disease (Cle-
mente et al. 2018). The important role of Proteobac-
teria in CDI is associated with the disruption of the 
gut microbiome and proinflammation of the intestine.  
The deficiency in specific IgA targeting Proteobacteria 
is correlated with the persistence of Proteobacteria in 
the inflamed gut (Mirpuri et al. 2014). However, more 
evidence is needed to illustrate the potential mecha-
nisms involved.

Proteobacteria is one of the most extensively stud-
ied bacterial phyla in various body sites, including 
the human gut and stool. Understandably, we did not 
identify the common species of Proteobacteria from 
bivariate LDSC analysis and MR analysis. MR analysis 
showed that intestinal taxa Sutterellaceae, Betaproteo-
bacteria and Burkholderiales correlated positively with 
the incidence of CDI. In a murine model, antibiotic 
amoxicillin-associated enterotypes exhibited severe 
inflammation characterized by abundant intestinal op-
portunistic pathogens, including Sutterellaceae (Zhao 
et al. 2023). Antibiotics usage is one of the most im-
portant risk factors for the occurrence of CDI. Thus,  
it is rational that Sutterellaceae plays a critical detri-
mental role in the development of CDI. Although an 
elevated abundance of Sutterellaceae was observed in 
a study of FMT performed in 17 CDI patients, the dis-
crepancy may be caused by limited cases (Konturek et 
al. 2016). Since the late 1970s, the order Burkholderi-
ales has become prevalent in clinical settings (Hobson 
et al. 1995; Voronina et al. 2015). It is reported that 
Burkholderiales affiliated with Betaproteobacteria 
were highly prevalent in inflammatory bowel disease 
mucosa (Rudi et al. 2012). The human lysozyme milk 
consumption before and during enterotoxigenic Esch-
erichia coli infection in young pigs presented decreased 
abundance of Burkholderiales, which was accompa-
nied by alleviated severity of diarrhea and mitigated 

inflammation of intestinal mucosa (Garas et al. 2017). 
Although, the studies of direct correlation between 
Burkholderiales and CDI remains limited, we specu-
lated that Burkholderiales affiliated with Betaproteo-
bacteria play an important role in the diarrhea and in-
flammation of CDI. In addition, P. excrementihominis 
affiliated with Proteobacteria was negatively correlated 
with CDI, which exerts potential protective effect. It 
is demonstrated that P. excrementihominis colonizing 
the mice intestine up-regulated the levels of secondary 
bile acids, ursodeoxycholic acid (UDCA) in peripheral 
blood (Zhou et al. 2023). Besides, UDCA was known 
to be able to arrest various aspects of C. difficile life cy-
cles in vitro and attenuate CDI related symptoms in the 
early stage of disease in vivo (Thanissery et al. 2017; 
Winston et al. 2020). The previous studies may explain 
the potent protective effect of P. excrementihominis on 
CDI.

The mediation analysis indicated that Burkholderi-
ales exerted detrimental effects on CDI through 3-hy-
droxylaurate. As a predominant component in the fat-
ty acid analysis, 3-hydroxylaurate was reported to be 
acylated with Leptospira interrogans lipid A. Then the 
complex could stimulate the production of tumor ne-
crosis factor of mouse RAW264.7 cells (Que-Gewirth 
et al. 2004). The direct correlation among 3-hydrox-
ylaurat, Burkholderiales and CDI has not been illus-
trated. Although two-step MR mimics the random-
ization process used in randomized controlled trials, 
the association should be confirmed in larger datasets 
from other genetic backgrounds. Future research in 
multi-omics investigations is also required to elucidate 
the underlying mechanism.

However, our findings have some limitations. First, 
genetic instrumental variables were selected reaching 
the threshold of p < 1 × 10−5 in order to obtain more 
comprehensive results, which did not meet the tradi-
tional significance standard (p < 5 × 10−8) (Cui et al. 
2023). In addition, the majority of people studied were 
of European ancestry, which limited the generaliz-
ability of the research findings to other ethnic groups. 
Moreover, further subgroup analysis was impossi-
ble due to the lack of demographic data such as age, 
gender, and so on. Hierarchical independence control 
and statistical correction strategies could be applied 
to address taxonomic dependencies. Specifically, the 
integration of nonindependence in cross-species com-
parative analysis, such as analysis of phylogenetically 
independent contrasts (Felsenstein 1985), generalized 
least squares (Pagel 1999), phylogenetic autoregression 
(Gittleman and Mark 1990) and phylogenetic mixed 
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models (Housworth et al. 2004), may help ensure hi-
erarchical independence in Mendelian randomization 
analysis. We plan to incorporate these approaches in 
future analyses to enhance the robustness of our find-
ings. Since Mendelian randomization is a hypothe-
sis-driven approach (Hu et al. 2024), our results require 
further validation through mechanistic experiments 
and clinical studies to establish biological relevance.

Conclusions

In summary, we investigated the genetic causal 
effects of gut microbiota, metabolites, and CDI. Our 
findings revealed some significant new causal associa-
tions, including the negative effects of Burkholderiales 
on CDI through 3-hydroxylaurate. It may help us bet-
ter understand the causal effects and identify potential 
therapeutic targets.
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