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'e generalized log-logistic distribution is especially useful for modelling survival data with variable hazard rate shapes because it
extends the log-logistic distribution by adding an extra parameter to the classical distribution, resulting in greater flexibility in
analyzing and modelling various data types. We derive the fundamental mathematical and statistical properties of the proposed
distribution in this paper. Many well-known lifetime special submodels are included in the proposed distribution, including the
Weibull, log-logistic, exponential, and Burr XII distributions.'emaximum likelihoodmethod was used to estimate the unknown
parameters of the proposed distribution, and a Monte Carlo simulation study was run to assess the estimators’ performance. 'is
distribution is significant because it can model both monotone and nonmonotone hazard rate functions, which are quite common
in survival and reliability data analysis. Furthermore, the proposed distribution’s flexibility and usefulness are demonstrated in a
real-world data set and compared to its submodels, the Weibull, log-logistic, and Burr XII distributions, as well as other three-
parameter parametric survival distributions, such as the exponentiated Weibull distribution, the three-parameter log-normal
distribution, the three-parameter (or the shifted) log-logistic distribution, the three-parameter gamma distribution, and an
exponentiated Weibull distribution. 'e proposed distribution is plausible, according to the goodness-of-fit, log-likelihood, and
information criterion values. Finally, for the data set, Bayesian inference and Gibb’s sampling performance are used to compute
the approximate Bayes estimates as well as the highest posterior density credible intervals, and the convergence diagnostic
techniques based on Markov chain Monte Carlo techniques were used.

1. Introduction

Applied statisticians use many probability distributions for
reliability and survival studies. 'e distributions could be
applied in different fields such as medicine, engineering,
economy, industrial and physical fields, and so many other
fields. Exponential distributions, generalized exponential
distributions, gamma distributions, generalized gamma
distributions, extreme value distributions, Weibull

distributions, log-logistic distributions, log-normal distri-
butions, Burr XII distributions, and generalized Weibull
distributions are among the most frequently used distri-
butions in survival and reliability analysis.

Typically, researchers in reliability and survival analysis
are concerned with the development of new probability
models. Log-logistic (LL) distribution is one of the para-
metric distributions that can be used as a life-testing dis-
tribution because of the simplicity of its cumulative
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distribution and survival function which can both be stated
in closed form and because it belongs to the Scale-Shape
family [1]. LL is one of the right-skewed, heavy-tailed
functions that can be used as an alternative to a log-normal
distribution. It resembles the log-normal distribution in
shape but has heavier tails. Log-logistic distribution is
particularly applicable to model nonmonotone (i.e., uni-
modal) hazard functions.

It is well understood that the log-logistic model is not
appropriate for modelling where the failure rate is mono-
tonic when analyzing time-to-event data with parametric
models. It is suitable to use an extension of the model which
has a monotone hazard function. Departures from the
monotonicity of distribution are typically studied in terms of
its shape or more specifically in terms of its skewness (also
referred to as asymmetry) and kurtosis.

In this study, we focus on a modification of the log-
logistic model because it resembles the log-normal distri-
bution in shape but is better suited for the application in the
analysis of survival data when dealing with incomplete data,
such as censored observations which are common in such
data [2]. 'e presence of incomplete observations causes
difficulties when using log-normal or inverse Gaussian
models, since the survival functions in these cases are
complicated. On the other hand, since the logarithms of
small positive numbers are large negative numbers, the log-
normal distribution may give undue weight to very short
survival times [1]. For the reasons stated above, we will focus
on the log-logistic model whose hazard rate exhibits the
aforementioned behaviour.

However, due to the log-logistic model’s symmetric
property, it may be inadequate for cases where the hazard
rate is heavily tailed or skewed, as well as for modelling
censored survival data [3–5]. In this study, we studied a
modification (or generalization) of the log-logistic para-
metric survival model and referring to this as the generalized
log-logistic distribution given in [6]. 'e generalized log-
logistic distribution reflects the structure of the heavy tails
and the skewness and it significantly outperformed the log-
logistic distribution in general.

In the statistical literature, with the aim of increasing the
versatility of the log-logistic distribution in modelling sur-
vival time data, different generalized forms of the distri-
bution have recently been proposed, including a new
extension of the LL distribution with applications to actu-
arial data sets [7], alpha power transformed LL distribution
[8, 9], transmuted four-parameter generalized LL distribu-
tion [10, 11], a new three-parameter LL distribution [12],
extended log-logistic distribution [13], exponentiated LL
geometric distribution [14], the LLWeibull distribution [15],
beta LL distribution [16], McDonald LL distribution [2],
transmuted LL distribution [17], Marshal-Olkin LL distri-
bution [18], the Zografos-Balakrishnan LL distribution [19],
and exponentiated LL distribution [20]. More details about
the modifications and recent generalizations of the log-lo-
gistic distribution can be found in [21].

In addition, other authors have studied the Bayesian
inference of the LL distribution and some of its general-
izations. dos Santos et al. [22] developed a Bayesian analysis

of the transmuted LL distribution. Yahaya and Dewu [23]
studied the Bayesian estimation of the scale parameter for
the LL distribution using Chi-square and Maxwell priors.
Abbas and Tang [24] studied the objective Bayesian analysis
of the LL distribution using the reference and Jeffreys prior.
Al-Shomrani et al. [25] focused on the application of the
Markov chain Monte Carlo (McMC) techniques for esti-
mating the unknown parameters of the LL distribution.
Guure et al. [26] explored the Bayesian inference of the LL
distribution for the interval-censored data. Kang et al. [27]
proposed the noninformative priors for the LL distribution.
Chaudhary and Kumar [28] studied the Bayesian estimation
of the three-parameter exponentiated LL distribution.
Akhtar et al. [29] discussed the Bayesian analysis of the LL
distribution using the Laplace approximation. Chaudhary
[30] proposed the Bayesian analysis of the two-parameter
exponentiated LL distribution.

'e log-logistic distribution has large-scale applications
in analyzing time-to-event data. 'e model is closed under
both proportionality (multiplication) of failure time and
proportionality of odds, though it is not a proportional
hazard (PH) model. However, regarding this issue, Khan
and Khosa [6] presented generalized log-logistic distribution
that belongs to the proportional hazard models. 'e pro-
posed distribution has similar properties to the 2-parameter
log-logistic distribution and approaches the Weibull dis-
tribution in limit. However, its statistical and mathematical
properties, as well as inferential procedures, have not re-
ceived attention so far. On the other hand, they discussed the
classical inference of the proposed distribution under the PH
regression framework. However, much work still has to be
done. In this paper, we focused on the Bayesian and classical
inference of the generalized log-logistic distribution as a
generalized distribution, not as a regression model.

Additionally, for the applied cases, especially in the
survival modelling, the GLLmodel could be applicable in the
following cases: (1) modelling the “asymmetric monotoni-
cally right-skewed” heavy tail data sets; (2) modelling the
“bathtub-shaped hazard rate” data sets like data set I; (3) in
“survival analysis,” the GLL distribution could be chosen for
modelling proportional hazard frameworks; (4) in the
medical field, the GLL distribution could be considered in
modelling the “bladder cancer data sets” which have “re-
versed bathtub-shaped HRF” as illustrated in data set I; and
(5) in the reliability and survival analysis, the proposed
distribution can be an alternative to theWeibull distribution
since it can be closed under both accelerated failure time
(AFT) and PH models since the Weibull distribution fails to
model unimodal data. For these based on ground reasons,
we are motivated to study and introduce the GLL
distribution.

'us, the main goal of this research article is to propose
and study a generalized log-logistic distribution, which
extends the exponential, Weibull, log-logistic, and Burr XII
distributions, with the hope that the proposed distribution
may have a better fit compared to these distributions and
other 3-parametric distributions in certain practical situa-
tions. In addition, we would provide a comprehensive ac-
count of the mathematical and statistical properties of the
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proposed model. 'e proposed model’s formulae are simple
and tractable, and, with the use of modern computer soft-
ware and its numerical capabilities, the proposed model
could be a great addition to the arsenal of applied mathe-
maticians and statisticians in the areas like medicine, en-
gineering, economics, social sciences, and biology, among
others. Finally, we discussed the Bayesianmodel formulation
of the proposed distribution.

'e rest of the paper is organized as follows. Section 2
describes the distribution functions for the GLL distribution,
its submodel distributions, and some of its basic properties.
Some mathematical properties of the GLL distribution are
derived in Section 3. Section 4 describes the maximum
likelihood for the estimation parameters of GLL distribu-
tion. Section 5 discusses the findings of a simulation study
that was conducted to estimate and compare the perfor-
mances of the proposed estimators. Section 6 presents an
analysis of a real-life data set. 'e Bayesian model formu-
lation for the proposed distribution is discussed in Section 7.
Section 8 presents the Bayesian analysis of a real-life data set
using Markov chain Monte Carlo techniques. Finally, Sec-
tion 9 summarizes the study with some concluding remarks.

2. The Generalized Log-Logistic Distribution

'e generalized log-logistic distribution is a continuous
probability distribution with positive support R on a subset
of (0, ∞) with three parameters. It is a generalization of the
two-parameter log-logistic distribution. 'e generalization
of log-logistic distribution for censored survival data can be
traced back to Singh et al. [3] who discussed a generalized
log-logistic distribution and applied it to censored survival
data and proposed a generalized log-logistic model and
introduced the shape parameter and then they used it to fit a
lung cancer data. Prentice [31] proposed a generalization for
quantile response data and discussed several of its uses.

Since many continuous probability distributions are
commonly applied for parametric models in survival analysis
like the exponential, Gompertz, Weibull, log-normal, log-
logistic, and the gamma distribution, GLL is also applicable
for survival data analysis. 'ere are a number of probability
functions that are related to continuous probability distri-
butions; we will concentrate on functions that are related to
the lifetime distributions as a random variable in this study.

2.1. Hazard (Failure) Rate Function. S'e hazard (failure)
rate function plays an important role in survival analysis. It is
the most popular function for analyzing and modelling
lifetime data because of its intuitive interpretation of the
amount of risk to fail associated with a unit time t, applicable
for describing the lifetime distribution of engineered and
other components. 'e hazard rate is more informative than
all of the other functions in lifetime distributions. Because of
this, the authors in [6] started their work by defining the
hazard rate of the GLL distribution. Cox and Oakes [32]
described the reason why the hazard rate is considered when
we are dealing with the survival data. 'ey gave a number of
reasons including the fact that hazard rate-based models are

often convenient when there is incomplete information
(censoring) or there are several types of failure rates; also
hazard rate is a special form of the intensity function, and last
but not least the hazard rate function can be derived from all
other functions that we use to describe lifetime distributions.

'e hazard rate function describes how the instanta-
neous failure rate changes over time. For the GLL distri-
bution, the hazard rate function plots are given in

h(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
, x≥ 0, k, α, η> 0, (1)

where k> 0, β> 0, η> 0 are parameters and θ � (k, α, η)′.
It can be easily seen from equation (1) that the hazard

rate function is monotonically decreasing for α≤ 1 and
unimodal when α≤ 1. 'at is, it initially increases to a
maximum at t � [(α − 1)/λα](1/α) and then decreases to zero
monotonically as t⟶∞. 'e HRF plots are shown in
Figure 1.

2.2. Submodels. 'e proposed distribution consists of a
number of important submodels that are widely used in
parametric survival modelling. 'ese include the log-logistic
distribution, the standard log-logistic distribution, the Burr
XII distribution, the Weibull distribution, and the expo-
nential distribution. 'e propositions below relate the GLL
to the log-logistic, standard log-logistic, Burr XII, Weibull,
and exponential distributions.

2.2.1. Log-Logistic Distribution

Proposition 1. Let X ∼ GLL(α, k, η). If η depends on k via k

� η, then the hazard rate function of (1) reduces to the hazard
rate function of the log-logistic distribution.

Proof. 'e hazard rate function of the generalized log-lo-
gistic distribution is given by

h(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
. (2)

If we replace η � k, it gives us

h(x; θ) �
αk(kx)

α− 1

1 +(kx)
α

􏼂 􏼃
�

αk(kx)
α− 1

1 +(kx)
α

􏼂 􏼃
, (3)

which is the hazard rate function form of a log-logistic
distribution with the two unknown parameters (k, α). When
θ � (k, α)′, k � (1/β) is the rate parameter.

It is easy to verify that the hazard rate function of the log-
logistic distribution is monotonically decreasing for 0< α≤ 1
and unimodal for α> 1 (decreases and then increases with
the maximum at x � (1/k)(α − 1)(1/α)). □

2.2.2. Standard Log-Logistic Distribution

Proposition 2. Let X ∼ GLL(α, k, η). If η depends on k via k

� η � 1, then the hazard rate function of (1) reduces to the
hazard rate function of the standard log-logistic distribution.
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Proof. 'e hazard rate function of the generalized log-lo-
gistic distribution is given by

h(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
. (4)

If we replace η � k � 1, it gives us

h(x; θ) �
α · 1(1 · x)

α− 1

1 +(1 · x)
α

􏼂 􏼃

�
α(x)

α− 1

1 + x
α

􏼂 􏼃
,

(5)

which is the hazard rate function form of a standard log-
logistic distribution with one unknown parameter (α).
Hence, the proof.

It should be noted that x> 0, is the distribution‘s
support, and α is the distribution's shape parameter. It is easy
to verify that the hazard rate function of the log-logistic
distribution is monotonically decreasing for 0< α≤ 1 and
unimodal for α> 1 (decreases and then increases with the
maximum at x � (α − 1)(1/α)). □

2.2.3. Burr XII Distribution

Proposition 3. Let X ∼ GLL(α, k, η). If η depends on k via η
� kλ− (1/α), λ> 0, then the hazard rate function of (1) reduces
to the hazard rate function of the Burr XII distribution.

Proof. 'e hazard rate function of the generalized log-lo-
gistic distribution is given by

h(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
. (6)

If we replace η � kλ− (1/α), it gives us

h(x; θ) �
αk(kx)

α− 1

1 + kλ− (1/α)
x􏼐 􏼑

α
􏼔 􏼕

�
αk(kx)

α− 1

1 + kλ− (α/α)
x
α

􏼐 􏼑􏽨 􏽩
�

αkx
α− 1

1 + x
α

􏼂 􏼃
,

(7)

which is the hazard rate function form of a Burr XII distri-
bution with two unknown parameters (α, k). Hence, the proof.

'e Burr XII hazard function is monotonically de-
creasing for α≤ 1 and upside-down bathtub shapes curve for
α> 1 (which means that it initially increases, attains a
maximum at x � (α − 1)(1/α), and then decreases to zero at
(x⟶∞). □

2.2.4. Weibull Distribution

Proposition 4. Let X ∼ GLL(α, k, η). If ηα⟶ 0, then the
hazard rate function of the GLL (1) approaches the hazard
rate function of the Weibull distribution.

Proof. If we now let ηα⟶ 0, then, from the hazard rate
function of the GLL given by

h(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
, (8)

we have that

h(x; θ) �
αk(kx)

α− 1

[1 +(0]
, (9)

which by simplifying gives

h(t; θ) � αk(kx)
α− 1

, (10)

which is a hazard function of a Weibull distribution with the
unknown parameters (α, k). 'is property of the GLL en-
ables it to handle monotonically increasing hazard satis-
factorily with α> 1 and λ close to zero (very small).

It is clear from (10) that, for 0< α< 1, the hazard rate
function decreases, for α> 1, the hazard rate function
increases, and for α � 1, the hazard rate function
decreases.

'e distribution reduces to exponential for α � 1. □

2.2.5. Exponential Distribution

Proposition 5. Similarly, if we now let α � 1, then the
hazard rate function of (10) reduces to the hazard rate
function of the exponential distribution.

Proof. From (10), we have that the hazard rate function is

h(t; θ) � αk(kx)
α− 1

, (11)

and if we replace α � 1,

h(t; θ) � k · 1(1 · t)
1− 1

, (12)

which by simplifying gives

h(t; θ) � k, (13)

which is the hazard rate function of an exponential distri-
bution. 'is property makes the exponential distribution be
inadequate to describe survival data. Hence, the proof.

'e summary of the submodels for the proposed dis-
tribution is summarized in Table 1. □
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Figure 1: 'e hazard curve of the GLL distribution.
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2.3. Ce Probability Density Function. 'e pdf of the GLL
distribution with three unknown parameters can be ob-
tained by applying the following equation and the pdf plots
are shown in Figure 2.

f(x; θ) � h(x, θ)exp − 􏽚
x

0
h(x)dx􏼚 􏼛. (14)

Simplifying gives

f(x; θ) �
αk(kx)

α− 1

1 +(ηx)
α

􏼂 􏼃
kα/ηα( )+1

, x≥ 0, k, α, η> 0. (15)

2.4. Ce Survival (or Reliability) Function. 'e survival
(reliability) function of the GLL distribution that represents
the probability that observation does not fail until t is given
below and its plots are shown in Figure 3.

S(x; θ) �
f(x; θ)

h(x; θ)
. (16)

Simplifying gives

S(x; θ) � 1 +(ηx)
α

􏼂 􏼃
− kα/ηα( ), x≥ 0, k, α, η> 0. (17)

2.5. Cumulative Distribution Function of the GLL
Distribution. 'e cumulative distribution function (CDF),
also known as the lifetime distribution function, of the GLL
distribution is of the form below and the CDF plots are
shown in Figure 4.

F(x; θ) �
1 +(ηx)

α
􏼂 􏼃

kα/ηα( ) − 1

1 +(ηx)
α

􏼂 􏼃
kα/ηα( )

, x≥ 0, k, α, η> 0,

(18)

where k> 0, β> 0, η> 0 are parameters and θ � (k, α, η)′.

2.6.CeReversedHazardRateFunction. 'e reversed hazard
rate (also known as the retro hazard) is defined as the ratio of
pdf to the corresponding CDF.'e retro hazard is written as
follows:

r(x; θ) �
f(x; θ)

F(x; θ)
. (19)

Reversed hazard rate function plays an important role in
the analysis of censored data and in the estimation of the
survival function. 'e following equation gives us the basic
relationship between hazard rate function and the reversed
hazard rate function.

r(x; θ) �
h(x; θ)S(x; θ)

1 − S(x; θ)
. (20)

'e applications of hazard rate function in survival
analysis are well known. Recently, the reversed hazard rate
function has gained popularity among applied statisticians;

Table 1: Summary of submodels from the GLL distribution.

Distributions α η k

Log-logistic distribution α η � k k � η
Weibull distribution ηα⟶ 0 ηα⟶ 0 k

Exponential distribution α � 1 η⟶ 0 k

Standard log-logistic distribution α η � k � 1 k � η � 1
Burr XII distribution α η � kλ− (1/α), λ> 0 η � kλ− (1/α), λ> 0
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Figure 2: 'e pdf curve of the GLL distribution.
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Figure 3: 'e survival curves of the GLL distribution.
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Figure 4: 'e CDF curve of the GLL distribution.
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for more information, see [33, 34]. Block et al. [33] showed
that the hazard rate function plays an essential role in the
analysis of right-censored data, while the retro hazard plays
an essential role in the analysis of left-censored data.

'e reversed hazard rate function of the GLL distribu-
tion takes the form

r(x; θ) �
f(x; θ)

F(x; θ)
�

αk(kt)
α− 1/ 1 +(λx)

α
􏼂 􏼃

kα/λα( )+1
􏼒 􏼓

1 +(λx)
α

􏼂 􏼃
kα/λα( )

.

(21)

Simplifying gives

r(x; θ) �
αk(kx)

α− 1

1 +(λx)
α

􏼂 􏼃
kα/λα( )+1

− 1 +(λx)
α

􏼂 􏼃
, x≥ 0, k, α, η> 0.

(22)

'e reversed hazard rate plots are shown in Figure 5.

2.7. Ce Cumulative Hazard Function. 'e cumulative
hazard function of the GLL distribution takes the form

H(x; θ) � − log S(x; θ) � 􏽚
x

0
h(x; θ)dx. (23)

Simplifying gives

H(x; θ) �
k
α

λα
log 1 +(λx)

α
􏼂 􏼃, x≥ 0, k, α, η> 0, (24)

where k> 0, α> 0, λ> 0 are parameters and θ � (k, α, η)′.

2.8. Ce Hazard Rate Average (FRA) Function. 'e HRA
function of X is expressed as

HRA(x; θ) �
H(x; θ)

x
�

􏽒
x

0 h(x; θ)dx

x
, x> 0, (25)

where H(x; θ) is the cumulative hazard function. An
analysis of HRA(x; θ) on t enables us to find increasing
hazard rate average and decreasing hazard rate average.

3. Some Mathematical Properties of the
GLL Distribution

In this section, we present some mathematical properties of
the GLL distribution. 'e functions that we discussed in
Section 2 are not the only ways that we can define the GLL
distribution, but there are other mathematical functions that
we can use to describe the lifetime distributions of a random
variable X. 'ese include quantile function and its related
results, moments and its related properties, rth central
moments, residual life and reversed residual life functions,
and other mathematical properties.

3.1. Ce Quantile Function and Related Results. 'e quantile
function (which is the inverse of the CDF) is crucial in
statistical and quantitative data analysis. A probability dis-
tribution can be defined in terms of either the quantile

function or the cumulative distribution function [35]. 'e
quantiles of the proposed distribution with various pa-
rameter values are given in Table 2.

Theorem 1. If T ∼ GLL(k, α, η), then the quantile function,
lower quartile, median, and the upper quartile of the GLL
distribution, respectively, are given by

Xq � F
− 1

(q; k, α, η) �
[ 1/(1 − p)]

ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
,

(26)

Xq1
�

[4/3]
ηα/kα( ) − 1􏼚 􏼛

(1/α)

η
,

(27)

Xq2
� Median �

2 ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
,

(28)

Xq3
�

4 ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
.

(29)

Proof. 'e quantile function of GLL distribution is derived
by finding the value of Q for which

1 − 1 +(ηx)
α

􏼂 􏼃
− kα/ηα( ) � p,

Xq � F
− 1

(q; k, α, η) � 1 +(ηq)
α

􏼂 􏼃
− kα/ηα( ) � 1 − p

�
1

1 +(ηq)
α

􏼂 􏼃
kα/ηα( )

� 1 − p

� 1 +(ηq)
α

􏼂 􏼃
kα/ηα( ) �

1
1 − p

� 1 +(ηq)
α

�
1

1 − p
􏼠 􏼡

ηα/kα( )

� (ηq)
α

�
1

1 − p
􏼠 􏼡

ηα/kα( )

− 1

� ηq �
1

1 − p
􏼢 􏼣

ηα/kα( )

− 1
⎧⎨

⎩

⎫⎬

⎭

(1/α)

,

∴q �
[ 1/(1 − p)]

ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
,

(30)

where p ∈ [0, 1). k> 0, α> 0, η> 0. Hence the proof.
Similarly, we can prove (27)–(29) by applying the fol-

lowing values: the lower quartile� 1/4, median� 2/4�1/2,
and the upper quartile� 3/4.

Lower quartile is
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Xq1
�

[ 4/3]
ηα/kα( ) − 1􏼚 􏼛

(1/α)

η
.

(31)

Median is

Xq2
� median �

2 ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
.

(32)

Upper quartile is

Xq3
�

4 ηα/kα( ) − 1􏼚 􏼛
(1/α)

η
.

(33)

□

3.1.1. Skewness and Kurtosis. 'e following relationship
defines the mathematical form of the Galton Skewness and
Moors Kurtosis of the GLL model with three parameters:

SK �
Q(3/4) + Q(1/4) − 2Q(2/4)

Q(3/4) − Q(1/4)
,

KM �
Q(7/8) + Q(3/8) − Q(5/8) − Q(1/8)

Q(6/8) − Q(2/8)
,

(34)

where Q describes different quartile values.
'e above equations can be determined as functions

of the GLL quantile function. 'e advantages of these
measures are that they are less sensitive in the presence of

outliers and that they exist even when the distribution is
lacking moments.

3.2. Ce Random Deviate Generation Functions. Let U be a
random variable with a uniform distribution (0, 1) and an
inverse CDF, F(.). 'en any sample drawn from F− 1(u) is
assumed to have been drawn from F(.). As a result, using
GLL (k, α, η), the random deviate can be generated as
follows:

x �
[1/(1 − u) − 1]

λα/kα( )
􏽮 􏽯

(1/α)

λ
, 0< u< 1, (35)

where u follows U(0, 1) distribution.

3.3. Ce rth Moments and Related Results. Numerous im-
portant characteristics and properties of a probability dis-
tribution such as mean, variance, kurtosis, and skewness can
be obtained from its moments. Moments are extremely
important and play a central role in statistical analysis,
especially in applications. 'e important moment functions,
such as the moments, rth moment, rth central moment,
mean, variance, skewness, and kurtosis of the proposed
distribution, are presented.

Theorem 2. If T ∼ GLL (k, α, η), then the rth power,
negative moments, and logarithmic moments are given,
respectively, by

Table 2: Quantiles of the proposed distribution for different parameter values.

Quantiles
(k, α, η)

(0.5, 0.5, 0.5) (5.0, 1.5, 1.5) (4.0, 4.0, 2.5) (3.0, 2.0, 3.0) (5.0, 3.0, 2.0)
0.1 0.0247 0.0449 0.1427 0.1111 0.0945
0.2 0.1250 0.0745 0.1725 0.1667 0.1216
0.3 0.3673 0.1026 0.1945 0.2182 0.1424
0.4 0.8889 0.1314 0.2134 0.2722 0.1608
0.5 1.9999 0.1627 0.2312 0.3333 0.1783
0.6 4.4999 0.1985 0.2489 0.4082 0.1961
0.7 10.8889 0.2421 0.2681 0.5092 0.2155
0.8 32.0000 0.3006 0.2906 0.6667 0.2385
0.9 162.0000 0.3972 0.3222 1.0000 0.2707

0
0.0
0.5
1.0
1.5
2.0

RH
RF

1 2

x

3 4 5

α = 1.5, κ = 2.95, η = 1.5

α = 2.5, κ = 1.5, η = 1

α = 0.5, κ = 1.5, η = 1.55

α = 0.5, κ = 2.5, η = 1.25

α = 5, κ = 3, η = 1.5

α = 1.5, κ = 2, η = 1.5

Figure 5: 'e reversed hazard rate curves of the GLL distribution.
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E T
r

( 􏼁 �
k
α

ηα+r

Γ k
α/ηα( 􏼁 − (r/α)( 􏼁Γ((r/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

, for
αk

α

ηα
> r,

(36)

E T
− r

( 􏼁 �
λα+r

k
α

Γ k
α/ηα( 􏼁 + 1( 􏼁

Γ k
α/ηα( 􏼁 − (r/α)( 􏼁Γ((r/α) + 1)

. (37)

Proof. We have

E T
r

( 􏼁 � 􏽚
∞

0
t
r
f(t; k, α, η)dt � 􏽚

∞

0
t
r αk(kt)

α− 1

1 +( ηt)
α

􏼂 􏼃
kα/ηβ( )+1

dt �
αk

Γ k
α/ηα( 􏼁 + 1( 􏼁

􏽚
∞

0
t
r (kt)

α− 1

1 +( ηt)
α dt

�
k
α

ηα+r

Γ k
α/ηα( 􏼁 − (r/α)( 􏼁Γ((r/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

, for
αk

α

ηα
> r.

(38)

Similarly, we can prove (37). □

3.3.1. Mean and Variance

Corollary 1. If T ∼ GLL (k, α, η), then the mean and
variance are given, respectively, as follows.

�e mean of the GLL distribution is

μ � E(T) �
k
α

ηα
Γ k

α/ηα( 􏼁 − (1/α)( 􏼁Γ((1/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

. (39)

'is is provided that (αkα/ηα)> 1.
�e Variance of the GLL distribution is

σ2 � V(T) � E T
2

􏼐 􏼑 − (E(T))
2

�
k
α

ηα+2
Γ k

α/ηα( 􏼁 − (2/α)( 􏼁Γ((2/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

−
k α

ηα
Γ kα/ηα( 􏼁 − (1/α)( 􏼁Γ((1/α) + 1)

Γ kα/ηα( 􏼁 + 1( 􏼁
􏼠 􏼡

2

.

(40)

'is is provided that (αkα/ηα)> 2.

3.4. Ce rth Central Moments

Corollary 2. If T ∼ GLL (k, α, η), then the cumulants of the
first, second, and rth central moments, are given, respectively,
by

c1 � μ1′ � E(T) �
k
α

ηα
Γ k

α/ηα( 􏼁 − (1/α)( 􏼁Γ((1/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

,

c2 � μ2′ − μ2′1 � E T
2

􏼐 􏼑 − (E(T))
2

�
k
α

ηα+2
Γ k

α/ηα( 􏼁 − (2/α)( 􏼁Γ((2/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

−
kβ

ηα
Γ kα/ηα( 􏼁 − (1/α)( 􏼁Γ((1/α) + 1)

Γ kα/ηα( 􏼁 + 1( 􏼁
􏼠 􏼡

2

,

cr � μr
′ − 􏽘

r− 1

n�1

r − 1

n − 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠cn μr− m
′ �

k
α

ηα+r

Γ k
α/ηα( 􏼁 − (r/α)( 􏼁Γ((r/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

− 􏽘
r− 1

n�1

r − 1

n − 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠cn

k
α

ηα+(r− n)

Γ k
α/ηα( 􏼁 − ((r − n)/α)( 􏼁Γ(((r − n)/α) + 1)

Γ k
α/ηα( 􏼁 + 1( 􏼁

.

(41)
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Hence, from Corollary 2, we can derive the skewness and
kurtosis of the GLL distribution by computing, respectively:

Skewness �
c3

σ2􏼐 􏼑
(3/2)

,

Kurtosis �
c4

σ2􏼐 􏼑
2.

(42)

3.5. Residual and Reverse Residual Life. 'e residual life has
broader applications in survival analysis and risk manage-
ment. 'e residual lifetime of the GLL random variable is
calculated as follows:

R(t) (x) �
S(x + t)

S(t)
,

R(t) (x) �
1 +(η(x + t))

α
􏼂 􏼃

− kα/ηα( )

1 +(ηt)
α

􏼂 􏼃
− kα/ηα( )

.

(43)

In addition, the reverse residual life of the generalized
log-logistic random variable can be calculated as follows:

􏽢R(t) (x) �
S(x − t)

S(t)
,

􏽢R(t) (x) �
1 +(η(x − t))

α
􏼂 􏼃

− kα/ηα( )

1 +(ηt)
α

􏼂 􏼃
− kα/ηα( )

.

(44)

From Table 3, the GLL distribution is clearly numerically
versatile in terms of means and variance. Furthermore, the
values of CS show that it can be right-skewed, nearly
symmetrical, or slightly left-skewed. 'e CK values show
that the GLL distribution can be mesokurtic, leptokurtic, or
platykurtic. All of these characteristics demonstrate the GLL
distribution flexibility, which remains appealing for mod-
elling purposes.

'e mean and variance plots for different values of alpha
and kappa parameters are shown in Figure 6, while the
skewness and kurtosis plots are shown in Figure 7.

4. Maximum Likelihood Estimation (MLE)

In this section, the unknown parameters of the generalized
log-logistic distribution based on a complete sample are
estimated using the maximum likelihood method. Let
X1, X2, . . . , Xn indicate a random sample of the complete
GLL data, and then the sample’s likelihood function is
given as

L � 􏽙
n

i�1
f xi, α, k, η( 􏼁 ,

L(x; α, k, η) � 􏽙

n

i�1

αk kxi( 􏼁
α− 1

1 + ηxi( 􏼁
α

􏼂 􏼃
kα/ηα( )+1

.

(45)

'e log-likelihood function may be expressed as

ℓ � n log(αk) +(α − 1) 􏽘
n

i�1
log kxi( 􏼁 − 􏽘

n

i�1
log 1 + ηxi( 􏼁

α
􏼂 􏼃

−
k

η
􏼠 􏼡 􏽘

n

i�1
log 1 + ηxi( 􏼁

α
􏼂 􏼃.

(46)

By taking the first derivatives of the log-likelihood
function in equation (48) with respect to α, k, and η and
fixing the outcome to zero, we have

zℓ
zα

�
n

α
+ 􏽘

n

i�1
log kxi( 􏼁 − 􏽘

n

i�1

ηxi( 􏼁
αlog ηxi( 􏼁( 􏼁

1 + ηxi( 􏼁
α

􏼂 􏼃
􏼨 􏼩

−
k

η
􏼠 􏼡 􏽘

n

i�1

ηxi( 􏼁
αlog ηxi( 􏼁( 􏼁

1 + ηxi( 􏼁
α

􏼂 􏼃
􏼨 􏼩,

(47)

zℓ
zk

�
n

k
+ nk(α − 1) −

1
η

􏽘

n

i�1
log 1 + ηxi( 􏼁, (48)

zℓ
zη

� − 􏽘
n

i�1

ηxi( 􏼁
αlog ηxi( 􏼁( 􏼁

1 + ηxi( 􏼁
α

􏼂 􏼃
􏼨 􏼩 −

k

η2
􏽘

n

i�1

ηxi( 􏼁
αlog ηxi( 􏼁( 􏼁

1 + ηxi( 􏼁
α

􏼂 􏼃
􏼨 􏼩.

(49)

It is worth noting that the MLEs 􏽢α, 􏽢k and 􏽢η of α, k, and η,
respectively, can be obtained by equating the results to zero
and numerically solving the system of nonlinear equations.
Because the expected information matrix is complicated, the
observed information matrix J(θ) is used to construct
confidence intervals for the model parameters. 'e observed
information matrix is given by

J(θ) � −

z
2ℓ

z
2α

z
2ℓ

zα zk

z
2ℓ

zα zη

z
2ℓ

z
2
k

z
2ℓ

zk zz

z
2ℓ

z
2η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (50)

where θ � (α, k, η)′. When the usual regularity conditions
are met and the parameters are within the parameter space’s
interior but not on the boundary,

�
n

√
(� θ − θ) converges in

distribution to N3(0, I− 1(θ)), where I(θ) is the expected
information matrix. When I(θ) is replaced by the observed
information matrix evaluated at J(θ), the asymptotic be-
haviour remains valid. 'e asymptotic multivariate normal
distribution N3(0, J− 1(θ)) can be used to generate 100(1 −

τ)% two-sided confidence intervals for the model parame-
ters, where τ is the significant level.

5. Monte Carlo Simulation Study

In this section, we assess the performance of the MLEs
estimators for a finite sample of size n using a Monte Carlo
simulation study. 'e simulation study based on the
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generalized log-logistic distribution is carried out to ex-
amine the average biases (ABs), the mean square errors
(MSEs), the root mean square errors (RMSEs), and
maximum likelihood estimates (MLEs) for the model
parameters α, k, and η. 'e simulation experiment was
carried out using a variety of simulations with varying
sample sizes and parameter values. To generate random
samples for the GLL, the quantile function is given in
equation [26]. 'e simulation study was repeated 1500
times, each with sample sizes n � 50, 100, . . . , 1500, and
the following parameter scenarios in set I: α � 0.9, k � 0.5
and η � 2.5, and the following parameter scenarios in set II:
α � 0.8, k � 0.4 and η � 2.0.

'e MLEs of the GLL model are determined via the
nlminb () R-function with the argument meth-
od � “BFGS”; see supplementary materials (available here).
For each piece of simulated data, say, (􏽢α, 􏽢k, 􏽢η) for
i � 1, 2, . . . , 1000, the AB, RMSE, and MSE of the pa-
rameters were computed by

AB �
1
N

􏽘

N

i�1
(􏽢θ − θ),

MSE �
1
N

􏽘

N

i�1
(􏽢θ − θ)

2
,

RMSE �

������������

1
N

􏽘

N

i�1
(􏽢θ − θ)

2

􏽶
􏽴

,

(51)

where θ � α, k and η.
'e MLE, AB, and RMSE values of the parameters

α, k and η are displayed from various sample sizes. Based on
these findings, we conclude that the MLEs perform quite
well in estimating the model parameters and that the esti-
mates are fairly stable and are nearer to the true values for
these sample sizes. Table 4 and Figures 8–11 show that as the
sample size increases, the MSE and RMSE decrease as ex-
pected. Furthermore, as the sample size increases, the AB

Table 3: 1st five moments, standard deviation, skewness, and kurtosis of the GLL distribution for some parameter values.

Moments
(k, α, η)

(0.5, 0.5, 0.5) (1.0, 1.5, 1.5) (1.5, 2.0, 2.5) (2.0, 5.0, 3.0) (1.0, 1.0, 2.0) (4.0, 4.5, 0.2) (5.0, 4.0, 0.5)
μ1′ 0.1034 0.2065 0.2432 0.2795 0.1547 0.2281 0.1813
μ2′ 0.0567 0.1292 0.1482 0.1741 0.0893 0.0554 0.0354
μ3′ 0.0388 0.0925 0.1036 0.1204 0.0619 0.0141 0.0073
μ4′ 0.0294 0.0715 0.0787 0.0900 0.0471 0.0037 0.0016
μ5′ 0.0237 0.0581 0.0631 0.0711 0.0380 0.0010 0.0004
SD 0.2146 0.2943 0.2984 0.3098 0.2557 0.0575 0.0509
CV 2.0743 1.4250 1.2270 1.1081 1.6529 0.2521 0.2805
CS 2.3743 1.1784 0.9109 0.6100 1.6648 − 0.1784 − 0.0871
CK 7.8842 3.0318 2.5240 2.0238 4.6628 2.8081 2.7479
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Figure 6: 'e mean and variance plot for several combinations of alpha and kappa parameters.
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Figure 7: 'e skewness and kurtosis plot for several combinations of alpha and kappa.
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decreases. In addition, the MLEs of the parameters of the
model are very close to the true value. As a result, the
maximum likelihood estimates and their asymptotic results
can be applied to construct confidence intervals for the
model parameters even for a small sample size.

6. Data Analysis

In this section, the proposed distribution is fully applied to
real-world data set which is taken from literature to dem-
onstrate the ability of the new model. We compare the
proposed distribution with the other three parametric
survival distributions including gamma, log-normal, log-
logistic, exponentiated Weibull, and the Weibull

distribution. Also, we have compared the GLL distribution
with some of its submodels with two-parameter distribution,
namely, Weibull, log-logistic, and the Burr XII distributions.

'e density functions of the fitted models are as follows.

(1) Weibull distribution:

f(t) � αk(kt)
α− 1 exp − (kt)

α
􏼈 􏼉. (52)

(2) Log-logistic distribution:

f(t) �
αk(kt)

α− 1

1 +(kt)
α

􏼂 􏼃
2. (53)

(3) Burr XII distribution:

Table 4: Monte Carlo simulation results for the GLL distribution: MLE, AB, MSEs, and RMSEs.

Parameters n
I II

MLE AB RMSE MLE AB RMSE

α

50 2.320 1.420 5.273 2.330 1.530 7.149
100 1.281 0.381 2.386 1.097 0.297 2.263
300 0.995 0.095 1.369 0.937 0.137 1.512
600 0.921 0.021 0.5207 0.840 0.040 0.619
900 0.908 0.008 0.067 0.804 0.004 0.058
1200 0.905 0.005 0.060 0.803 0.003 0.049
1500 0.904 0.004 0.054 0.804 0.004 0.045

k

50 1.246 0.746 2.306 1.217 0.817 2.802
100 0.792 0.292 1.235 0.613 0.213 1.093
300 0.571 0.071 0.665 0.463 0.063 0.467
600 0.511 0.011 0.135 0.422 0.022 0.199
900 0.508 0.008 0.095 0.405 0.005 0.081
1200 0.507 0.007 0.082 0.404 0.004 0.066
1500 0.505 0.005 0.073 0.405 0.005 0.063

η

50 3.280 0.780 3.404 3.033 1.033 3.944
100 2.780 0.280 1.800 2.281 0.281 1.614
300 2.612 0.112 0.904 2.056 0.056 0.806
600 2.554 0.054 0.588 2.046 0.046 0.543
900 2.542 0.042 0.500 2.019 0.019 0.442
1200 2.526 0.026 0.409 2.014 0.014 0.360
1500 2.520 0.020 0.370 2.030 0.030 0.340
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Figure 8: Plots for MLEs and biases of the GLL model for set I of the table.
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f(t) �
αkt

α− 1

1 + t
α

􏼂 􏼃
− k− 1. (54)

(4) Exponentiated Weibull distribution:

f(t) � αkλ(kt)
α− 1 1 − exp − (kt)

α
􏼈 􏼉( 􏼁

λ− 1 exp − (kt)
α

􏼈 􏼉.

(55)

(5) 'ree-parameter log-logistic distribution (or shifted
log-logistic distribution):

f(t) �
α/β((t − μ)/β)

α− 1

1 +((t − μ)/kβ)
α

􏼂 􏼃
2. (56)

(6) 'ree-parameter log-normal distribution:

f(t) �
α
β

t − μ
β

􏼠 􏼡

α− 1

exp −
t − μ
kβ

􏼠 􏼡

α

􏼨 􏼩. (57)

(7) 'ree-parameter Weibull distribution:

f(t) �
exp − (1/2)((log(t − μ) − α)/β)

2
􏽮 􏽯

���
2π

√
β(x − μ)

. (58)

(8) 'ree-parameter Gamma distribution:

f(t) �
(t − μ)

α− 1 exp − ((t − μ)/β)

βαΓ(α)
, (59)

where t> μ.

10

5

M
SE 15

20

25

Plot of MSE vs n

n

1000 15000

0

500

κ = 0.5

α = 0.9

η = 2.5

2

1

M
SE 3

4

5

Plot of RMSE vs n

n

1000 15000

0

500

κ = 0.5

α = 0.9

η = 2.5

Figure 9: Plots for MSEs and RMSEs of the GLL distribution for the values of set I in the table.
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Certain analytical measures are taken into account in
order to determine which distribution best fits the applied
data. 'ese analytical measures include four discrimination
measures: AIC (Akaike Information Criterion), CAIC
(Consistent Akaike Information Criterion), BIC (Bayesian
Information Criterion), and HQIC (Hannan-Quin Infor-
mation Criterion). In addition, there are two goodness-of-fit
tests: Anderson–Darling (A∗) and Cramer-von Mises (W∗).

'e AIC is
AIC � 2k − 2l. (60)

'e BIC is

BIC � k ln(n) − 2l. (61)

'e CAIC is

CAIC �
2nk

n − k − 1
− 2l. (62)

'e HQIC is

HQIC � 2k ln(ln(n)) − 2l, (63)

where l represents the log-likelihood function evaluated as
the MLEs, n denotes the sample size, and k denotes the
number of model parameters. 'e goodness-of-fit measures
under consideration are as follows.

'e Anderson–Darling (A∗) test statistic is given by

A
∗

� − n −
1
n

􏽘

n

i�1
(2l − 1) × ln G Xi( 􏼁 + ln 1 − G Xn− i+1( 􏼁􏼈 􏼉􏼂 􏼃.

(64)

'e Cramer-von Mises (W∗) test statistic is given by

W
∗

�
1
12n

+ 􏽘

n

i�1

2i − 1
2n

+ G Xi( 􏼁􏼔 􏼕
2
, (65)

wherexi is the ith observation in the sample and n is the sample
size; xi is calculated when the data is sorted in ascending order.

'e best model is the one with the lowest AIC, BIC,
CAIC, and HQIC, as well as the A∗, W∗, and K-S tests.
Moreover, the best model is also chosen as the one having
the highest value of the log-likelihood function, and p values
for the K-S statistics are also used to compare the com-
petitive models.

6.1. Likelihood Ratio Test for Submodels. 'e GLL distri-
bution has five submodels, namely, log-logistic distribution,
Weibull distribution, Burr XII distribution, exponential
distribution, and the standard log-logistic distribution.
Hence, we have employed the likelihood ratio criterion to
test the following hypotheses:

(1) H0: ηα⟶ 0; that is, the sample is from Weibull
distribution. H1: ηα ⟶not 0; that is, the sample is
GLL

(2) H0: η � k; that is, the sample is from log-logistic
distribution. H1: η≠ k; that is, the sample is GLL

(3) H0: kλ− (1/α), λ> 0; that is, the sample is from Burr
XII distribution. H1: kλ− (1/α), λ≤ 0; that is, the
sample is GLL

(4) H0: η � k � 1; that is, the sample is from the stan-
dard log-logistic distribution. H1: η≠ 1, k≠ 1; that is,
the sample is GLL

(5) H0: η � 0&α � 1; that is, the sample is from an
exponential distribution. H1: η≠ 0&α≠ 1; that is, the
sample is GLL

'e likelihood ratio test (LRT) is given by

LR � − 2 ln
L 􏽢θ
∗
; x􏼐 􏼑􏼐 􏼑

(L(􏽢θ; x))
, (66)

where 􏽢θ
∗

represents the restricted Maximum likelihood
estimates under the null hypothesis H0 and 􏽢θ represents the
unrestricted Maximum likelihood estimates under the
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Figure 11: Plots for MSEs and RMSEs of the GLL distribution for the values of set II in the table.
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alternative hypothesis H1. Under the null hypothesis, the
LRTfollows Chi-square distribution with degrees of freedom
(df) (dfalt − dfnull). If the p value is less than 0.05, the null
hypothesis is rejected.

6.2. An Application to Bladder Cancer Data Set. 'e fol-
lowing real-world data set is used to demonstrate the
proposed methodology.'e data in Table 5 below show the
remission times (in months) of a sample of 128 bladder
cancer patients. 'e data set is available in [36]. 'e de-
scriptive statistics for the data set are shown in Table 6 and
the likelihood ratio test statistics for the data set are given
in Table 7.

For data set I, the asymptotic variance-covariance matrix
for the estimated GLL parameters is given by

J
− 1

�

3.0929 × 10− 4 1.7255 × 10− 3 5.8513 × 10− 4

1.7255 × 10− 3 3.1612 × 10− 2 5.9347 × 10− 3

5.8513 × 10− 4 5.9347 × 10− 3 1.5958 × 10− 3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(67)

'e information criterion values in Table 8 and the
goodness-of-fit tests in Table 9 both demonstrate the su-
periority of the proposed model over the other competing
models.

'e estimated pdf and CDF of the proposed distribution
corresponding to the real-world data set are shown in
Figure 12 and the Kaplan–Meier and PP plots for the
proposed distribution are shown in Figure 13.

6.2.1. TTT Plot. 'e total time test (TTT) plot plays a central
role in determining the best model to fit the given data in
terms of the hazard rates. 'is plot depicts the various forms
of the hazard rate. A straight line on the TTT plot indicates
that the given data has a constant hazard rate. If the plot is
convex, the hazard rate will be decreased; if it is concave, the
hazard rates will be increased.'e plot for the bathtub shape
is first convex and then concave. Similarly, if the hazard rate
has an inverted bathtub shape, it will increase first (or
concave) and then decrease (or convex). 'e TTT plot is
calculated by using the following formula:

G
r

n
􏼒 􏼓 �

􏽐
r
i�1 xi: n +(n − r)xi: n

􏽐
r
i�1 xi: n

, r � xi: n � 1, 2, . . . , n,

(68)

where xi: n are the order statistics.
'e TTT and box plots of the data set are presented in

Figure 14. 'ese plots indicate that the empirical hazard rate
function of the 1st data set is bathtub shape, monotonically
increasing.

'e estimated fitted pdfs and CDFs of data set I for the
competitive models are shown in Figure 15.

7. Bayesian Model Formulation

Given a set of data x � (x1, x2, . . . , xn) from GLL (α, k, η),
the likelihood function of the model is given by

L(α, k, η|x) � (αk )
n

􏽙

n

i�1
kxi( 􏼁

α− 1
􏽙

n

i�1
1 + ηxi( 􏼁

α
􏼂 􏼃

− kα/ηα( )+1( )
.

(69)

'e Bayesian model is built by specifying the prior
distribution for the model parameters α, k and η and then
multiplying with the likelihood function L(α, k, η|x) for the
given data x � (x1, x2, . . . , xn) to obtain the posterior
distribution function using the Bayes theorem. 'e prior
distribution of α, k and η is denoted as p(α, k, η).

'e joint posterior is

p(α, k, η|x)∝L(α, k, η|x)p(α, k, η). (70)

7.1. Prior Distribution. We assumed independent non-
informative gamma priors for the parameters of the
proposed model in this study due to the flexibility of
gamma distributions in accommodating many possible
shapes for the types of parameters involved in the pro-
posed distribution. Furthermore, they enable efficient
posterior calculations and the recovery of the non-
informative distribution for each parameter. Many re-
search papers in the literature consider taking these priors
into account (see [28, 37–41]).

For themodel parameters, we assume independent gamma
priors: α ∼ G(a1, b1), k ∼ G(a2, b2), and η ∼ G(a3, b3).

p(α) �
b

a1
1
Γ a1( 􏼁

αa1− 1 exp − b1α( 􏼁, α> 0, a1 > 0, b1 > 0,

p(k) �
b

a2
2
Γ a2( 􏼁

k
a2− 1 exp − b2k( 􏼁, α> 0, a2 > 0, b2 > 0,

p(η) �
b

a3
3
Γ a3( 􏼁

ηa3− 1 exp − b3η( 􏼁, η> 0, a3 > 0, b3 > 0.

(71)

Hence, we have

p(α, k, η) � p(α)p(k)p( η). (72)

7.2. Posterior Distribution. 'e posterior expression can be
obtained, up to proportionality, by multiplying the likeli-
hood by the prior, and this can be written as

p(α, k, η | x)∝ αa1+n− 1
k

a2+n− 1ηa3+n− 1
e

− b1α+b2k+b3η( )L1,

(73)

where

L1 � (αk )
n

􏽙

n

i�1
kxi( 􏼁

α− 1
􏽙

n

i�1
1 + ηxi( 􏼁

α
􏼂 􏼃

− kα/ηα( )+1( )
. (74)

'e posterior is complicated, and there are no closed-
form inferences. As a result, we, propose using McMC
techniques to simulate samples from the posterior, allowing
for simple sample-based inferences.
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Table 5: 'e remission times (in months) of a sample of 128 bladder cancer patients.

3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75,
4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 0.08,
2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.5, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64,
5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.00,
3.36, 6.93, 8.65, 12.63, 22.69.

Table 6: Descriptive statistics of data set I.

Mean Median Mode Variance Skewness Kurtosis Minimum Maximum
9.365 6.395 5 110.435 3.286 15.481 0.08 79.05

Table 7: Likelihood ratio test statistic for data set I.

Distribution Hypothesis LRT p values
W2 H0: ηα⟶ 0 vsH1: H0 is false 8.676 0.003
LL2 H0: ηα � k vsH1: H0 is false 10.819 0.001
Burr XII H0: kλ− (1/α), λ> 0 vsH1: H0 is false 87.472 <0.001
Ex H0: η � 0&α � 1 vsH1: H0 is false 9.182 0.010
Standard LL H0: η � k � 1 vsH1: H0 is false 190.150 <0.001

Table 8: Information criterion for data set I.

Distribution AIC BIC CAIC HQIC
GLL 825.564 834.120 825.756 829.040
LN3 826.723 835.279 826.916 830.199
LL2 826.937 835.641 827.033 829.254
ExpW 827.393 835.949 827.586 830.869
LL3 827.458 836.014 827.651 830.934
G3 831.955 840.511 832.148 835.431
W2 832.163 837.868 832.259 834.481
W3 832.665 841.221 832.858 836.141
Burr XII 910.959 916.663 911.055 913.276

Table 9: MLE estimators of the model parameters, the log-likelihood, and goodness-of-fit statistics for data set I.

Distributions Estimates (SEs) ℓ W∗ A∗ K − S (p value)

GLL (α, kη)
α� 1.410 (0.174)

−409.78 0.019 0.128 0.034
(0.999)k � 0.134 (0.017)

η� 0.077 (0.038)

ExpW (α, kλ)
α� 0.275 (0.146)

− 410.70 0.045 0.291 0.044
(0.967)k � 0.676 (0.136)

λ� 2.636 (1.161)

LL3 (α, β, c)
α� 0.535 (0.061)

− 410.73 0.019 0.135 0.038
(0.993)β� 1.863 (0.106)

μ� − 0.293 (0.358)

LN3 (α, β, c)
α� 0.877 (0.090)

− 410.36 0.017 0.115 0.029
(0.998)β� 1.925 (0.111)

μ� − 0.623 (0.372)

G3 (α, β, c)
α� 1.098 (0.134)

− 412.98 0.125 0.778 0.067
(0.618)β� 8.424 (1.238)

μ� 0.075 (0.018)

W3 (α, β, c)
α� 1.031 (0.072)

− 413.33 0.134 0.839 0.080
(0.387)β� 9.743 (0.908)

μ� 0.077 (0.013)

W2 (α, β) α� 1.049 (0.068)
− 414.08 0.131 0.784 0.071

(0.545)k � 9.576 (0.854)

BXII (α, β) α� 2.342 (0.356)
− 453.48 0.752 4.564 0.251

(<0.005)k � 0.233 (0.040)

LL2 (α, β) α� 0.578 (0.043)
− 411.47 0.043 0.310 0.041

(0.984)k � 1.805 (0.088)
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7.3. Gibbs Sampler: Algorithm. Markov chains require a
stationary distribution in order to perform Markov chain
Monte Carlo calculations. 'ese chains can be built in a
variety of ways. Over the last decade, the following Monte
Carlo sampling techniques for assessing high-dimensional
posterior integrals have already been developed. Others are
Metropolis-Hastings’s sampling, Monte Carlo importance
sampling, Gibb’s sampling, and others. 'e most popular

McMC sampling algorithm in the Bayesian survival infer-
ence computation literature is Gibbs’ sampling, which is
primarily a special case of Metropolis-Hastings’s sampling.
Gibb’s sampling is preferred in high-dimensional numerical
computation.

By using Gibbs’s sampling, we only need to know the full
conditional distribution. To carry out Gibbs’s sampling, the
basic scheme is as follows:
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Figure 12: Estimated pdf and CDF of the GLL distribution corresponding to data set I.
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Step 1: compute the posterior distribution, up to
proportionality, and specify the full conditionals, using
equation (71), of the model parameters α, η and k as
follows.

(i) Full conditional of α given η, k andx:

p(α|η, k, x )∝ αa1+n− 1
e

− b1α( )L1. (75)

(ii) Full conditional of k given α, η andx:

p(k|α, η, x)∝ k
a2+n− 1

e
− b2k( )L1. (76)

(iii) Full conditional of η given α, k andx:

p(η|α, k, x)∝ ηa3+n− 1
e

− b3η( )L1. (77)

Step 2: select an initial value θ(0) � (α(0), k(0), η(0)) to
start the chain.
Step 3: suppose that, at the ith step, θ � (α, η, k) takes
the value θ(i) � (α(i), k(i), η(i)); then, from full condi-
tionals, generate

α(i+1)
, fromp α|k

(i)
, η(i)

, x􏼐 􏼑,

k
(i+1)

, fromp k|α(i+1)
, η(i)

, x􏼐 􏼑,

η(i+1)
, fromp η|α(i+1)

, k
(i+1)

, x􏼐 􏼑.

(78)

Step 4: this completes a transition from θ(i) to θ(i+1).
Step 5: repeat Step 3 N times.

8. Bayesian Analysis

In this work, we assumed the independent gamma priors for
α ∼ G(a1, b1), k ∼ G(a2, b2), and η ∼ G(a3, b3) with hyper-
parameter values (a1 � b1 � a2 � b2 � a3 � b3 � 1.0).

8.1. Convergence Diagnostics. 'e proposed model is built
with the goal of calculating Bayesian estimates for GLL
parameters using the McMC method. Due to the Ergodic
property of the Markov chain, all inferences are based on the
assumption that it will converge. Hence, the McMC con-
vergence diagnostic is crucial. If the simulated sample gives
an acceptable approximation for the posterior density, the
inferences are correct. Several convergence diagnostic an-
alyses are used to determine whether the chains have
converged, including the following.

8.1.1. Geweke’s Convergence Diagnostic. Geweke’s diagnos-
tic, also called Geweke’s z-score diagnostic, focuses on
comparing the first and last parts of a chain. It is, in fact, a
frequentist comparison, of means, with 95 percent of the
values falling between − 2 and 2, as proposed by [42]. All
three values of the three parameters for the three chains in
Figure 16 are between − 2 and 2.

8.1.2. Autocorrelation Diagnostics. 'e autocorrelation plot
for the parameters is shown in Figure 17.

8.1.3. Heidelberger and Welch’s Convergence Diagnostic.
Schruben [43] and Schruben et al. [44] proposed detecting
nonstationarity in simulation output using a spectral
analysis approach to estimate the sample mean variance.
'ey applied the Cramer-von Mises statistic and Brownian
bridge theory to test the null hypothesis of stationarity of the
Markov chain.

Heidelberger and Welch [45] applied the aforemen-
tioned test to introduce a comprehensive method for
generating a confidence interval of a predetermined width
for the mean of a parameter when the chain has an initial
transient (a state when the algorithm has not reached
stationarity yet). 'ey computed a test statistic (based on
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Figure 15: Some estimated fitted densities and cumulative functions of data set I.
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the Cramer-von Mises test statistic) to reject or accept the
null hypothesis that the Markov chain belongs to a sta-
tionary distribution. A single chain was subjected to
diagnostic.

8.1.4. Raftery and Lewis’s Diagnostic. Raftery and Lewis
[46, 47] proposed “a method for a single chain that tests for
chain convergence to the target distribution and estimates
the run-lengths required to properly estimate quantiles of
functions of the parameters.”

In this study, we applied a quantile of interest (0.025), the
desired level of accuracy of ±0.0005, and a probability of 0.95
to attain the indicated degree of accuracy.

8.1.5. Brooks–Gelman–Rubin (BGR) Convergence Diagnostic.
'e fact that the lines for all of the parameters are close to 1
indicates convergence from BGR plots as shown in
Figure 18.

In this section, a summary of some common statistical
convergence diagnostics tests is provided in Table 10.
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8.1.6. Ergodic Mean (Running Mean) Plot. 'e running
mean, also known as the ergodic mean, is the average of all
samples up to and including a specific iteration. It is used to
observe the McMC chains’ convergence pattern. Figure 19
shows a time-series graph of each parameter and it displays
the running mean (or ergodic mean) plots for the three
parameters of the GLL distribution. 'e running mean plots
of alpha, eta, and kappa show that the chains converge to the
values in Table 11 after N iterations.

8.2. Posterior Analysis. In this section, we present nu-
merical and visual summaries of the posterior distribution
for each of the three chains. 'e joint posterior distri-
bution for the proposed model was estimated using the
JAGS software [48]. For each proposed model, we ran
three parallel chains with 50,000 iterations and a burn-in
of 5,000. Chains were thinned by storing every fifth it-
eration to reduce autocorrelation in the sample. 'e use of
various convergence diagnostic tools ensured convergence
to the joint posterior.

8.2.1. Numerical Summary. We have considered different
quantities of interest and their numeric data based on an
McMC sample of posterior properties for generalized log-
logistic distribution. 'e McMC simulation results include
the results of of the posterior mean, posterior standard
deviation, naı̈ve standard error, time-series standard error,
Markov chain error, the posterior five-point summary
statistics (minimum, lower quartile (Q1), median (Q2),
upper quartile (Q3), and maximum), the posterior skewness,
posterior kurtosis, 2.5th percentile, 97.5th percentile, and the
credible interval followed by the highest probability density
(HPD).

'e näıve standard error is defined as a measure of sim-
ulation error in the mean rather than posterior uncertainty.

naive SE �
posterior SD

�
n

√ . (79)

'e time-series SE adjusts the “naı̈ve” SE for
autocorrelation.

8.2.2. Visual Summary. In this subsection, we have con-
sidered different graphs for a visual summary of the pos-
terior properties; those include the box plot, density strip
plots, histogram, and trace plots for the parameters. 'ese
graphs and plots provide a nearly complete picture of the
parameters’ posterior uncertainty [49]. We applied the
posterior sample (α(j), k(j) and η(j)), j � 1, . . . , 15000, to
draw these graphs.

(1) Box Plots. 'e boxes in Figure 20 represent interquartile
ranges, and the line in the middle of each box is the
median; the arms of each box extend to encompass the
central 95 percent of the distribution, and their ends thus
correspond to the 2.5 percent and 97.5 percent quartiles,
respectively.

(2) Density and Histogram Plots. Histogram can provide
information about the behaviour in the tails, skewness, data
outliers, and the presence of multimodal behaviour. 'e
graphs in Figure 21 can provide us with a nearly complete
picture of the posterior uncertainty about the GLL pa-
rameters, while the graphs in Figure 22 show a comparison
of the full density and partial density of the parameters.

(3) Trace Plots. A trace plot, also known as “a time-series
plot,” is a representation of the iteration number versus the
value of the parameter drawn at each iteration. Because the
plots do not show long-term increasing or decreasing trends
but rather resemble a horizontal band in Figure 23, we can
conclude that the chains have converged.
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Figure 18: BGR plots for alpha, eta, and kappa parameters.

Table 10: Summary of some statistical convergence diagnostic tests.

Parameter Geweke’s diagnostic Raftery and Lewis Heidelberger-Welch
Pr> |z| Total no. of samp. p value Stationarity test Halfwidth test

Alpha − 1.1992 3823 0.072 Passed Passed
Eta − 0.5711 4338 0.690 Passed Passed
Kappa 0.4144 4106 0.980 Passed Passed
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Table 11: Numerical summaries of posterior properties for the GLL model with gamma priors based on an McMC sample.

Characteristics
Chain 1 Chain 2 Chain 3

α η k α η k α η k

Mean 1.444 0.094 0.144 1.437 0.093 0.144 1.441 0.093 0.143
SD 0.175 0.041 0.018 0.172 0.040 0.018 0.174 0.040 0.018
Naı̈ve SE 0.002 0.001 0.0002 0.002 0.001 0.0002 0.002 0.001 0.0002
Time-series SE 0.003 0.0003 0.0003 0.003 0.0003 0.0004 0.003 0.001 0.0003
MC error 0.001 0.0004 0.0001 0.001 0.0003 0.0002 0.002 0.002 0.0001
Minimum 0.967 0.003 0.090 0.933 0.001 0.090 0.965 0.001 0.088
2.5th
percentile 1.139 0.027 0.112 1.134 0.025 0.112 1.134 0.024 0.112

Q1 1.319 0.065 0.131 1.316 0.064 0.131 1.316 0.064 0.131
Medium (Q2) 1.432 0.090 0.142 1.425 0.088 0.143 1.425 0.090 0.142
Q3 1.550 0.118 0.155 1.548 0.117 0.155 1.553 0.118 0.155
97.5th
percentile 1.825 0.184 0.182 1.820 0.180 0.181 1.820 0.180 0.183

Maximum 2.240 0.307 0.238 2.087 0.281 2.392 2.233 0.290 0.233
Mode 1.450 0.090 0.145 1.450 0.090 0.145 1.350 0.090 0.145
Variance 0.031 0.002 0.0003 1.636 0.002 0.0003 0.030 0.002 0.0003
Skewness 0.463 0.655 0.484 0.372 0.514 0.375 0.365 0.524 0.423
Kurtosis 0.372 0.821 0.612 0.153 0.344 0.301 0.044 0.420 0.412
95% credible
interval (1.139, 1.825) (0.027, 0.184) (0.112, 0.182) (1.134, 1.820) (0.025, 0.180) (0.112, 0.181) (1.134, 1.820) (0.024,

0.180)
(0.112,
0.183)
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Figure 19: 'e ergodic mean plots for alpha, eta, and kappa.
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Figure 20: 'e box plots for the alpha, eta, and kappa parameters.
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9. Conclusions

'is work introduced and presented results on the math-
ematical and statistical properties of the generalized log-
logistic distribution. 'e GLL model contains several
parametric survival submodels that could be used in a variety
of statistics and probability applications. Statistical prop-
erties such as quantile function and their related results,
moments and their related results, rth central moments, and
residual and reversed residual life were derived. We have
also considered the Bayesian and classical inference of the
unknown parameters of the proposed distribution when the
data is uncensored or complete. 'e Bayesian estimates are
obtained using the Gibbs sampling method under the as-
sumption of independent gamma priors on the shape and
scale parameters. It is worth noting that when prior in-
formation is available, Bayes estimates clearly outperform
maximum likelihood estimates. To assess the behaviour of
the estimators, Monte Carlo simulations are run. 'e pro-
posed distribution was also applied to a real-world data set
and provided a better fit than its submodels and other
common parametric survival distributions based on good-
ness-of-fit statistics, log-likelihood function, and informa-
tion criterion values. As a result, we conclude that the GLL is
the most appropriate model among the distributions con-
sidered and it is a very competitive model for explaining
lifetime phenomena.

'is work has numerous potential extensions. In prac-
tice, for example, the presence of explanatory variables and
long-term survivals is common. Furthermore, a regression
model for both complete and incomplete (or censored) data
could be beneficial. As a result, our framework can be further
researched in these contexts. 'e GLL distribution could
also be useful in studies comprising survival models such as
accelerated failure time, competing risks, mixture cure,
frailty, multiple states, and joint survival models, as well as
longitudinal data.
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“Bayesian survival analysis with BUGS,” Statistics inMedicine,
vol. 40, no. 12, pp. 2975–3020, 2021.

[39] E. Lesaffre and A. B. Lawson, Bayesian Biostatistics, John
Wiley & Sons, Hoboken, NJ, USA, 2012.

[40] R. Christensen, W. Johnson, A. Branscum, and T. E. Hanson,
Bayesian Ideas and Data Analysis: An Introduction for Sci-
entists and Statisticians, CRC Press, Boca Raton, FL, USA,
2010.

[41] D. Alvares and F. J. Rubio, “A tractable Bayesian joint model
for longitudinal and survival data,” Statistics in Medicine,
vol. 40, no. 19, pp. 4213–4229, 2021.

[42] J. Geweke, “Evaluating the accuracy of sampling-based ap-
proaches to the calculations of posterior moments,” Bayesian
Statistics, vol. 4, pp. 641–649, 1992.

[43] L. W. Schruben, “Detecting initialization bias in simulation
output,” Operations Research, vol. 30, no. 3, pp. 569–590,
1982.

[44] L. Schruben, H. Singh, and L. Tierney, “Optimal tests for
initialization bias in simulation output,” Operations Research,
vol. 31, no. 6, pp. 1167–1178, 1983.

[45] P. Heidelberger and P. D. Welch, “Simulation run length
control in the presence of an initial transient,” Operations
Research, vol. 31, no. 6, pp. 1109–1144, 1983.

[46] A. E. Raftery and S. M. Lewis, “'e number of iterations,
convergence diagnostics and generic Metropolis algorithms,”
Practical Markov Chain Monte Carlo, vol. 7, no. 98,
pp. 763–773, 1995.

[47] A. E. Raftery and S. M. Lewis, “[Practical Markov chainMonte
Carlo]: comment: one long run with diagnostics: imple-
mentation strategies for Markov chain Monte Carlo,” Sta-
tistical Science, vol. 7, no. 4, pp. 493–497, 1992.

[48] M. M. Plummer, RJAGS: bayesian graphical models using
MCMC, R package, version 4-8, 2019.
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