metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicaesium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$)cobaltate(II)

Kina van der Merwe,* Hendrik G. Visser and Johan A. Venter

Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9330, South Africa

Correspondence e-mail: vandermerwe@gmail.com

Received 24 August 2011; accepted 30 August 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (Cs–O) = 0.003 Å; R factor = 0.015; wR factor = 0.044; data-to-parameter ratio = 14.4.

The asymmetric unit of the title compound, $Cs_2[Co-(CH_4O_6P_2)_2(H_2O)_2]$, is comprised of one bidentate methylenediphosphonate ligand and one water molecule which are coordinated to the Co^{II} atom, as well as a caesium countercation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octahedrally coordinated by six O atoms with Cs–O distances ranging from 3.119 (2) to 3.296 (2) Å. A three-dimensional network is formed through O–H···O hydrogen bonds.

Related literature

For related structures, see: Fleisch (1991); Neville-Webbe *et al.* (2002); Van der Merwe *et al.* (2010). For bond lengths and bond angles in related structures, see: Bao *et al.* (2003); Cao *et al.* (2007); Gong *et al.* (2006); Van der Merwe *et al.* (2009); Visser *et al.* (2010); Yin *et al.* (2003).

Experimental

Crystal data $Cs_2[Co(CH_4O_6P_2)_2(H_2O)_2]$ $M_r = 708.75$ Triclinic, $P\overline{1}$ a = 7.333 (5) Å b = 7.412 (5) Å c = 7.666 (5) Å

$\alpha = 74.621 \ (5)^{\circ}$
$\beta = 83.064 (5)^{\circ}$
$\gamma = 86.496 \ (5)^{\circ}$
$V = 398.6 (5) \text{ Å}^3$
Z = 1
Mo $K\alpha$ radiation

 $\mu = 5.96 \text{ mm}^{-1}$ T = 293 K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) T_{min} = 0.210, T_{max} = 0.755

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.015$ $wR(F^2) = 0.044$ S = 0.751904 reflections 132 parameters 11 restraints

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1A \cdots O4^{i}$ $05 - H5B \cdots O4^{ii}$	0.92 (2) 0.85 (2)	1.94 (2) 1.69 (3)	2.860 (3) 2.518 (3)	173 (3) 164 (7)

 $0.38 \times 0.07 \times 0.05 \ \mathrm{mm}$

4203 measured reflections

 $R_{\rm int} = 0.015$

refinement $\Delta \rho_{\text{max}} = 0.47 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.48~{\rm e}~{\rm \AA}^{-3}$

1904 independent reflections

1827 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) x, y, z + 1; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The University of the Free State and Professor A. Roodt are gratefully acknowledged for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2322).

References

- Bao, S., Zheng, L., Liu, Y., Xu, W. & Feng, S. (2003). *Inorg. Chem.* 42, 5037–5039.
- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2004). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cao, D., Li, Y. & Zheng, L. (2007). Inorg. Chem. 46, 7571–7578.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fleisch, H. (1991). Drugs, 42, 919–944.
- Gong, Y., Tang, W., Hou, W., Zha, Z. & Hu, C. (2006). *Inorg. Chem.* **45**, 4987–4995.
- Neville-Webbe, H. L., Holen, I. & Coleman, R. E. (2002). *Cancer Treat. Rev.* **28**, 305–319.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van der Merwe, K. A., Visser, H. G. & Venter, J. A. (2009). Acta Cryst. E65, m1394.
- Van der Merwe, K., Visser, H. G. & Venter, J. A. (2010). Acta Cryst. E66, m1011-m1012.
- Visser, H. G., Venter, J. A. & Van der Merwe, K. A. (2010). Acta Cryst. E66, m159.
- Yin, P., Gao, S., Zheng, L. & Xin, X. (2003). Chem. Mater. 15, 3233-3236.

supplementary materials

Acta Cryst. (2011). E67, m1354 [doi:10.1107/S1600536811035355]

Dicaesium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$)cobaltate(II)

K. van der Merwe, H. G. Visser and J. A. Venter

Comment

This work is part of an ongoing investigation aimed at synthesizing and characterizing new methylene diphosphonate complexes and expanding on our knowledge of the interactions of the methylene diphosphonate ligand with various metal centers. (Van der Merwe *et al.* (2009) & Van der Merwe *et al.* (2010)).

Methylene diphosphonates ($O_3PCH_2PO_3$) has a diversified coordination capability with metal ions, due to the single methyl group which divides the two phosphonate groups. The formation of a stable six-membered ring comprised of M—O—P—C—P—O is favoured (Bao *et al.* (2003). Bisphosphonates adhere strongly to hydroxyapatite crystals and constrain their formation and dissolution (Fleisch (1991)). This physicochemical *in vivo* effect may result in the prevention of soft tissue calcification or even prevent normal calcification. The bis(phosphonic acid) has a high affinity for bone surfaces and it is also non-hydrolyzable (Neville-Webbe *et al.* (2002).

The asymmetric unit of the title compound, $Cs_2[Co(CH_4O_6P_2)_2(H_2O)_2]$, is comprised of one bidentate methylene diphosphonate ligand and one water molecule which are coordinated to the Co^{II} atom, as well as a non-coordinated caesium cation. The Co atom occupies a special position on a crystallographic inversion center. The caesium ion is octahedrally coordinated to six oxygen atoms with Cs—O distances ranging from 3.119 (2) to 3.296 (2) Å. The two methylene diphosphonate ligands chelate to the central cobalt metal *via* four oxygen atoms (O2/O2' and O7/O7') from the phosphonate groups. This leads to the formation of two six-membered rings.

The Co^{II} metal center has a slightly distorted octahedral geometry with O—Co—O angles ranging between 85.35 (8) ° and 94.65 (8) °. The Co—O bond lengths vary between 2.0761 (18) and 2.1272 (19) Å. These distances correspond to literature values (Bao *et al.* (2003); Cao *et al.* (2007); Gong *et al.* (2006); Van der Merwe *et al.* (2009); Visser *et al.* (2010); Yin *et al.* (2003).

A three-dimensional network is provided by O-H-O hydrogen bonds (Table 2).

Experimental

 $[Co(NH_3)_6]Cl_3(0,1700 \text{ g}, 0,714 \text{ mmol})$ was dissolved in distilled water (10 cm³) and the pH of the solution was lowered to 1.87 using hydrochloric acid. The solution was heated for 30 minutes at 313.15 K. Methylene diphosphonate (0.251 g, 1.43 mmol) was dissolved in distilled water (7 cm³) and the pH of the solution was elevated to 1.93 using caesium chloride. Both solutions were combined and the pH was adjusted to 2.04, the pink solution was heated for 3 h at 353.15 K. Pink crystals, suitable for X-ray diffraction, was obtained. (Yield: 7.2%)

Refinement

All H atoms were located from difference Fourier maps and were refined isotropically without further restraints. The highest residual electron density was located 0.88 Å from P1.

Figures

Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1 - x, -y, 1 - z].

Dicaesium diaquabis(methylenediphosphonato- $\kappa^2 O, O'$)cobaltate(II)

Crystal data	
$Cs_2[Co(CH_4O_6P_2)_2(H_2O)_2]$	Z = 1
$M_r = 708.75$	F(000) = 253
Triclinic, PT	$D_{\rm x} = 2.953 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.333 (5) Å	Cell parameters from 3160 reflections
<i>b</i> = 7.412 (5) Å	$\theta = 2.8 - 28.4^{\circ}$
c = 7.666 (5) Å	$\mu = 5.96 \text{ mm}^{-1}$
$\alpha = 74.621 \ (5)^{\circ}$	T = 293 K
$\beta = 83.064 \ (5)^{\circ}$	Needle, pink
$\gamma = 86.496 \ (5)^{\circ}$	$0.38\times0.07\times0.05~mm$
$V = 398.6 (5) \text{ Å}^3$	
Data collection	
Bruker APEXII CCD diffractometer	1827 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.015$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$\theta_{max} = 28^\circ, \ \theta_{min} = 3.7^\circ$
$T_{\min} = 0.210, \ T_{\max} = 0.755$	$h = -9 \rightarrow 9$
4203 measured reflections	$k = -9 \rightarrow 9$
1904 independent reflections	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	11 restraints
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.015$	$w = 1/[\sigma^2(F_0^2) + (0.0412P)^2 + 0.4899P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.044$	$(\Delta/\sigma)_{\text{max}} = 0.002$
<i>S</i> = 0.75	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
1904 reflections	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$
132 parameters	

Special details

Cs1

Co1

P1

P2

01

02

O3

0.01010 (9)

0.00540 (19)

0.0061 (2)

0.0060(2)

0.0084 (8)

0.0097(7)

0.0076 (7)

0.00910 (9)

0.00593 (19)

0.0053 (2)

0.0060(3)

0.0160 (9)

0.0077(7)

0.0110 (8)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

x	У	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
0.284577 (17)	0.954858 (18)	0.692901 (17)	0.00965 (6)	
0.5	0.5	0.5	0.00595 (9)	
0.26392 (7)	0.34252 (8)	0.22866 (8)	0.00590 (11)	
0.19616 (7)	0.74778 (8)	0.25147 (8)	0.00589 (11)	
0.2886 (2)	0.4437 (2)	0.7201 (2)	0.0112 (3)	
0.3857 (2)	0.3210 (2)	0.3786 (2)	0.0088 (3)	
0.0667 (2)	0.2706 (2)	0.3122 (2)	0.0086 (3)	
0.3336 (2)	0.2396 (2)	0.0861 (2)	0.0086 (3)	
0.1822 (2)	0.9384 (2)	0.1036 (2)	0.0109 (3)	
0.0107 (2)	0.7058 (2)	0.3621 (2)	0.0102 (3)	
0.3541 (2)	0.7427 (2)	0.3623 (2)	0.0086 (3)	
0.2397 (3)	0.5858 (3)	0.1121 (3)	0.0071 (4)	
0.313 (4)	0.383 (4)	0.837 (3)	0.023 (9)*	
0.185 (4)	0.410 (6)	0.704 (6)	0.063 (15)*	
0.048 (5)	0.287 (5)	0.417 (3)	0.035 (10)*	
0.145 (3)	0.599 (4)	0.033 (4)	0.018 (8)*	
0.357 (3)	0.616 (4)	0.046 (4)	0.015 (8)*	
0.156 (9)	0.935 (9)	0.002 (5)	0.022*	0.5
0.239 (8)	1.030 (7)	0.116 (9)	0.022*	0.5
ent parameters ($Å^2$)			
rill ri	22 7.33	<i>u</i> ¹²	<i>r r</i> 13	r ₁ 23
	x 0.284577 (17) 0.5 0.26392 (7) 0.19616 (7) 0.2886 (2) 0.3857 (2) 0.0667 (2) 0.3336 (2) 0.1822 (2) 0.0107 (2) 0.3541 (2) 0.2397 (3) 0.313 (4) 0.185 (4) 0.048 (5) 0.145 (3) 0.357 (3) 0.156 (9) 0.239 (8) ent parameters (Å ²)	x y $0.284577(17)$ $0.954858(18)$ 0.5 0.5 $0.26392(7)$ $0.34252(8)$ $0.19616(7)$ $0.74778(8)$ $0.2886(2)$ $0.4437(2)$ $0.3857(2)$ $0.3210(2)$ $0.0667(2)$ $0.2396(2)$ $0.1822(2)$ $0.9384(2)$ $0.0107(2)$ $0.7058(2)$ $0.3541(2)$ $0.7427(2)$ $0.2397(3)$ $0.5858(3)$ $0.313(4)$ $0.383(4)$ $0.185(4)$ $0.410(6)$ $0.048(5)$ $0.287(5)$ $0.145(3)$ $0.599(4)$ $0.357(3)$ $0.616(4)$ $0.156(9)$ $0.935(9)$ $0.239(8)$ $1.030(7)$	x y z 0.284577 (17) 0.954858 (18) 0.692901 (17) 0.5 0.5 0.5 0.26392 (7) 0.34252 (8) 0.22866 (8) 0.19616 (7) 0.74778 (8) 0.25147 (8) 0.2886 (2) 0.4437 (2) 0.7201 (2) 0.3857 (2) 0.3210 (2) 0.3786 (2) 0.0667 (2) 0.2706 (2) 0.3122 (2) 0.3336 (2) 0.2396 (2) 0.0861 (2) 0.1822 (2) 0.9384 (2) 0.1036 (2) 0.0107 (2) 0.7427 (2) 0.3623 (2) 0.3541 (2) 0.7427 (2) 0.3623 (2) 0.313 (4) 0.383 (4) 0.837 (3) 0.185 (4) 0.410 (6) 0.704 (6) 0.048 (5) 0.287 (5) 0.417 (3) 0.145 (3) 0.599 (4) 0.033 (4) 0.357 (3) 0.616 (4) 0.046 (4) 0.156 (9) 0.935 (9) 0.002 (5) 0.239 (8) 1.030 (7) 0.116 (9)	x y z U_{iso}^*/U_{eq} 0.284577 (17) 0.954858 (18) 0.692901 (17) 0.00965 (6) 0.5 0.5 0.5 0.00595 (9) 0.26392 (7) 0.34252 (8) 0.22866 (8) 0.00590 (11) 0.19616 (7) 0.74778 (8) 0.25147 (8) 0.00589 (11) 0.2886 (2) 0.4437 (2) 0.7201 (2) 0.0112 (3) 0.3857 (2) 0.3210 (2) 0.3786 (2) 0.0088 (3) 0.0667 (2) 0.2706 (2) 0.3122 (2) 0.0086 (3) 0.3336 (2) 0.2396 (2) 0.0861 (2) 0.0086 (3) 0.1822 (2) 0.9384 (2) 0.1036 (2) 0.0109 (3) 0.0107 (2) 0.7058 (2) 0.3623 (2) 0.0086 (3) 0.2397 (3) 0.5858 (3) 0.1121 (3) 0.0071 (4) 0.313 (4) 0.383 (4) 0.837 (3) 0.023 (9)* 0.185 (4) 0.410 (6) 0.704 (6) 0.063 (15)* 0.048 (5) 0.287 (5) 0.417 (3) 0.035 (10)* 0.145 (3) 0.599 (4) 0.033 (4) 0.018 (8)* 0.357 (3) 0.616 (4) 0.046 (4)

0.00854 (9)

0.0067 (2)

0.0063 (3)

0.0057 (3)

0.0088 (8)

0.0092 (8)

0.0077 (8)

0.00056 (5)

-0.00035 (15)

-0.00119 (19)

-0.00059 (19)

-0.0027(7)

-0.0008 (6)

-0.0033 (6)

-0.00040(5)

-0.00109(15)

-0.0007(2)

-0.0006(2)

-0.0002(6)

-0.0028(6)

0.0007 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

-0.00068(6)

-0.00174 (16)

-0.0015 (2)

-0.0014(2)

-0.0019(7)

-0.0015 (6)

-0.0032(6)

supplementary materials

O4	0.0098 (7)	0.0072 (7)	0.0096 (8)	-0.0012 (6)	0.0008 (6)	-0.0040 (6)
O5	0.0173 (8)	0.0063 (7)	0.0093 (8)	-0.0012 (6)	-0.0063 (7)	-0.0002 (6)
O6	0.0072 (7)	0.0139 (8)	0.0096 (8)	-0.0017 (6)	0.0012 (6)	-0.0040 (6)
07	0.0096 (7)	0.0067 (7)	0.0098 (8)	-0.0003(6)	-0.0032 (6)	-0.0016 (6)
CI	0.0087 (9)	0.0066 (10)	0.0056 (10)	-0.0009 (8)	-0.0011 (8)	-0.0005 (8)
Geometric param	neters (Å, °)					
Cs1—O5 ⁱ		3.119 (3)	Р2—О	6	1.515	8 (18)
Cs1—O3 ⁱⁱ		3.165 (2)	Р2—О	5	1.566	3 (19)
Cs1—O2 ⁱⁱⁱ		3.162 (2)	Р2—С	1	1.799	(2)
Cs1—O2 ^{iv}		3.173 (2)	01—H	1A	0.922	(17)
Cs1—O6 ^v		3.192 (2)	O1—H	1B	0.846	(19)
Cs1—O4 ⁱⁱⁱ		3.485 (2)	O2—C	s1 ⁱⁱⁱ	3.162	(2)
Cs1—O7 ^{vi}		3.490 (2)	O2—C	s1 ^{vii}	3.173	(2)
Co1—O2 ⁱⁱⁱ		2.0761 (18)	O3—C	s1 ⁱⁱ	3.165	(2)
Co1—O2		2.0761 (18)	03—Н	2	0.840	(19)
Co1—O1 ⁱⁱⁱ		2.1209 (19)	O4—C	s1 ⁱⁱⁱ	3.485	(2)
Co1—O1		2.1209 (19)	O5—C	s1 ^{viii}	3.119	(3)
Co1—O7 ⁱⁱⁱ		2.1272 (19)	О5—Н	5A	0.83 (2)
Co1—O7		2.1272 (19)	О5—Н	5B	0.85 (2)
P1—O2		1.5087 (18)	O6—C	s1 ^v	3.192	(2)
P1—O4		1.5158 (18)	O7—C	s1 ^{vi}	3.490	(2)
Р1—ОЗ		1.5732 (18)	С1—Н	3	0.963	(14)
P1—C1		1.796 (3)	С1—Н	4	0.951	(14)
P2—0/		1.5099 (18)				
$O5^{i}$ —Cs1—O3 ⁱⁱ		91.51 (5)	07—C	o1—Cs1 ^m	128.7	8 (6)
$O5^{i}$ —Cs1—O2 ⁱⁱⁱ		113.53 (4)	O2 ¹¹¹ —	Co1—Cs1 ^{vi}	45.80	(6)
$O3^{ii}$ —Cs1—O2 ⁱⁱⁱ		103.25 (7)	02—C	o1—Cs1 ^{vi}	134.2	0 (6)
$O5^{i}$ —Cs1—O2 ^{iv}		125.59 (5)	O1 ^m —	Co1—Cs1 ^{vi}	60.18	(5)
$O3^{11}$ —Cs1—O2 ^{1V}		120.31 (5)	01—C	$o1-Cs1^{v_1}$	119.8	2 (5)
$O2^{111}$ —Cs1—O2 ^{1V}		101.31 (5)	O7 ¹¹¹ —	Co1—Cs1 ^{v1}	125.1	3 (6)
$O5^{1}$ —Cs1—O6 ^v		82.95 (5)	O7—C	o1—Cs1 ^{v1}	54.87	(6)
$O3^{ii}$ —Cs1—O6 ^v		81.36 (7)	Cs1 ⁱⁱⁱ –	-Co1-Cs1 ^{vi}	123.1	0 (4)
$O2^{iii}$ —Cs1—O6 ^v		162.47 (4)	O2 ⁱⁱⁱ —	Co1—Cs1 ^{vii}	134.2	0 (6)
O2 ^{iv} —Cs1—O6 ^v		62.52 (5)	O2—C	o1—Cs1 ^{vii}	45.80	(6)
O5 ⁱ —Cs1—O4 ⁱⁱⁱ		73.40 (5)	O1 ⁱⁱⁱ —	Co1—Cs1 ^{vii}	119.8	2 (5)
O3 ⁱⁱ —Cs1—O4 ⁱⁱⁱ		124.24 (6)	01—0	o1—Cs1 ^{vii}	60.18	(5)
O2 ⁱⁱⁱ —Cs1—O4 ⁱⁱⁱ		44.75 (5)	O7 ⁱⁱⁱ —	Co1—Cs1 ^{vii}	54.87	(6)
O2 ^{iv} —Cs1—O4 ⁱⁱⁱ		111.44 (5)	07—C	o1—Cs1 ^{vii}	125.1	3 (6)
06 ^v —Cs1—O4 ⁱⁱⁱ		144.68 (4)	Cs1 ⁱⁱⁱ –	-Co1-Cs1 ^{vii}	56.90	(4)
$O5^{i}$ —Cs1—O7 ^{vi}		94.14 (4)	Cs1 ^{vi} -	-Co1—Cs1 ^{vii}	180	
O3 ⁱⁱ —Cs1—O7 ^{vi}		170.61 (4)	O2—P	1—04	114.7	6 (10)

O2 ⁱⁱⁱ —Cs1—O7 ^{vi}	81.34 (7)	O2—P1—O3	109.86 (10)
$O2^{iv}$ —Cs1—O7 ^{vi}	50.37 (5)	O4—P1—O3	107.73 (9)
O6 ^v —Cs1—O7 ^{vi}	91.89 (7)	O2—P1—C1	109.55 (10)
O4 ⁱⁱⁱ —Cs1—O7 ^{vi}	64.74 (6)	O4—P1—C1	107.05 (11)
O5 ⁱ —Cs1—C1 ⁱ	44.75 (6)	O3—P1—C1	107.62 (10)
$O3^{ii}$ —Cs1—C1 ⁱ	72.92 (5)	O2—P1—Cs1 ⁱⁱⁱ	51.16 (7)
O2 ⁱⁱⁱ —Cs1—C1 ⁱ	78.47 (6)	O4—P1—Cs1 ⁱⁱⁱ	63.66 (7)
O2 ^{iv} —Cs1—C1 ⁱ	165.97 (5)	O3—P1—Cs1 ⁱⁱⁱ	124.40 (8)
O6 ^v —Cs1—C1 ⁱ	118.91 (5)	C1—P1—Cs1 ⁱⁱⁱ	127.77 (8)
O4 ⁱⁱⁱ —Cs1—C1 ⁱ	58.52 (5)	O2—P1—Cs1 ^{vii}	49.06 (7)
O7 ^{vi} —Cs1—C1 ⁱ	116.25 (5)	O4—P1—Cs1 ^{vii}	103.57 (8)
O5 ⁱ —Cs1—O1 ^{iv}	74.68 (4)	O3—P1—Cs1 ^{vii}	68.88 (7)
O3 ⁱⁱ —Cs1—O1 ^{iv}	126.32 (5)	C1—P1—Cs1 ^{vii}	148.54 (8)
O2 ⁱⁱⁱ —Cs1—O1 ^{iv}	130.04 (5)	Cs1 ⁱⁱⁱ —P1—Cs1 ^{vii}	61.70 (2)
O2 ^{iv} —Cs1—O1 ^{iv}	50.97 (5)	O7—P2—O6	114.83 (11)
O6 ^v —Cs1—O1 ^{iv}	46.06 (5)	O7—P2—O5	111.69 (10)
O4 ⁱⁱⁱ —Cs1—O1 ^{iv}	101.41 (4)	O6—P2—O5	109.44 (10)
O7 ^{vi} —Cs1—O1 ^{iv}	48.72 (4)	O7—P2—C1	110.57 (10)
C1 ⁱ —Cs1—O1 ^{iv}	118.60 (6)	O6—P2—C1	108.09 (10)
O5 ⁱ —Cs1—O3 ^{iv}	125.42 (5)	O5—P2—C1	101.32 (11)
O3 ⁱⁱ —Cs1—O3 ^{iv}	78.65 (6)	O7—P2—Cs1 ^v	124.05 (8)
O2 ⁱⁱⁱ —Cs1—O3 ^{iv}	121.02 (5)	$O5$ — $P2$ — $Cs1^v$	65.52 (7)
O2 ^{iv} —Cs1—O3 ^{iv}	42.33 (5)	$C1$ — $P2$ — $Cs1^v$	125.05 (8)
O6 ^v —Cs1—O3 ^{iv}	42.63 (4)	O7—P2—Cs1 ^{viii}	118.54 (7)
O4 ⁱⁱⁱ —Cs1—O3 ^{iv}	152.49 (4)	O6—P2—Cs1 ^{viii}	125.77 (7)
O7 ^{vi} —Cs1—O3 ^{iv}	91.97 (5)	C1—P2—Cs1 ^{viii}	61.03 (8)
C1 ⁱ —Cs1—O3 ^{iv}	148.87 (5)	Cs1 ^v —P2—Cs1 ^{viii}	94.916 (19)
$O1^{iv}$ —Cs1—O3 ^{iv}	69.55 (5)	Co1—O1—Cs1 ^{vii}	89.88 (6)
$O5^{i}$ —Cs1—O5 ^v	55.64 (5)	Co1—O1—H1A	122 (2)
O3 ⁱⁱ —Cs1—O5 ^v	56.50 (6)	Cs1 ^{vii} —O1—H1A	81 (2)
$O2^{iii}$ —Cs1—O5 ^v	153.15 (4)	Co1—O1—H1B	120 (3)
$O2^{iv}$ —Cs1—O5 ^v	104.38 (5)	Cs1 ^{vii} —O1—H1B	66 (3)
O6 ^v —Cs1—O5 ^v	41.87 (4)	H1A—O1—H1B	108 (3)
$O4^{iii}$ —Cs1—O5 ^v	128.47 (5)	P1—O2—Co1	135.98 (10)
$O7^{vi}$ —Cs1—O5 ^v	121.54 (5)	P1—O2—Cs1 ⁱⁱⁱ	107.03 (9)
$C1^{i}$ — $Cs1$ — $O5^{v}$	78.50 (5)	Co1—O2—Cs1 ⁱⁱⁱ	103.97 (7)
$O1^{iv}$ —Cs1—O5 ^v	73.92 (4)	P1—O2—Cs1 ^{vii}	109.88 (8)
O3 ^{iv} —Cs1—O5 ^v	75.37 (5)	Co1—O2—Cs1 ^{vii}	106.22 (8)
O5 ⁱ —Cs1—P1 ⁱⁱⁱ	94.28 (4)	Cs1 ⁱⁱⁱ —O2—Cs1 ^{vii}	78.69 (5)
O3 ⁱⁱ —Cs1—P1 ⁱⁱⁱ	115.59 (6)	P1—O3—Cs1 ⁱⁱ	150.94 (9)
O2 ⁱⁱⁱ —Cs1—P1 ⁱⁱⁱ	21.82 (3)	P1—O3—Cs1 ^{vii}	87.66 (8)

supplementary materials

O2 ^{iv} —Cs1—P1 ⁱⁱⁱ	106.97 (4)	Cs1 ⁱⁱ —O3—Cs1 ^{vii}	101.35 (6)
O6 ^v —Cs1—P1 ⁱⁱⁱ	162.96 (3)	P1—O3—H2	108 (3)
O4 ⁱⁱⁱ —Cs1—P1 ⁱⁱⁱ	22.94 (3)	Cs1 ⁱⁱ —O3—H2	101 (3)
O7 ^{vi} —Cs1—P1 ⁱⁱⁱ	71.49 (6)	Cs1 ^{vii} —O3—H2	59 (3)
C1 ⁱ —Cs1—P1 ⁱⁱⁱ	67.80 (4)	P1—O4—Cs1 ⁱⁱⁱ	93.39 (8)
O1 ^{iv} —Cs1—P1 ⁱⁱⁱ	116.98 (4)	P2—O5—Cs1 ^{viii}	120.07 (9)
O3 ^{iv} —Cs1—P1 ⁱⁱⁱ	138.50 (3)	P2—O5—Cs1 ^v	91.93 (8)
O5 ^v —Cs1—P1 ⁱⁱⁱ	145.78 (4)	Cs1 ^{viii} —O5—Cs1 ^v	124.36 (5)
O2 ⁱⁱⁱ —Co1—O2	180	P2—O5—H5A	118 (5)
O2 ⁱⁱⁱ —Co1—O1 ⁱⁱⁱ	90.76 (8)	Cs1 ^v —O5—H5A	99 (5)
O2—Co1—O1 ⁱⁱⁱ	89.24 (8)	P2—O5—H5B	117 (5)
O2 ⁱⁱⁱ —Co1—O1	89.24 (8)	Cs1 ^{viii} —O5—H5B	103 (5)
O2—Co1—O1	90.76 (8)	Cs1 ^v —O5—H5B	100 (5)
O1 ⁱⁱⁱ —Co1—O1	180	H5A—O5—H5B	121 (6)
O2 ⁱⁱⁱ —Co1—O7 ⁱⁱⁱ	94.65 (8)	P2—O6—Cs1 ^v	115.52 (9)
O2—Co1—O7 ⁱⁱⁱ	85.35 (8)	P2	126.62 (10)
O1 ⁱⁱⁱ —Co1—O7 ⁱⁱⁱ	91.47 (7)	P2—O7—Cs1 ^{vi}	131.62 (9)
O1—Co1—O7 ⁱⁱⁱ	88.53 (7)	Co1—O7—Cs1 ^{vi}	95.23 (7)
O2 ⁱⁱⁱ —Co1—O7	85.35 (8)	P1—C1—P2	116.79 (13)
O2—Co1—O7	94.65 (8)	P1—C1—Cs1 ^{viii}	149.47 (11)
O1 ⁱⁱⁱ —Co1—O7	88.53 (7)	P2—C1—Cs1 ^{viii}	93.21 (10)
O1—Co1—O7	91.47 (7)	P1—C1—H3	108.1 (19)
O7 ⁱⁱⁱ —Co1—O7	180.00 (9)	P2—C1—H3	110.1 (19)
O2 ⁱⁱⁱ —Co1—Cs1 ⁱⁱⁱ	132.78 (6)	Cs1 ^{viii} —C1—H3	62.8 (19)
O2—Co1—Cs1 ⁱⁱⁱ	47.22 (6)	P1—C1—H4	104.3 (19)
O1 ⁱⁱⁱ —Co1—Cs1 ⁱⁱⁱ	63.15 (5)	P2—C1—H4	105.3 (19)
O1—Co1—Cs1 ⁱⁱⁱ	116.85 (5)	Cs1 ^{viii} —C1—H4	59.3 (18)
O7 ⁱⁱⁱ —Co1—Cs1 ⁱⁱⁱ	51.22 (6)	H3—C1—H4	112 (3)
O2 ⁱⁱⁱ —Co1—O1—Cs1 ^{vii}	-144.21 (6)	C1—P2—O5—Cs1 ^{viii}	-8.70 (12)
O2—Co1—O1—Cs1 ^{vii}	35.79 (6)	Cs1 ^v —P2—O5—Cs1 ^{viii}	-132.22 (9)
O7 ⁱⁱⁱ —Co1—O1—Cs1 ^{vii}	-49.55 (6)	O7—P2—O5—Cs1 ^v	-118.75 (9)
O7—Co1—O1—Cs1 ^{vii}	130.45 (6)	O6—P2—O5—Cs1 ^v	9.54 (9)
Cs1 ⁱⁱⁱ —Co1—O1—Cs1 ^{vii}	-5.22 (5)	C1—P2—O5—Cs1 ^v	123.53 (8)
Cs1 ^{vi} —Co1—O1—Cs1 ^{vii}	180	Cs1 ^{viii} —P2—O5—Cs1 ^v	132.22 (9)
O4—P1—O2—Co1	130.04 (13)	O7—P2—O6—Cs1 ^v	114.18 (10)
O3—P1—O2—Co1	-108.42 (14)	O5—P2—O6—Cs1 ^v	-12.34 (11)
C1—P1—O2—Co1	9.60 (17)	C1—P2—O6—Cs1 v	-121.88 (10)
Cs1 ⁱⁱⁱ —P1—O2—Co1	132.87 (17)	Cs1 ^{viii} —P2—O6—Cs1 ^v	-55.00 (10)
Cs1 ^{vii} —P1—O2—Co1	-143.29 (18)	O6—P2—O7—Co1	80.65 (14)
O4—P1—O2—Cs1 ⁱⁱⁱ	-2.83 (11)	O5—P2—O7—Co1	-154.00 (11)
O3—P1—O2—Cs1 ⁱⁱⁱ	118.71 (9)	C1—P2—O7—Co1	-41.97 (15)

C1—P1—O2—Cs1 ⁱⁱⁱ	-123.27 (9)	Cs1 ^v —P2—O7—Co1	131.64 (9)
Cs1 ^{vii} —P1—O2—Cs1 ⁱⁱⁱ	83.84 (8)	Cs1 ^{viii} —P2—O7—Co1	-109.34 (10)
O4—P1—O2—Cs1 ^{vii}	-86.67 (11)	O6—P2—O7—Cs1 ^{vi}	-135.06 (11)
O3—P1—O2—Cs1 ^{vii}	34.87 (11)	O5—P2—O7—Cs1 ^{vi}	-9.70 (14)
C1—P1—O2—Cs1 ^{vii}	152.89 (9)	C1—P2—O7—Cs1 ^{vi}	102.32 (13)
Cs1 ⁱⁱⁱ —P1—O2—Cs1 ^{vii}	-83.84 (8)	Cs1 ^v —P2—O7—Cs1 ^{vi}	-84.06 (12)
O1 ⁱⁱⁱ —Co1—O2—P1	-80.87 (15)	Cs1 ^{viii} —P2—O7—Cs1 ^{vi}	34.96 (13)
O1—Co1—O2—P1	99.13 (15)	O2 ⁱⁱⁱ —Co1—O7—P2	-168.93 (12)
O7 ⁱⁱⁱ —Co1—O2—P1	-172.41 (15)	O2—Co1—O7—P2	11.07 (12)
O7—Co1—O2—P1	7.59 (15)	O1 ⁱⁱⁱ —Co1—O7—P2	100.19 (13)
Cs1 ⁱⁱⁱ —Co1—O2—P1	-133.77 (17)	O1—Co1—O7—P2	-79.81 (13)
Cs1 ^{vi} —Co1—O2—P1	-35.83 (17)	Cs1 ⁱⁱⁱ —Co1—O7—P2	47.08 (14)
Cs1 ^{vii} —Co1—O2—P1	144.17 (17)	Cs1 ^{vi} —Co1—O7—P2	154.02 (14)
O1 ⁱⁱⁱ —Co1—O2—Cs1 ⁱⁱⁱ	52.90 (7)	Cs1 ^{vii} —Co1—O7—P2	-25.98 (14)
O1—Co1—O2—Cs1 ⁱⁱⁱ	-127.10(7)	O2 ⁱⁱⁱ —Co1—O7—Cs1 ^{vi}	37.05 (6)
O7 ⁱⁱⁱ —Co1—O2—Cs1 ⁱⁱⁱ	-38.64 (6)	O2—Co1—O7—Cs1 ^{vi}	-142.95 (6)
O7—Co1—O2—Cs1 ⁱⁱⁱ	141.36 (6)	O1 ⁱⁱⁱ —Co1—O7—Cs1 ^{vi}	-53.82 (6)
Cs1 ^{vi} —Co1—O2—Cs1 ⁱⁱⁱ	97.94 (6)	O1—Co1—O7—Cs1 ^{vi}	126.18 (6)
Cs1 ^{vii} —Co1—O2—Cs1 ⁱⁱⁱ	-82.06 (6)	Cs1 ⁱⁱⁱ —Co1—O7—Cs1 ^{vi}	-106.94 (4)
O1 ⁱⁱⁱ —Co1—O2—Cs1 ^{vii}	134.96 (7)	Cs1 ^{vii} —Co1—O7—Cs1 ^{vi}	180
O1—Co1—O2—Cs1 ^{vii}	-45.04 (7)	O2—P1—C1—P2	-44.78 (16)
O7 ⁱⁱⁱ —Co1—O2—Cs1 ^{vii}	43.42 (6)	O4—P1—C1—P2	-169.80 (12)
O7—Co1—O2—Cs1 ^{vii}	-136.58 (6)	O3—P1—C1—P2	74.63 (14)
Cs1 ⁱⁱⁱ —Co1—O2—Cs1 ^{vii}	82.06 (6)	Cs1 ⁱⁱⁱ —P1—C1—P2	-100.25 (12)
Cs1 ^{vi} —Co1—O2—Cs1 ^{vii}	180	Cs1 ^{vii} —P1—C1—P2	-3.5 (2)
O2—P1—O3—Cs1 ⁱⁱ	-136.98 (17)	O2—P1—C1—Cs1 ^{viii}	123.58 (19)
O4—P1—O3—Cs1 ⁱⁱ	-11.3 (2)	O4—P1—C1—Cs1 ^{viii}	-1.4 (2)
C1—P1—O3—Cs1 ⁱⁱ	103.8 (2)	O3—P1—C1—Cs1 ^{viii}	-117.01 (19)
Cs1 ⁱⁱⁱ —P1—O3—Cs1 ⁱⁱ	-81.1 (2)	Cs1 ⁱⁱⁱ —P1—C1—Cs1 ^{viii}	68.1 (2)
Cs1 ^{vii} —P1—O3—Cs1 ⁱⁱ	-109.40 (19)	Cs1 ^{vii} —P1—C1—Cs1 ^{viii}	164.84 (9)
O2—P1—O3—Cs1 ^{vii}	-27.58 (9)	O7—P2—C1—P1	62.05 (15)
O4—P1—O3—Cs1 ^{vii}	98.08 (9)	O6—P2—C1—P1	-64.42 (15)
C1—P1—O3—Cs1 ^{vii}	-146.80 (8)	O5—P2—C1—P1	-179.41 (12)
Cs1 ⁱⁱⁱ —P1—O3—Cs1 ^{vii}	28.30 (7)	Cs1 ^v —P2—C1—P1	-111.48 (11)
O2—P1—O4—Cs1 ⁱⁱⁱ	2.46 (9)	Cs1 ^{viii} —P2—C1—P1	174.11 (15)
O3—P1—O4—Cs1 ⁱⁱⁱ	-120.24 (8)	O7—P2—C1—Cs1 ^{viii}	-112.06 (8)
C1—P1—O4—Cs1 ⁱⁱⁱ	124.27 (8)	O6—P2—C1—Cs1 ^{viii}	121.47 (8)
Cs1 ^{vii} —P1—O4—Cs1 ⁱⁱⁱ	-48.42 (5)	O5—P2—C1—Cs1 ^{viii}	6.48 (9)
O7—P2—O5—Cs1 ^{viii}	109.03 (10)	Cs1 ^v —P2—C1—Cs1 ^{viii}	74.41 (7)
O6—P2—O5—Cs1 ^{viii}	-122.68 (10)		

Symmetry codes: (i) *x*, *y*, *z*+1; (ii) –*x*, –*y*+1, –*z*+1; (iii) –*x*+1, –*y*+1, –*z*+1; (iv) *x*, *y*+1, *z*; (v) –*x*, –*y*+2, –*z*+1; (vi) –*x*+1, –*y*+2, –*z*+1; (vii) *x*, *y*-1, *z*; (viii) *x*, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1A···O4 ⁱ	0.92 (2)	1.94 (2)	2.860 (3)	173 (3)
O5—H5B···O4 ^{iv}	0.85 (2)	1.69 (3)	2.518 (3)	164 (7)
Symmetry codes: (i) $x, y, z+1$; (iv) $x, y+1, z$.				

Cs1 🥥

Fig. 1