
Unique acyl-carnitine profiles are potential biomarkers
for acquired mitochondrial disease in autism spectrum
disorder
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Autism spectrum disorder (ASD) has been associated with mitochondrial disease (MD). Interestingly, most individuals with ASD
and MD do not have a specific genetic mutation to explain the MD, raising the possibility of that MD may be acquired, at least in a
subgroup of children with ASD. Acquired MD has been demonstrated in a rodent ASD model in which propionic acid (PPA), an
enteric bacterial fermentation product of ASD-associated gut bacteria, is infused intracerebroventricularly. This animal model
shows validity as it demonstrates many behavioral, metabolic, neuropathologic and neurophysiologic abnormalities associated
with ASD. This animal model also demonstrates a unique pattern of elevations in short-chain and long-chain acyl-carnitines
suggesting abnormalities in fatty-acid metabolism. To determine if the same pattern of biomarkers of abnormal fatty-acid
metabolism are present in children with ASD, the laboratory results from a large cohort of children with ASD (n¼ 213) who
underwent screening for metabolic disorders, including mitochondrial and fatty-acid oxidation disorders, in a medically based
autism clinic were reviewed. Acyl-carnitine panels were determined to be abnormal if three or more individual acyl-carnitine
species were abnormal in the panel and these abnormalities were verified by repeated testing. Overall, 17% of individuals with
ASD demonstrated consistently abnormal acyl-carnitine panels. Next, it was determined if specific acyl-carnitine species were
consistently elevated across the individuals with consistently abnormal acyl-carnitine panels. Significant elevations in short-chain
and long-chain, but not medium-chain, acyl-carnitines were found in the ASD individuals with consistently abnormal acyl-carnitine
panels—a pattern consistent with the PPA rodent ASD model. Examination of electron transport chain function in muscle and
fibroblast culture, histological and electron microscopy examination of muscle and other biomarkers of mitochondrial metabolism
revealed a pattern consistent with the notion that PPA could be interfering with mitochondrial metabolism at the level of the
tricarboxylic-acid cycle (TCAC). The function of the fatty-acid oxidation pathway in fibroblast cultures and biomarkers for
abnormalities in non-mitochondrial fatty-acid metabolism were not consistently abnormal across the subgroup of ASD children,
consistent with the notion that the abnormalities in fatty-acid metabolism found in this subgroup of children with ASD were
secondary to TCAC abnormalities. Glutathione metabolism was abnormal in the subset of ASD individuals with consistent acyl-
carnitine panel abnormalities in a pattern similar to glutathione abnormalities found in the PPA rodent model of ASD. These data
suggest that there are similar pathological processes between a subset of ASD children and an animal model of ASD with acquired
mitochondrial dysfunction. Future studies need to identify additional parallels between the PPA rodent model of ASD and this
subset of ASD individuals with this unique pattern of acyl-carnitine abnormalities. A better understanding of this animal model and
subset of children with ASD should lead to better insight in mechanisms behind environmentally induced ASD pathophysiology
and should provide guidance for developing preventive and symptomatic treatments.
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Introduction

Autism spectrum disorders (ASD) are a heterogeneous group
of neurodevelopmental disorders that are characterized by
impairments in social interaction and communication along
with restrictive and repetitive behaviors.1 Many of the
cognitive and behavioral features of ASD are believed to
arise from central nervous system dysfunction, but abnorm-
alities in many non-central nervous system tissues have been
associated with ASD.2,3 Recent studies have implicated

abnormalities in systemic physiology that transcend organ

specific dysfunction, at least in some children with ASD.2–4

Thus, it is possible that organs other than the brain and/or

systemic abnormalities could be the source of the primary

pathophysiological that manifest, in part, with secondary brain

dysfunction.
A recent meta-analysis found that 5% of children with ASD

meet criteria for a classic mitochondrial disease (MD) and

suggest that this subgroup has distinct clinical characteristics
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that distinguish it from the general ASD population.3,5 This
study also found that about 30% of the general ASD
population exhibited biomarkers consistent with MD.3 The
high prevalence of abnormal mitochondrial biomarkers in ASD
has been suggested to be due to mitochondrial dysfunction
that is more prevalent and distinct from classic MD. Such a
notion is supported by a recent study that found that 80% of
the children with ASD demonstrated below normal function of
the electron transport chain (ETC) in lymphocytes.6

The reason for mitochondrial dysfunction in ASD is
unknown, but the fact that only 23% of children with ASD
and MD have a known mitochondrial deoxyribonucleic acid
(mtDNA) abnormality suggests that MD may be acquired
rather than genetic in many ASD cases.3 Indeed, some have
suggested that the systemic abnormalities in ASD such as
mitochondrial dysfunction may arise from environmental
triggers7 in genetically sensitive subpopulations.8,9 Enteric
short-chain fatty-acids, such as propionic acid (PPA),10–17

which are fermentation by-products of ASD-associated
enteric bacteria (that is, Clostridia, Desulfovibrio, Sutterella
and Bacteroidetes), have been suggested as a possible
environmental triggers in ASD.18,19 Interestingly, humans with
impairments in PPA metabolism20–22 exhibit neurodevelop-
mental conditions with ASD features.23

Recently, a rodent model has been development in which
reversible (30 min) bouts of ASD-type (that is, stereotyped,
perseverative and impaired social) behaviors are produced by
brief intracerebroventricular infusions of PPA (http://www.psy-
chology.uwo.ca/autism/autism6.htm for behavioral video).
This animal model demonstrates several characteristics that
have been reported in ASD such as tics, electrographic
seizures, innate neuroinflammation and redox, lipid, phos-
phatidylethanolamine, mitochondrial, acyl-carnitine and car-
nitine abnormalities.10–12,14–17 This animal model provides an
understanding of how exogenous agents, such as PPA, can
cause reversible behavioral, metabolic, neuropathological
and neurophysiological changes associated with ASD. Most
importantly, this animal model has predictive value as it
demonstrates biomarkers of abnormal mitochondrial fatty-
acid metabolism (that is, acyl-carnitine elevations) that could
be used as routine biomarkers if found in children with ASD.

Several lines of evidence suggest that mitochondrial fatty-
acid oxidation could be abnormal in a subset of children with
ASD. First, free carnitine, the cofactor used to transport long-
chain and very-long-chain fatty-acids into the mitochondrial
matrix, has been shown to be depleted in children with ASD.24

Free carnitine can be depleted if it remains bound to
unprocessed fatty-acids due to a reduction in mitochondrial
fatty-acid beta-oxidation.25 Second, elevations in long-chain
and very-long-chain fatty-acids have been reported in children
with ASD as compared with controls, suggesting excess
unprocessed fatty-acid in the serum of children with ASD.26

Third, a case study and case series of patients with ASD have
reported elevations in acyl-carnitines, the standard biomarker
for mitochondrial fatty-acid oxidation deficits.27,28 Thus, there
is ample evidence to suggest that abnormalities in fatty-acid
metabolism (that is, acyl-carnitine elevations) may be found in
children with ASD.

Figure 1 demonstrates the acyl-carnitine elevations in brain
homogenates found in rats exposed to intracerebroventricular

infusions of PPA as compared with those exposed to
phosphate buffered saline vehicle control. These abnormal-
ities included short-chain (2–5 carbon length) and long-chain
(13–18 carbon length) acyl-carnitines but not medium-chain
(6–12 carbon length) acyl-carnitines.13 We hypothesize that a
subset of children with ASD manifest biomarkers of abnormal
mitochondrial fatty-acid metabolism that are similar to those
reported in the PPA rodent model of ASD. Here we review the
charts of consecutive patients seen in a medically based
autism clinic who underwent a systematic workup for mito-
chondrial disorders per recently published guidelines, which
included screening for fatty-acid metabolism disorders.3

Overall, 17% of children with ASD were found to demonstrate
a unique pattern of acyl-carnitine abnormalities that were
similar to the acyl-carnitine abnormalities found in the rodent
PPA model of ASD. The potential causes of these abnormalities
and their possible relation to ASD pathogenesis is discussed.

Materials and methods

Subject population. Parents of patients seen from 2008–
2011 in a medically based autism clinic were requested to
consent to allow their child’s medical information to be
anonymously abstracted into a clinical database that con-
tained medical history, physical examination findings and the
results of neurological and metabolic testing. Approximately
98% of parents (326 total patients) signed the consent.

Figure 1 Acyl-carnitine elevations in the brain of rats treated intracerebroven-
tricularly with propionic acid. Notice that the majority of fatty-acid elevations were in
short-chain (2–5 carbon length) and long-chain (13–18 carbon length) fatty-acids as
compared with the medium-chain (6–12 carbon length) fatty-acids. This is adapted
from Thomas et al.13 where it was presented as a table.
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Metabolic evaluation. A standardized metabolic workup for
mitochondrial metabolism disorders was conducted on most
patients.29,30 The algorithm for this evaluation is depicted in
Figure 2. Initial testing included laboratory tests to identify
abnormalities in the respiratory chain, tricarboxylic-acid cycle
(TCAC) and fatty-acid oxidation pathways. Abnormalities
detected in initial testing were confirmed with repeat testing.
If abnormalities could not be replicated, laboratories tests
were reconsidered during metabolic stress or illness if a high
index of suspicion remained for the patient.

An acyl-carnitine panel, which measures short-chain,
medium-chain and long-chain acyl-carnitines, was used as
the primarily laboratory test to detect defects in the fatty-acid
oxidation pathway. An acyl-carnitine panel was measured
at initial testing in 213 of the consented patients. The
acyl-carnitine panel was considered abnormal if three or
more acyl-carnitines were elevated in the panel. An abnormal
acyl-carnitine panel was confirmed by repeat testing.

If acyl-carnitine abnormalities were confirmed, non-mito-
chondrial disorders of fatty-acid metabolism were ruled-out
before a MD workup was initiated. Disorders ruled-out
included generalized hyperlipidemia, hypercholesterolemia,
multiple carboxylase deficiencies (that is, biotinidase defi-
ciency), zinc deficiency, abnormal copper metabolism and
hypoglycemia. After such disorders were ruled-out, a MD
workup was pursued. The initial step in the MD workup was
examination for mtDNA gene abnormalities by either a
targeted analysis for common mutations and/or deletions

and/or sequencing of the entire mtDNA genome (Baylor
Medical Genetics Laboratory, Houston, TX, USA).31,32

When a conclusive mtDNA abnormality could not be
identified, nuclear mitochondrial gene testing and/or a
muscle and/or skin biopsy was recommended. Nuclear
mitochondrial gene abnormalities were ruled-out using an
oligonucleotide array with comparative genomic hybridization
analysis that examines B180 nuclear genes involved in
mitochondria function, including genes involved in fatty-
acid oxidation, carnitine metabolism, mitochondrial biogen-
esis, mtDNA maintenance, transcription and translation, and
ETC complex assembly (MitoMet, Baylor Medical Genetics
Laboratory).

In some patients, the quadricep muscle was biopsied and
analyzed with light and electron microscopy, as well as for
mtDNA content.33,34 In some patients, fibroblasts obtained
from a skin biopsy were cultured. ETC function was examined
on frozen muscle and cultured fibroblasts (Baylor Medical
Genetics Laboratory).35 Both uncorrected ETC function and
ETC function correcting for citrate synthase are presented.
Fibroblasts were incubated with d3-palmitate and L-carnitine
in duplicate for 72 h to determine function of the fatty-acid
oxidation pathway (Baylor Institute of Metabolic Disease,
Dallas, TX).36

Determination of acyl-carnitine abnormalities. To calcu-
late the prevalence of having an abnormal acyl-carnitine
panel in the ASD sample, the prevalence of having an acyl-
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Figure 2 Algorithm for metabolic workup of autistic spectrum disease patients evaluated in the medically based autism clinic. Patients are screened with biomarkers of
abnormal mitochondrial function in the fasting state. Abnormalities are verified with repeat fasting biomarker testing. For patients with biomarkers for a fatty-acid oxidation
defect, other disorders of fatty-acid metabolism are ruled-out before further workup for a mitochondrial disorder. Patients with consistent biomarkers for mitochondrial
dysfunction are first investigated for genetic causes of their mitochondrial disorder before considering a muscle and/or skin biopsy. mtDNA, mitochondrial deoxyribonucleic
acid; RBC, red-blood cell.
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carnitine panel with the first laboratory test was multiplied by
the percent of patients confirmed to have an abnormal acyl-
carnitine panel on repeat laboratory testing. This was done to
account for the fact that some patients did not repeat the
acyl-carnitine panel even though it was abnormal. To
determine the specific acyl-carnitine species that were
consistently elevated across the subgroup of patients with
consistently abnormal acyl-carnitine panels, we examined
the first two acyl-carnitine panels measured for each patient.
Values for each individual acyl-carnitine species (for each
patient) were transformed to a percent of the upper limit of
normal for the specific acyl-carnitine species. The mean and
s.e. were then calculated for each acyl-carnitine species to
summarize the group data. Statistical significance was
calculated as the significance of the difference between
the upper limit of normal and the group mean for each
acyl-carnitine specific using a z-distribution derived from the
group mean and s.e.

Measurement of glutathione metabolism. Glutathione
metabolism was evaluated in four participants. These
patients were compared with normative values established
in a previous study on redox metabolism.37 These controls
included 42 healthy children ranged from 2–7 years of age
with no history of developmental delay or neurological
symptoms. Independent sample t-tests were used for
comparison. Fasting blood samples were collected into
ethylenediaminetetraacetic acid vacutainer tubes and were
immediately chilled on ice before centrifuging at 4000 g for
10 min at 4 1C. To prevent metabolite inter-conversion the
ice-cold samples were centrifuged within 15 min of the blood
collection and the plasma stored at � 80 1C until analysis
within 2 weeks. Details of the methodology for high-pressure
liquid chromatography with electrochemical detection and
metabolite quantitation have been previously described.38

Total and free-reduced glutathione, oxidized glutathione
(GSSG) and the total-reduced glutathione/GSSG and free-
reduced glutathione/GSSG ratios were measured.

Results

Prevalence and patterns of abnormal acyl-carnitines.
Seventy-four (35%) of the 213 patients tested demonstrated
an increase in three or more acyl-carnitines when initially
measured. Forty-two (57%) of the 74 underwent repeat acyl-
carnitine testing. Three or more acyl-carnitines were abnor-
mal a second time in 20 (48%) of the 42 patients, resulting in
a prevalence of 17% of ASD children who manifested
consistent acyl-carnitine panel abnormalities. Figure 3
demonstrates the mean values of each acyl-carnitine species
relative of the upper limit of normal. C4OH, C14 and C16:1
were significantly elevated as compared with the upper limit
of normal (z¼ 2.18, P¼ 0.01; z¼ 5.71, Po0.0001; z¼ 2.85,
P¼ 0.02, respectively), and were 186%, 226% and 131% of
the upper limit of normal, respectively.

Clinical characteristics. Clinical characteristics of the 20
patients with consistent elevations in the acyl-carnitine panel
are given in Supplementary Table 1. The average age was
8.7 years (s.d. 2.25) with a male to female ratio of 3:1.

Autistic disorder was diagnosed in 70% of the participants
while 25% had a diagnosis of pervasive developmental
disorder-not otherwise specified and 5% were diagnosed
with Asperger syndrome. Developmental regression was
reported in 45% of patients.

Glutathione metabolism. The subset of children in which
glutathione metabolism was examined demonstrated signifi-
cantly lower total-reduced glutathione (t¼ 12.75, Po0.0001)
and free-reduced glutathione (t¼ 10.04, Po0.0001) values
and total-reduced glutathione/GSSG (t¼ 9.07, Po0.001) and
free-reduced glutathione/GSSG (t¼ 4.69, Po0.0001) ratios as
well as higher GSSG (t¼ 2.61, P¼ 0.01) values as compared
with typically developing controls (Figure 4), suggesting both a
reduction in the production of gluthathione and increase in
gluthathione utilization by reactive oxygen species.

Genetic characteristics. Nuclear DNA examinations were
normal in the great majority of patient (94%) in which such
examinations were conducted. mtDNA was normal in 85% of
the patients in which it was examined. The two mtDNA
abnormalities that were identified involved novel maternally
inherited homoplasmic cytochrome B gene mutations

Figure 3 Average acyl-carnitine values (with s.e. bars) from 20 patients with
consistent abnormal elevations in multiple acyl-carnitines. Acyl-carnitine values are
represented as percent upper limit of normal for each acyl-carnitine species. Notice
that C4OH, C14 and C16:1 are significantly elevated as compared with the
maximum upper limit of normal.
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(15533A4G and 15404T4C), which altered evolutionary
conserved amino acids. mtDNA content in muscle from four
patients ranged from 109–189% of normal with a mean of
160.5% (s.d.±27%).

Neurological and biochemical testing. Neurological and
biochemical characteristics of the patients are given in
Supplementary Table 2. No abnormalities were found in
the majority of patients that underwent an extended 23 h
video electroencephalogram. Acyl-glycine panel, amino
acids, glucose, insulin, Co-Q10, biotin, cholesterol and
triglyceride levels were unremarkable in all patients in which
they were tested. Urine organic acids were abnormal in the
majority in which it was tested with elevations in TCAC
metabolites, specifically elevations in citrate and/or isocitrate
representing the majority of the abnormalities. Lactate was
elevated in about half of the patients. Carnitine panel
was abnormal in half of the patients in whom it was measured
with 33% of the patients having high-esterified carnitine and
17% having low free carnitine. Creatine kinase and pyruvate
was elevated in a minority of patients in which it was
measured. Interestingly, red-blood cell zinc was borderline
low in 70% of the patients in which it was measured and red-
blood cell copper was slightly elevated in 35% of the patients

in which it was measured. The great majority of individuals
(90%) in which red-blood cell zinc and red-blood cell
copper were both measured demonstrated an abnormality
in at least one.

Muscle histology. All five of the patients that underwent
muscle biopsy demonstrated abnormal histological and
electron microscopy findings. Four demonstrated fiber
type 1 predominance with two also demonstrating fiber type
2 atrophy. The fifth demonstrated myofiber size irregularity,
increased sarcoplasmic lipid and scattered succinate dehy-
drogenase hyper-reactive fibers. Electron microscopy
demonstrated an increased number of mitochondria in the
subsarcolemmal region in all and also in the intermyofibrillar
region in two. Mitochondria were maloriented in two patients
and degeneration of membranous organelles was seen in
three cases.

ETC and fatty-acid oxidation function. ETC function
was testing on all five muscles biopsies. Corrected and
uncorrected ETC activity is shown in Figures 5a and b,
respectively, and demonstrate a partial defect in complexes
I/III and I/III rotenone sensitive (RS). ETC and fatty-acid
oxidation testing was conducted on fibroblast cultures from

Figure 4 Gluthathione abnormalities in four children with consistent elevations in multiple acyl-carnitine species. Notice that the patients have lower total (tGSH, mM) and
free (fGSH, mM) reduced gluthathione, as well as lower tGSH/fGSSG (free-oxidized gluthathione, mM) and fGSH/fGSSG ratios and higher fGSSG as compared with typically
developing controls, suggesting both a reduction in the production of gluthathione and increase in gluthathione utilization by reactive species.

Figure 5 Electron transport chain (ETC) function of muscle (a, b) and fibroblast culture (c, d), as well as function of the fatty-acid oxidation pathway in fibroblast cultures
(e, f). Graph values represent percent of normal ETC function, uncorrected (a, c) or corrected for citrate synthase (b, d). Muscle ETC results suggest a partial defect
in complexes I/III and I/III rotenone sensitive (RS) while fibroblast culture ETC function suggests a partial defect in complex II/III activity. In fibroblast culture ETC studies
complexes I/III RS and IV demonstrate considerable variability due to overactivity (4200% of the mean) in complex I/III RS in three patients and complex IV in one
case. Fatty-acid oxidation values represent mean of specific acyl-carnitine species (higher is worse) uncorrected (e) and corrected for citrate synthase (f). Elevation in the
short-chain fatty-acid D3-C4 was due to three patients demonstrating high D4-C4 values. The one patient with a significantly elevated D4-C4 value was found not to have a
mutation in ;the short-chain acyl-CoA dehydrogenase gene suggesting that the abnormalities in fatty-acids in fibroblast culture were due to other mitochondrial metabolism
abnormalities.
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eight patients. Overall complex II/III activity was deficient
across patients, and complex I/III RS demonstrated variable
and elevated (4200% of the mean) activity, which was also
seen to a lesser extent in complex IV (Figures 5c and d).
Functional fatty-acid oxidation testing demonstrated eleva-
tions in the short-chain fatty-acid D3-C4 (Figures 5e and f).

This effect was due to three patients with high D4-C4. Only
one patient had a high enough elevation for a short-chain
acyl-CoA dehydrogenase defect to be considered. However,
sequencing of exons 1–10 of the short-chain acyl-CoA
dehydrogenase gene (GeneDx, Gaithersburg, MD, USA)39

for the patient was normal.

Electron
Transport

Chain

Fatty Acids

Fatty Acids

Pyruvate

Acetyl-CoA

Acetyl-CoA

Complex INADH

CitrateOxalacetate NADH
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IsocitrateTricarboxylic
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Tricarboxylic
Acid Cycle

Malate

NADH

Fumarate α-ketoglutarate
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Figure 6 The tricarboxylic-acid cycle during (a) typical metabolism and (b) with high levels of propionic acid. Propionic acid is metabolized to propionyl-CoA, which inhibits
the proximal portion of the tricarboxylic-acid cycle and enhances the distal portion of the tricarboxylic-acid cycle (see discussion for details). FADH2, flavin adenine dinucleotide;
NADH, nicotinamide adenine dinucleotide.
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MD diagnosis criteria. Using the Morava et al.40 criteria for
the five patients that underwent muscle biopsy found that
three patients were rated as having a definite MD and two
patients were rated as having probable MD.

Discussion

In this report, 17% of a large cohort of children with ASD
demonstrated consistent elevations in short-chain and long-
chain, but not medium-chain, acyl-carnitines. This pattern of
acyl-carnitine abnormalities is similar to elevations in brain
acyl-carnitines seen in the PPA rodent model of ASD.13 Other
metabolic abnormalities, specifically mitochondrial dysfunc-
tion and glutathione abnormalities, were identified in the
patient cohort that are similar to the PPA rodent model of ASD.
Such abnormalities are discussed below in detail.

Mitochondrial abnormalities is ASD patients are consis-
tent with PPA toxicity. ETC function testing in muscle
demonstrated a partial deficit in complexes I/III and I/III RS
activity. These ETC abnormalities, along with other biomar-
kers of mitochondrial dysfunction, are consistent with PPA
interfering with mitochondrial metabolism, potentially through
the TCAC. The TCAC utilizes two electron carriers,
nicotinamide adenine dinucleotide (NADH) and flavin ade-
nine dinucleotide (FADH2) to shuttle electrons to complexes I
and II of the ETC, respectively. Normally TCAC reactions
produce 3 NADH and 1 FADH2, resulting in a 3:1 NADH to
FADH2 ratio (Figure 6a).

PPA is metabolized to propionyl-CoA, which is further
metabolized to produce methymalonic-CoA. Methymalonic-
CoA enters the TCAC half way through the cycle as succinyl-
CoA, thereby essentially ‘short circuiting’ the TCAC
(Figure 6b). Elevated succinyl-CoA enhances the distal half
of the TCAC and inhibits the proximal half of the TCAC. As the
distal half of the TCAC produces 1 NADH and 1 FADH2, if the
proximal half of the TCAC is inhibited, the NADH to FADH2

ratio will change from 3:1 to 1:1. As NADH is metabolized by
complex I a reduction in the production in NADH will result in a
relative deficit in complex I, consistent with the findings from
the ETC muscle studies. In addition, inhibition of the proximal
portion of the TCAC will also result in a build-up of the first
metabolites in the TCAC, consistent with the elevations in
citrate and isocitrate in our patients. Furthermore, the end
product of the fatty-acid oxidation pathway, acetyl-CoA, is the
first metabolite of the proximal half of the TCAC. Thus,
inhibition of the proximal half of the TCAC inhibits the fatty-
acid oxidation pathway. This is consistent with the fact that
examination of the fatty-acid oxidation pathway in fibroblast
culture did not reveal any abnormalities to explain the
elevations in acyl-carnitines.

Examination of fibroblasts, which occurs after 6 or more
weeks of fibroblast growth in culture, demonstrated above
average activity of complexes I/III RS and IV and a partial
deficit in complex II/III. Interestingly, overactivity in complexes
I and IV have been reported in children with ASD/MD.41,42 The
disparity in the ETC findings between muscle and fibroblast
culture can be explained by the alternative use of citrate
synthase, the first enzyme in the TCAC, for metabolizing
propionyl-CoA. Normally citrate synthase produces citrate

from acetyl-CoA and oxaloacetate. In the context of high
levels of propionyl-CoA, citrate synthase produces methyl
citrate, a dead end metabolite, from propionyl-CoA. This will
also result in a competition for citrate synthase by both
propionyl-CoA and acetyl-CoA, further blocking the metabo-
lism of metabolic pathways that produce acetyl-CoA as an end
product, such as the fatty-acid oxidation pathway. This
overuse of citrate synthase will most likely also result in an
upregulation of citrate synthase over time.

If an agent, such as PPA, that suppressed mitochondrial
function was present in vivo but not in vitro, mitochondrial
function in the muscle, but not the fibroblast culture, would be
more compromised. If upregulation of citrate synthase
occurred due to excess PPA in vivo and then PPA was
removed in vitro, the high activity of citrate synthase in vitro
would overproduce citrate and enhance the proximal portion of
the TCAC, which preferentially produces NADH, the electron
carrier metabolized by complex I. This is consistent with the
observed I/III RS overactivity seen in fibroblast culture.

One common theme of the observed ETC dysfunction in
both muscle and fibroblast culture was that complex dysfunc-
tion primarily occurred when evaluating the function of
complex III with complex I or II, suggesting that it is the
interaction between complex III and complex I or II rather than
at complex I or II specifically. Interesting, the 15533A4G
cytochrome b mutation identified in one of the cases has been
shown to have a complicated effect on complex III function.
Rather than causing a frank decrease in complex III function,
this mutation appears to result in delayed assembly of the
I,III,IV supercomplex,43 thus influencing the interaction of
complex III with other complexes rather than specifically
affecting only complex III. Interestingly, PPA has been shown
to have its detrimental effect on the ETC through inhibition of
complex III function.44 Furthermore, alterations in brain
omega 3/6 cardiolipin profiles found in the PPA rodent model
could change inner mitochondrial membrane fluidity, and,
thus, could potentially affect mitochondrial ETC complex
interactions.13

Mitochondrial abnormalities are consistent with
acquired MD. All patients that underwent a workup for MD
demonstrated probable or definite MD by standardized
criteria.2,40 However, the majority of the patients in this study
did not have any identifiable genetic causes for their MD.
This is not surprising as only 23% of children with ASD and
MD have a known mtDNA abnormality.3 The effect of the
cytochrome b mutation found in two boys is complicated.45,46

For example, delayed supercomplex assembly associated
with the 15533A4G gene mutation in a child with a
neurodevelopment disorder was restored when mutant
transmitochondrial cybrids were developed from the
15533A4G case.43 This suggests that this mtDNA mutation
is a risk factor that requires interactions with nuclear
mutations, polymorphisms or epigenetics and/or environ-
mental triggers or modulators in order for the disease
phenotype to be expressed.43 Thus, the characteristics of
this series of patient are consistent with the notion that the
systemic abnormalities seen in this subgroup of ASD patients
may arise from environmental triggers7 in genetically
sensitive subpopulations.8,17,47,48
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Glutathione metabolism and oxidative stress abnormal-
ities in ASD patients. Four patients in the series underwent
measurements of glutathione metabolism. Overall, there was
a marked decreased in total and free-reduced glutathione
with a slight increase in GSSG, suggesting a primary deficit
in the production of glutathione and increase in utilization.
This finding parallels the PPA rodent animal model. Indeed,
intracerebroventricular infusion of PPA in rats decreases
total glutathione in brain homogenates.11 Further evidence
for increased oxidative stress has been demonstrated in the
rodent PPA model, including increased brain protein carbo-
nylation and lipid peroxidation, altered phospholipid profiles
and increased activated microglia.11,13,16 Such findings are
all consistent with those from ASD patients.49–51

Abnormalities in zinc and copper in ASD patients. Inter-
estingly, a large proportion of the patients in the series
demonstrated mild abnormalities in zinc and/or copper
concentrations. Such abnormalities have been reported in
the ASD population previously52–54 and zinc supplementa-
tion (along with B6) has been shown to decrease copper
levels and improve function in ASD in an uncontrolled
study.54 Some have hypothesized that abnormalities in zinc
and copper metabolism could result in poor metallothionein
function, leading to susceptibility to environmental toxicants
through increased oxidative stress or mitochondrial dysfunc-
tion.52 Interestingly, low zinc levels have been associated
with pediatric inflammatory bowel disease55 and increased
inflammation in animal models of colitis56 and zinc supple-
mentation appears to be protective of bowel inflammation in
clinical57 and animal studies.58 Although speculative, this
may occur via a decrease in the activity of coloprotective
metallothionein59 in the intestinal mucosa, or impairment of
T- and B-cell interaction60 that may contribute to gut
dysbiosis favoring ASD-associated bacteria.

Potential links to unique ASD microbial populations.
Enteric bacterial populations found in increased numbers in
stool samples of ASD patients (Clostridia, Desulfovibrio) are
known to produce PPA from fermentation of dietary
carbohydrates.18,19,31 Impaired carbohydrate digestion and
transport in children with ASD can result in a higher
concentration of dietary carbohydrates for these bacterial
populations to ferment.18,19,61 A recent study has shown that
stool from ASD patients have elevations in PPA and other
short-chain fatty-acids.62 In addition, Desulfovibrio is capable
of producing PPA from fermentation of peptones and can
produce hydrogen sulfide, a potential mitochondrial toxin,
which may act synergistically with PPA to promote mitochon-
drial dysfunction.17,18,63,64

Interestingly, administration of common antibiotics (that is,
beta lactams) for routine pediatric infections alters gut flora
favoring PPA-producing species. This could be significant
considering the reported high incidence of antibiotic use in
some ASD patients.18,19,65,66 In addition, this offers a potential
explanation for temporary behavioral improvements in some
patients following vancomycin or metronidazole treatment,
which eradicates these bacteria18,19,66 and profoundly
reduces stool PPA.67 Furthermore, removal of refined
carbohydrates from the diet, which has been suggested as

an empiric treatment to improve the behavioral fluctuations,
gastrointestinal symptoms and dysbiosis in ASD,8 may act by
reducing substrate for these bacteria to produce PPA.11

Although low concentrations of PPA may be beneficial,
humans with impairments in PPA metabolism (that is,
propionic or methymalonic acidemia, holocarboxylase, bioti-
nidase or B12 deficiency, valproate or ethanol exposure)
exhibit neurodevelopmental conditions with behavioral and
biochemical similarities to ASD.68,69 PPA and related short-
chain fatty-acids (that is, butyrate and acetate) have broad
effects on cellular systems.13,20,26,27,48,70–72 They are actively
taken up into the brain73 and can affect diverse physiological
processes such as cell signaling,71 neurotransmitter synth-
esis and release,70 mitochondrial function,20 lipid metabo-
lism,13,74 immune function,75 cell–cell interactions76 and gene
expression.72 Thus, there are many potential mechanisms
where metabolic end products of the enteric microbiome can
alter host physiology.17

Of particular interest, PPA is a known inhibitor of mitochon-
drial function, through sequestration of carnitine and the
production of propionyl-CoA, a potential cytotoxin.44,77 Methy-
malonic acid, a metabolite of PPA, results in abnormal
mitochondrial morphology,78 tissue specific ETC dysfunction,79

inhibition of the complex I and II function when interacting with
complex III in the brain80 and reductions in reduced glu-
tathione,78 similar to the patient cohort presented and the PPA
animal model. As PPA is metabolized through the TCAC, we
propose that excess exogenous PPA or related short-chain
fatty-acid metabolites interfere with mitochondrial metabolism,
thereby causing acquired mitochondrial dysfunction.

Impaired carnitine metabolism can act synergistically
with PPA-producing bacteria. The Naþ dependent
organic cation/carnitine transporter 2 transports carnitine
across the gut-blood and blood-brain barriers.81 Antibiotics
(that is, beta lactams) commonly used to treat pediatric,
infections directly inhibit the organic cation/carnitine trans-
porter 2 transporter, thus directly impairing carnitine reab-
sorption.81 This could be significant considering the high
incidence of antibiotic use in ASD patients, which can also
promote gut dysbiosis favoring ASD-associated gut bacterial
populations that produce PPA.18,19,65,66 Given that both
carnitine deficiency and PPA can be detrimental to mito-
chondrial metabolism, it is possible that antibiotic overuse
can cause these two effects to act synergistically to cause an
acquired mitochondrial disorder, especially in genetically
susceptible individuals.

Interestingly, children with ASD, as a group, have been
found to have reduced blood carnitine3 and a X-linked inborn
error of carnitine biosynthesis has been shown to be a risk
factor for ASD.82 Furthermore, oral carnitine, and its derivative
acetyl-L-carnitine, have both neuroprotective83,84 and colo-
protective properties.85 Given that carnitine supplementation
improves function in children with ASD,86,87 it deserves further
investigation as a therapeutic agent in ASD.3,86,87

Summary. This study has demonstrated that B17% of
children with ASD manifest biomarkers of abnormal mito-
chondrial fatty-acid metabolism that parallel similar biomar-
kers in the PPA rodent model of ASD. Detailed examination
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of a subset of these patients indicates that these metabolic
abnormalities are at least partly due to TCAC and ETC
dysfunction. Genetic disorders do not appear to account for
the majority of these cases and the two individuals with
abnormalities in mtDNA suggest dysfunction in the inter-
action of complex III with complex I and/or II. For the cases in
which genetic abnormalities have not been found it is very
likely that MD is acquired. As this subgroup of ASD patients
have several parallels with the rodent PPA model of ASD,13

this rodent model may be a useful tool to further examine the
temporal relation of behavioral bouts in relation to carnitine-
acyl-carnitine fluctuations, and their possible response to
therapeutic compounds thought to be useful in the treatment
of ASD and mitochondrial dysfunction such as carnitine
supplementation.

It is important to note that PPA affects multiple systems in a
complex manner and the evidence of increased PPA or other
short-chain fatty-acids being involved in the pathophysiology
of ASD, although compelling, is circumstantial at this stage.
Thus, future studies should identify additional parallels
between the PPA rodent model of ASD and individuals with
ASD who manifest similar biomarkers. Further study of this
model and this subgroup of ASD patients should improve our
understanding of the pathophysiology and potential risk
factors that lead to the metabolic, brain and behavior
abnormalities associated with ASD.
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