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A B S T R A C T   

Nitrate contamination in surface and groundwater remains a widespread problem in agricultural 
watersheds is primarily associated to high levels of percolation or leakage from fertilized soil, 
which allows easy infiltration from soil into groundwater. This study was aimed to predict canopy 
water content to determine the nitrate contamination index resulting from nitrogen fertilizer loss 
in surface and groundwater. The study used Geographically Weighted Regression (GWR) model 
using MODIS 006 MOD13Q1-EVI Earth observation data, crop information and rainfall data. 
Satellite data collection was synchronized with regional crop calendars and calibrated to plant 
biomass. The average plant biomass during observed plant growth stages was between 0.19 kg/ 
m2 at the minimum and 0.57 kg/m2 at the maximum. These values are based on the growth stages 
of crops and provide a solid basis for monitoring and validating crop water productivity data. The 
simulation results were validated with a high correlation coefficient (R2 

= 0.996, P < 0.0005) for 
the observed rainfall in the growing zone compared to the predicted canopy water content. The 
nitrate contamination index assessment was conducted in 2004, 2008, 2009, 2010, 2011, 2013, 
2014, 2015, 2018 and 2020. Canopy water content and root zone seasonal water content were 
measured in (%) per portion as indicators of the NO−

3 -N-nitrate contamination index in these 
years (0.391, 0.316, 0.298, 0.389, 0.380, 0.339, 0.242, 0.342 and 0.356).   

1. Introduction 

Water and agricultural products are the most important resources for human survival on earth [1,2]. Furthermore, the need for 
global food and water security has been highlighted [1–5] by the fact that increasing demand for agricultural goods in tropical areas 
has also led to increased nitrogen fertilizer use in the farmland [3,4]. While N fertilizers can increase crop yields, excessive use in 
cropland coupled with seasonal fluctuations in rainfall can have harmful environmental effects, including contamination of surface 
and groundwater with nitrates. 

Nitrate runoff and leaching, which can contaminate surface and groundwater [6] through seasonal N application losses on crop-
land, is also one of the major global challenges in cropland watersheds [6–8]. Ethiopia is one of the emerging countries where the loss 
of agricultural land is becoming a problem that poses water and environmental risks [9–12]. In addition to the resulting pollution of 
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water supplies, it is closely linked to and contributes significantly to food insecurity in many developing countries due to inequality in 
agricultural production. Due to this inequality, the unbalanced trend in nitrogen fertilization management on agricultural lands has 
increased [10–13] the risk of nitrate contamination of surfaces and groundwater. 

Climatic changes in the Bilate watershed [14] have been recognized in previous studies as having a climatic impact on nitrogen 
fertilizer loss from agricultural land [14,15]; however, considering the entire watershed as an agricultural area, its research still 
revealed a knowledge gap excluding crop species and growing season. Nitrogen loss from cropland is not continuous, so it is important 
to consider specific growing seasons, crop classification and biomass index [14]. This hypothesis helps calibrate model parameters and 
improves the accuracy of model predictions based on estimated plant canopy water content. 

For the seasonal nitrate contamination index of cropland, it is important to understand the complex interrelationship between 
parameters such as water and nutrient transport in crops [16–21]. The current study addresses the challenge of predicting nitrogen 
runoff and leaching, emphasizing the significant influence of crop parameters and seasonal water balance. Spatial clarification of the 
relationship [22] between nitrogen nutrient runoff/leaching capacity and crop vegetation index is crucial for reliable farmland runoff 
and leaching indices [23]. Furthermore, the study examined the integrated effects of seasonal rainfall patterns on crop response [24] 
for nitrogen fertilization on arable land with regard to nitrate runoff/leaching. Using geographically weighted regression (GWR) [25, 
26], the research aimed to model plant canopy water content to improve the accuracy of estimating crop water balance. The ultimate 
goal was to predict the likelihood of nitrate contamination occurring in croplands within the Bilate watershed, particularly during the 
rainy season [27–31]. This research contributes to improving our understanding of nutrient dynamics and water management in 
agricultural ecosystems by providing answers. How geographically weighted regression (GWR) [32] can be used to model plant canopy 
water content and improve the accuracy of plant water balance estimation, with a particular focus on predicting nitrate pollution 
resulting from nitrogen fertilization in croplands, particularly during the rainy season. 

Calculating plant biomass indices provides a way to establish a connection between plant water and nutrient use efficiency [27,30]. 
This relationship is particularly important for assessing seasonal nitrogen loss from cropland and its impact on the watershed. The 
seasonal biomass index [30,33,34] of cropland below 0.25 kg/m2 under nitrogen management can serve as an indicator of soil 
demineralization [29], especially in nutrient management for the entire rainfed cropping system [33]. According to a few studies, 
rainy season cropping in the study area is exposed to leached soil nutrients, indicating that trends indicate additional application of 
nitrogen-N fertilizer on croplands in the Ethiopian Rift Valley region [35]. Therefore, it is more important to focus on the peak or wet 
season when measuring nitrogen loss from agricultural land through runoff and leaching. Nitrogen nitrate leaching and runoff [31,36, 

Fig. 1. Location map of the study area (Bilate sub watershed).  
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37]could be a source contributor to contaminating waterways, which largely depends on the growing season followed by heavy rainfall 
[34]. This supports the expectation of nitrogen-nitrate runoff and leaching loss from the highlands of the regional rainfed farming 
system in the Ethiopian Rift Valley [36]. Loss of N fertilizer on agricultural lands in agricultural watersheds exposed to (NO−

3 -N) runoff 
or leaching was caused by a variety of factors, including climate, agricultural practices, trends in N fertilizer use and the type of 
agricultural terrain [22,31]. 

The study’s current assumptions suggest that cropland is vulnerable to seasonal runoff and leaching of applied nitrogen fertilizer. 
This occurs when there is less water in the plant canopy than water in the growing zone during the under-rainfall period of a particular 
growing season [38,39]. Therefore, it is essential for the current study to evaluate the contribution of agricultural water balance 
[38–43] to surface and groundwater nitrate pollution [43]. Plant canopy water content must be lower than soil water content during 
rainfall in a given growing season to predict nitrate leaching runoff on agricultural land [44,45]. The Geographically Weighted Ro-
gation (GWR) model was conceptually developed to determine seasonal canopy water content in cropping zone. Various data un-
certainties that affect the simulation were taken into account, such as: Plant species, variations in zonal rainfall, soil type and slope. 
Consequently, the current study model aims to provide a more accurate and comprehensive assessment of plant canopy water content 
to predict the leaching flux of (NO−

3 -N) from growing zones. 

2. Materials and methods 

2.1. Study area 

The Bilate watershed (Fig. 1) is one of the sub-basins of the Rift Valley Lake basin and is located in the south-western part of the 
main catchments of the Ethiopian Rift Valley lakes [45]. The watershed originates from the Gurage Highlands and ends on the shores of 
Abaya Lake, comprising part of the SNNPR zones; Hadiya, KT, Gurage, Silte, Wolaita, Sidama and Alaba special woredas; and small 
parts of the south-central Oromiya regional states. The catchment area of Bilate River, which flows into Abaya Lake from the Gurage 
Highlands in the north of Abaya-Chamo Basin, accounts for about 38% of the Abaya Lake basin [46]. It is located between the co-
ordinates 37,◦47′6″ and 38,020′14″E and 6◦33′18″ and 8◦6′57″N, respectively. The watershed is situated within a region with a total area 
of 5504.29 km2 and an altitude range of 1169–3276 m above sea level. The stream originates on the slope of the “Gurage” mountains 
and runs from the north. In addition to a stream that stretches for 197 km, the Guder and Weira tributaries of the Upper Bilate have 
exceptionally steep slopes, and their topography prohibits the use of storage basins. The stream at Bilate extends over 160 km, with the 
mean minimum and maximum discharge of the river being 0.413 m3/s to 283.54 m3/s. In the western highlands, the watershed is 
characterized by a humid climate. For season 1 or Belg, which ranges from March to April, the monthly rainfall, minimum temperature 
and maximum temperature data from 1998 to 2020 show a consistent pattern of monsoon rainfall. According to the agricultural 
growth curve, the ripening phase of crops is between May and July. There is a short dry season from November to February and a short 
rainy season from November to December. For years (1998–2020), monthly rainfall minimum and maximum data show an 
eight-month monomial rainfall pattern for the crop season beginning in March to April, the planting season, with a rainfall maximum 
between May and July [47–49] (time of maximum plant biomass index). And the dry season begins from November to February, with a 
shorter rainy season until early December. 

3. Methodology 

3.1. Data collection and analysis 

The cropland biomass for a given cropland with a growing season for an annual time series was classified using [47,48,50–52] 
NASA Earth observation data with a spatial resolution of 250 m, specifically MODIS 006 MOD13Q1 [53]. For the current specific 
objective of conducting a simulation of crop water balance using the International Geosphere-Biosphere Program (IGBP), the validated 

Table 1 
Research data Specifications and use.  

Data types Specifications Uses 

Watershed 
Boundary 

Shape file derived from 30 mR DEM GeoTiff, signed 16 bits, and 
1 m/Digital Number using QSWAT 

Developing watersheds to assess crop water balance, estimate 
contamination, and estimate effective rainfall observation stations 
for contamination estimation. 

Land use 
Land cover for 
crop land 

The International Geosphere Biosphere Programme (IGBP) has 
classified global vegetation for annual cropland in 500 mR (re- 
sampled to 250 mR) using MODIS-MCD12Q1 data. 

Cropland area extraction to determine soil water content for specific 
crop types in the cropping zone. 

Crop Biomass MOD13Q1-MODIS 250 mR NASA earth data [52]. In order to calibrate total nitrogen use efficiency for Predicted 
canopy water content Nitrate contamination index [59] 

Rainfall data 
Observation 

Daily rainfall obstravtion from NMA (National Metriologe 
Agency) and active watershed gauge stations 

Gauge stations are used for generating missing observations from 
CHIRPS daily observation [60,61] 

Crop calendar The crop calendar is used to determine the national crop pattern 
for the wet season [47] and regional crop calendar for cross 
validation [48]. 

Estimate rainfall based on calibrated active station from the NMA 
(National Meteorological Agency) and use to linke the Earth Engine 
Code Editor (google.com) to fill in any data gaps from selected 
observation stations.  

B.G. Assa et al.                                                                                                                                                                                                         

http://google.com


Heliyon 10 (2024) e26717

4

classification of crop data [50] on land use and cover during the main growing season was adopted biomass level. Earth observation 
data from NASA Earth data, specifically MODIS 006 MOD13Q1 [49,54–56] with a spatial resolution of 250 m, were used to calculate 
zonal statistics for crop biomass index based on calibrated observations of study periods [48,54–58] (Table 1). This data was also used 
to classify cropland biomass in specific cropland areas. The growing season and the zonal statistics of the classified arable land areas 
with high and low arable biomass were taken into account to calibrate the model. 

3.2. Crop data 

The training data for classifying crop data (Fig. 2) [50] is used to integrate IGBP land use during the main cropping season and 
adopted for the current specific goal of conducting a simulation of crop water balance along with the International 
Geosphere-Biosphere Program (IGBP) to calibrate the model using the Enhanced Vegetation Index (EVI) of the MOD13Q1-EVI product 
[47,48]. This product has better sensitivity in regions with high biomass. The pixel value from the acquisitions of 16-day observations 
with low clouds, a low viewing angle, and the highest EVI value is used for the zonal statistics of the plant biomass index. The IGBP land 
use land cover class value [47] for observing cropland in time series was resampled to 250 m using the majority resampling technique 
algorithm to extract cropland within the watershed and converted into a shape file to provide information about the Type of crops to 
crop from Ethiopian Livelihood Zone data. Cropland was extracted from MODIS-MCD12Q1 of NASA Earth data [46,51] to create a land 
classification lookup table. Since cultivated area, cultivation dates and growing season are parameters and variables [56], it is 
important for modeling NO−

3 -N occurrence through runoff leaching from the main agricultural watershed to downstream of the 
watershed. It can also lead to surface and groundwater pollution in downstream water resources. Therefore, in the current study, the 
cultivated area [ha] for the main rainy season was used as a crop parameter for plant biomass modeling. Since the nitrate pollution 
index for downstream water resources depends on N fertilizer input to croplands at agricultural watersheds [47,55], the IGBP cropland 
classification was used. Plant growth and biomass dynamics on the zonal mean of crops [56,62] depend on rainfall patterns and N 
application. The cropland for each plant species-based pixel of MODIS 250 m-EVI is used to analyse the plant biomass index [21,63]. 

3.3. Meteorological station 

The National Meteorological Agency [64] of Ethiopia provided the required agro-climate data, including daily monthly and annual 
rainfall [65–68]. In addition, rainfall data were collected from CHIRPS/DAILY based on the (NMA) active station (Table 2) and these 
stations were exported to Google Earth engine to fill missing data gaps according to the agrometeorological station estimate is 
important [69] to fill data uncertainties. Few scientists who adapted hydrological research in Bilate watershed did not describe how 

Fig. 2. Seasonal crop data classification.  
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the observation station was selected for climate data observation stations [70,71]. 
Since long-term averages of area precipitation distribution [66,67,72,73] play a larger role in modeling agricultural watershed 

characterization, precipitation proportionality for model input should be the region of uncertainty based on selected measured ob-
servations [74]. Therefore, the Thiessen polygon method is a good approach for gap minimization and its impact on predicting the 
water balance and water content of the plant root zone due to the uncertainty of rainfall measurement [75]. The Thiessen polygon 
technique sets a fixed weighting factor for the area coverage of a station, and the arithmetic average method assumes that the pre-
cipitation field is homogeneous [66]. Since the pattern of rainfall homogeneity in the study area was tested by other scientists [65]. It is 
possible to apply the Thiessen polygon technique [76] to select observation stations [67]. However, it has not been clarified how these 
scientists selected these stations and this research selected 12 stations (Fig. 3) using the Thiessen polygon method [77,78], which is 
based on the information from agro-metrological crop modeling concept for predicting the water balance estimation of crop root zone 
[64]. In addition to seven measured crop season observation stations, rainfall data were selected for model input as independent 
variables for predicting crop canopy content and observing growing zone water content. 

Selected stations (Table 3) were selected based on their proximity to agricultural areas and availability of reliable and consistent 
data. The use of Thiessen polygons [68,79,80] allows estimation of plant root zone water balance, which is crucial for understanding 
and managing water resources in agricultural systems. By incorporating measured observation stations for rainfall data [81–85], the 
model can accurately predict crop stand contents and monitor water content in the growing zone, providing valuable insights for crop 
management and irrigation strategies. 

3.4. Rainfall pattern 

The average precipitation in the growing zone, which is crucial for plant growth during the observation season, falls predominantly 
in May and June. This time frame is selected for model calibration, which aims to predict plant canopy water content. Given the 
importance of rainfall windows for crop water uptake from the soil root zone [72], there is a strong correlation between comparing N 
nutrient uptake and estimating (NO−

3 -N) leaching/runoff from cropland [73]. Therefore, accurate prediction of precipitation patterns 
in May and June is crucial for calibrating the model and accurately estimating plant canopy water content. Furthermore, studying 
precipitation windows for crop water uptake is essential for understanding nutrient uptake and potential leaching or runoff of (NO−

3 -N) 
from cropland. This highlights the importance of this relationship. Rainfed agronomic practices followed by bimodal rainfall were 
applied to Bilat cropland (Fig. 4), and based on its rainfall pattern, data were collected to calibrate earth observations. 

Accordingly, there are two growing seasons in the study area, namely the Belg growing season with long rainfall intensity and the 
Mahir growing season with short rainfall intensity [65]. This information is important to determine a specific season for nitrogen-N 
fertilizer leaching and occurrence of run-on losses in the farmland watershed, as it has significant impacts on the downstream areas 
[79]; therefore, the Belg season for the study area is sensitive to the calibration of model climate parameters. Accordingly, for the 
current study, monthly mean precipitation amounts from the period 1981–2020 are given for mid-March, April and May to the end of 
June. The dynamics of watershed characterization modeling could be greatly influenced by the selection of an agrometeorological 
observation station [86,75,66]. 

3.5. Missing data estimation 

The missing data for precipitation observation are calculated using the daily CHIRPS observation by overlaying the longitude and 
latitude of the identified measured station points into daily, monthly and annual estimates using the Google Earth engine [87–91]. This 
effectively mitigates the effects of climate changes in crop water and nitrogen management in agricultural watersheds [67] This 
approach enables a more accurate and comprehensive understanding of rainfall patterns in specific agricultural watersheds and en-
ables farmers to make informed decisions regarding irrigation and fertilization. By incorporating data from CHIRPS and using the 
Google Earth engine, researchers can fill in the gaps left by missing rainfall observations, providing a more complete picture of water 
availability for crops. Accurately observed rainfall data is crucial for adapting to the changing climate and ensuring sustainable 

Table 2 
Climate data observation station based on Thiessen polygon weight factor Bilate down stream.  

NMA_Station Lat Lon Elv Area_OP [Km] Wt_Factor Wt in % 

Shone 7.134 37.953 1959 351.546 0.075 7.5 
Aje 7.291 38.352 1846 152.309 0.032 3.5 
Wulbareg 7.736 38.120 1992 512.729 0.129 12.9 
Butajra 8.150 38.367 2000 101.341 0.022 2.2 
Wolaita Sodo 6.850 37.750 1643 170.118 0.015 1.5 
Durame 7.200 37.950 2000 208.691 0.044 4.4 
Boditi School 6.954 37.955 2043 419.412 0.068 6.8 
Bilatetena 6.917 38.117 1496 918.116 0.195 19.5 
Bedessa 6.869 37.936 1609 205.532 0.065 6.5 
Alaba Kulito 7.311 38.094 1772 870.844 0.185 18.5 
Angacha 7.341 37.857 2317 388.421 0.082 8.2 
Hosana 7.567 37.854 2307 510.097 0.108 10.8  
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agricultural practices in the face of increasing water scarcity [92,81]. Overall, integrating CHIRPS data improves the resilience and 
sustainability of agricultural systems in the face of a changing climate. Accordingly, we linked the water gauge observation station 
(Table 1) with Google Earth Engine to estimate the missing precipitation data from 1981 to 2020 to fill the gap in precipitation 
observation. Furthermore, CHIRPS data can be highly correlated with point data observation [82] when it comes to observing missing 
precipitation data. We used the collected daily baseline rainfall data for gap filling from each measured station for the year from 1981 
to 2020 using the normal ratio method [93] based on the specific objective of the current study. Normal annual precipitation does not 
exceed 10% of the values considered in the selected gauge observation and we have validated this using statistical analysis results. 

Fig. 3. (a) Active meteorological station, (b) Thiessen polygons for selection of data observation station and (c) correlation between Thiessen 
polygons weight vs Area Coverage. 
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3.6. Accuracy assessment 

The spatial and temporal distribution for precipitation observation is crucial for simulating hydrological models at the watershed 
scale [83], but it is challenging to select the right observation station based on the degree of influence on achieving research objectives. 
And based on the working principle of Thiessen polygon [65], an Arc-GIS simulated [18] for the influencing measured station is 
selected for model calibration since the precipitation homogeneity test of Bilate watershed was carried out by other scientists [67] for 
their research objective. According to the information provided, 12 active meteorological data observation stations (Fig. 3a) are 
identified for model-calibrated precipitation observation based on the specific objective of the current study. Selecting a measured 
precipitation observation station based on its area coverage is important for the accuracy of predicting crop water balance. Therefore, 
the rainfall data observation was identified (Table 2, and Fig. 3b). 

Since the coverage of precipitation distribution over a given catchment depends on the weighting factor of a measured observation 
station in a polygon, it can be correlated [88] so that the acceptance of selected stations below is correlated (Fig. 3c) to validate the 
model inputs. As one of the most sensitive independent climate variables for plant parametric analysis of nitrogen runoff and leaching 
[84], identification of precipitation observation stations is important. In this regard, the validated precipitation observation station 
identified by the Thiessen polygon method proves suitable for this research-specific objective. Its correlated coefficient for liner 
regression was found (R2 ≥ 0.5 and P ≤ 0.001). Since precipitation is one of the most important hydrological components for nitrogen 
modeling in agricultural watersheds [76], a measured precipitation observation station should have been carefully identified based on 
the research objective. Seven precipitation observation stations were also selected. The selected observed rainfall from the observation 
station is rainfall from twelve stations for the total threshold of the Bilate watershed (Alaba, Bilatena, Boditischool, Badesa, Durame 
Hosana and Wulbareg). Based on the specific objective of the current study, the normal annual precipitation does not exceed (10%) the 
value considered in the selected gauge observation and was validated by static analysis results as given in equation (1): 

Vo =

∑n

i=1
wi ∗ Vi

∑n

i=1
Wi

(1)  

where; Wi is the weight of the ith nearest climate station. Vi is the observational data of the ith nearest climate station and weights for 
the surrounding stations used in the estimation [85] are calculated as given in equation (2): 

Wi = [R2
(

Ni − 2
1 − R2

)]

(2)  

Where R is the correlation coefficient between the target station of the NMA station for missing data and the ith surrounding station for 
collected observation, NMA is the National Metrological Gauged station used for the missing data station and the ith surrounding 

Table 3 
Annual average rainfalls from CHIRPS and selected NMA gauged station.  

Station name Gauged St Ob RF [mm/year] CHIRPS pt Obs RF [mm/year] 

Wulbareg 1032.25 1014.25 
Durrame 1204.28 1206.99 
Boditi School 1293.44 1291.22 
Bilate tena 999.47 1011.32 
Badessa 1115.33 1173.20 
Alaba Kuito 1040.23 1097.22 
Hosana 1310.21 1324.33  

Fig. 4. Monthy mean rainfall distrbution of Bilate Farm land watershed for selacted gauged observation (1981–2020).  
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station for collecting point observation from CHIRPS/DAILY, [42,80,82,93] and Ni is the number of station points used to derive the 
correlation coefficient, and after all missing data has been computed, the following annual average rainfall is used for model input 
calibration (Table 2 and Fig. 3c). The comparison result for CHIRPS observation and used NMA gauged station, was liner correlated for 
validation and correlation coefficient (r) reflected relationship between two observation result for validation was scored (95%) of 
confidence interval, with moderate correlation value 0.5 < for (R2) = 0.95 and P < 0.001 (Table 4) between the two observations [94] 
the absolute value of |r| in the (equation (3)) has indicted a strong correlation (0.9 < |r| ⩽ 1). 

(r)=

∑n

i=1
(Xi − Xav)(Yi − Yav)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Xi − Xav)2∑n

i=1(Yi − Yav)2
√ (3) 

Y is the mean rainfall and the mean of SSNMA (Selected Station of National Meteorology Agency), respectively during the studied 
periods. Where r is the correlation coefficient, n is the length of the time series, and i is the number of years during analyzed periods 
(1981–2020) Xi and Yi are the rainfall and SSNMA in the year ith Year of observation.; Model preparation. 

Based on the spatial heterogeneity of crops in the study area, the Geographically Weighted Rogation (GWR) model uses the 
conventional regression approach and emphasizes the need to set different parameters for the same explanatory variables [95]. The 
Geographically Weighted Rogation (GWR) model also proves to be appropriate in relation to the conceptual model of this study, based 
on an understanding of the model limitations and strengths for scientists in making decisions about cultural dynamics in the watershed. 
Regarding the conceptual model of this study, the Geographically Weighted Rogation (GWR) model is suitable [95,96]. Therefore, 
simulation of cropland zone statistics from the MODIS 250 m [49,52,57,97] improved the response of the vegetation index for each 
specific crop type for crop water balance based on the average precipitation (aRF) for the classified cropland area. It also predicts plant 
canopy water content as an indicator of nitrogen leaching or runoff from cropland watersheds. Due to the heterogeneity of crop 
parameters [47], the GWR model was prepared for use in the current study, and the relationships between the area-observed average 
seasonal precipitation variables of the growing zone can be highly correlated to predict the crop canopy water content. The GWR 
model takes into account the spatial variability of rainfall in different growing areas, enabling more precise estimates of water balance. 
By incorporating the average seasonal precipitation variables of the growing zone, the model was able to accurately predict plant 
canopy water content. This information is critical for assessing the risk of nitrogen leaching or runoff in the cropland watershed as it 
provides an indication of the amount of water available for plant uptake and the potential for nutrient loss. In addition, the model can 
also help determine the optimal irrigation schedule for different growing areas, ensuring that plants receive sufficient water without 
overusing it. This can contribute to more sustainable water management practices and higher crop productivity. 

Table 4 
Statistics summery for validation missing data estimation.  

Regression       
Regression Model Linear      
LINEST raw output 

0.95 74.07      
0.10 114.05      
0.95 31.18      

91.61 5.00      
89035.57 4859.59      

Regression Statistics 
R2 0.94      
Standard Error 31.17      
Count of X variables 1      
Observations 7      
Adjusted R2 0.93      
Analysis of Variance (ANOVA)  

Df SS MS F Significance F  
Regression 1 89035.57 89035.57 91.60 0.00021  
Residual 5 4859.59 971.91    
Total 6 93895.16     
Confidence 0.95       

Coefficients Standard Error t-Statistic P-value Lower 95% Upper 95% 
Intercept 74.07 114.04618 0.64 0.54467 − 219.09 367.23 
Gauged St Obs 0.95 0.09 9.57 0.00021 0.69 1.20  

Gauged St Obs Predicted CHIRPS Obs Residual Station name 
1032.25 1055.30 1014.25 − 41.05 Wulbareg 
1204.28 1218.83 1206.99 − 11.84 Durrame 
1293.44 1303.58 1291.22 − 12.36 Boditi School 
999.47 1024.14 1011.32 − 12.82 Bilate tena 
1115.33 1134.27 1173.2 38.93 Badessa 
1040.23 1062.89 1097.22 34.33 Alaba Kuito 
1310.21 1319.52 1324.33 4.81 Hosana  
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4. Data analysis 

Seasonal precipitation is based on measured observations (Table 3 and Fig. 4) of rainwater entering the growing zone. The useful 
water consumption from precipitation is estimated for the classified cultivation zone (Fig. 2) in [mm/ha/month] as the rate of pre-
cipitation water entering the cultivation zone per unit of arable land [32,98]. Therefore, classified cropland is used to calculate the 
amount of precipitation that falls on a unit of cropland each month and is expressed in millimetres per hectare (equation (4)). 
Additionally, these data were used to calibrate the model and estimate the amount of nitrate that transported soil particles out of the 
root zone. This helps to track and understand the effects of nitrate contamination on surface and groundwater recharge using the 
seasonal water balance of crops. 

Water in croping zone for sesonal

observation=
Croping season Mean rainfall in mm

Classified cropping zone
(4) 

Plant canopy water content can be predicted from the reflectance of the plant-enhanced vegetation index of MODIS 250 m EVI for 
each image pixel value of the cropland [21]. The principle of geographically weighted regression modeling (GWR) for predicting [95, 
89,99,100] crop water balance based on crop growth curve for crop heterogeneity as model parameter calibration [101] proved to be 
conceptually important. In this concept, crop data is considered as model input and its extension of OLS (Ordinary Least Squares) 
regression allows to consider locally varying parameters as spatial instability in a sample and the stochastic working principle of the 
(GWR) model [102] as follows in the (equation (5)). 

yi = βo(Ui,Vi)+
∑P

i=1
βk(Ui,Vi)Xik + εi (5)  

Where; yi is the dependent variable (EVI mean from crop zonal statics with respect to average cropping land rainfall for cropping 
season), Zone ith crop type for (Ui VI) is the geo spatial location of crop i, β0 (Ui, Vi) is the intercept at location ith βk (Ui, Vi) which is the 
local parameter estimator for independent variable (Xik) at location ith, crop EVI mean for the (εi) of the error term with this the model 
simulated from the shape area in (ha) from cropland and the equation employed for crop water balance is as follow in (equation (6)). 

yi = βo(Ai)+
∑P

i=1
βk(Ai)Xik + εi.. (6) 

Where; Ai is the shape area of (ith) crop land, to predict the regression coefficients based on a distance-decay function (Wij) in 
(equation (7)) and it is applied as a distance weighting factor between a modeled location and the observations [103]. When the 
sample points are irregularly distributed, a variable bandwidth increases, which increases the consistency of the model productivity 
formula through an adaptive weighted kernel [102]. Based on the concept of crop heterogeneity for its stochastic principle. 

Wij =

⎧
⎪⎨

⎪⎩

(

1 −

(
dij

ϴij(k)2

)

2

0 dij > ϴi(k)
for ϴi(k) > ϴi(k) (7)  

where (dij) is the distance between observations i and j, θi (k) is the adaptive bandwidth defined by the (kth) nearest neighbor distance. 
For a case in which the distance between observations is greater than the adaptive EVI pixel width, the distance decay function be-
comes zero [102]. And annual cropping season of each year time series from (2001 up 2020) crop water balance is predicted in GWR 
model with liner regression (R2 ≥ 0.5) simulated and see model prototype. 

5. Result and discussion 

5.1. Calibration and validation 

The result of the geographically weighted regression (GWR) model simulation [104,105] with (EO-MODIS 250 m NDVI/EVI) [22] 
of the extracted time series arable land is converted into the land class (MODIS-MCD12Q1) of the International Geosphere-Biosphere 
Program (IGBP) [52,54,97] which integrates value (12). This is used to estimate the crop water balance of the identified main water 
balance of rain-fed crops (Fig. 11) based on the rainfall pattern indicator of the study area as an indication of cropland runoff/leaching 
(NO−

3 -N). The calibration of the GWR model is carried out based on an AICc method for observed average precipitation in terms of 
goodness of fit to the predicted crop water balance, based on the concept of spatial or crop data heterogeneity [103]. 

The pixel of cropland EVI has predicted crop water canopy water content in GWR model with correlation coefficient (R2 ≥ 0.5,P <
0.001) and this interval is satisfactory to accept result [106]. Time series (NO−

3 -N) runoff\leaching quantification is extremely complex 
to hydrological model [107]. Because it is very sensitive to the observation of model inputs in space-time, depending on parameters 
and variable factors such as crop dates and soil physicochemical properties [45]. However, it is difficult to obtain time series data as for 
the study area. Due to this complexity and the lack of time series observation data in the study area, this study rather aims to use an 
empirical model (GWR) to predict plant seasonal water use efficiency and plant canopy content [108], observed time series nitrate data 
uncertainty for modeling contamination at regional scale for Bilate agricultural watershed has great role in research model preparation 
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also crop heterogeneity is important parameter to (NO−
3 -N) runoff\leaching estimation [103]. Estimating cropland (NO−

3 -N) runoff 
\leaching is also extremely associated with crop water balance for the intensity of crop root zone rainfall induced water content in 
cropping land [109]. The simulated model outcome of crop water balance and observed root zone soil water content of cropping zone for wet 
season in the study area indicates calibrated model outcome. Predicted (CCWC) and observed (Z_SWC) results, the root mean squared error 
(RMSE) < 0.5) and liner correlation (R2 ≥ 0.5) of (95%) is validate the result for confidence interval for model outcome and correlation 
coefficient (R2) as in (equation (8)) and RMSE in (equation (9)): 

Fig. 5. Predicted canopy water content vs soil water content (Z_SWC) for observed cropping in the year 2001 (a), 2002 (b), 2003 (c), 2004 (d), 2005 
(e), 2006 (f), 2007 (g), 2008 (h), 2009 (i), 2010 (j), 2011 (k), 2012 (l), 2013 (m), 2014 (n), 2015 (o), 2016 (p), 2017 (q), 2018 (r), 2019 (s) and 
2020 (t). 
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R2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(OZSWCi − PCWCi)

2

∑n

i=1

(

√
√
√
√
√
√
√

(8) 

Root mean square error 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(PCWCi-OZSWCi)

2

N

√
√
√
√
√

(9)  

where N is the total number of observations for monthly average precipitation [mm/month] of the model input for root zone soil water 
content per crop area in a crop type. (PCWCi) is the model predicted value of culture water balance per crop type. And (OZSWCi) is the 
observed soil water content of the plant root zone for each crop species. The output of the GWR model is used in addition to the R2 

acceptance range and ANOVA statistical approaches to validate the model (Fig. 5a to Fig. 5t) and tested with the specified correlation 
coefficient (R2 ≥ 0.5 and P < 0.001) for each year of simulation. 

5.2. Crop biomass 

The calculation of the cropland zone statistics for the biomass index using the EVI was calculated in the Arc GIS raster calculator 
[69,70,110,111] on the MODIS image using the following equation. Based on the cropland trough, the extraction by attributes from the 
cropland class value of (12) from the MODIS-IGBP land cover type [112] was converted into a shape file for cutting crop data from 
national livelily hood data, based on and validated through field survey data for soil truth crop information [113] MODIS/Aqua [57] 
Enhanced Vegetation Indices (EVI) time series [64,69,114] indicate improved agricultural information such as: B. the food security 
index due to nitrogen degradation of farmland [115]. Statistics for the biomass index are calibrated to the model simulation followed 
by sample precipitation (Fig. 6) for the 16-day L3 Global 250 m SIN Grid V061 data observation using (equation (10)). 

Fig. 5. (continued). 
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Crop land EVI=G
NIR − RED

NIR+ C1 ∗ RED − C2 ∗ BLUE + L
(10)  

where NIR (near infrared), red and blue are the full or seasonal atmospheric corrected surface reflectance (for Rayleigh scattering and 
ozone absorption) [116,117]. L is the canopy background adjustment to correct for nonlinear differential NIR. C1 and C2 are the 
coefficients of the aerosol resistance term. The blue band is used to correct aerosol influences in the red band. G (2.5) May be cropland, 
is a scaling factor for plant growth in the rainy season and the coefficients used for MODIS EVI [114] algorithm are L = 1, C1 = 6, C2 =
7.5 and G = 2.5 [118]. The biomass statistics of the growing zones are calculated based on the average rainfall of the growing season of 
the classified growing areas. Since the water balance of crop plants depends on the amount of water that reaches the root zone through 
precipitation [20], as an independent variable in the modeling simulation on cropland EVI (Fig. 6a–b, Fig. 6c and d), which is 
dependent variable for the arable land zone statistics [119]. Using this principle, it may be possible to predict plant canopy water and 
observe soil water content in the root zone of crops [108,112]. As a result, cropland zone statistics were c reated, which were used to 
link the cropland shape file to classified croplands. Rainy season cropland zonal biomass statistics of major crops in the study area 
(Fig. 7) are below an acceptable range for growth range for all crops [120,121]. The growth curve [30] for the uncertainty interval of 
the rainy season beginning/maximum/end (0.25 ≤ /crop zone EVI≤ 0.75) [33]. In addition, the result EVI ≤0.25 can be an. 

indicator of the mineral degradation index of the farmland in the rainy season [109,113]. With this result, harvest data from EVI for 
the study area were integrated into the model [113,122] to predict the water content of the plant canopy. 

5.3. Canopy water content 

The crop canopy water intercept (in mm/day) for observed root zone water in (%) (Figs. 8 and 9) can be an indicator of the water 
use efficiency of the plants based on the intensity of rainfall in the entire growing zone [106]. The regionalization of cropland, followed 
by pattern rainfall, depends on the reflection of the cropland vegetation index in the growing season of crops [123,118] and depends on 

Fig. 6. Cropland EVI for simulation of cropping zone statistics prototype for the Year 2001 (a), 2005 (b), 2010 (c) and 2020 (d).  
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the rainfall intensity in the growing zone. When the continuous precipitation rate is lower than the water content of the tree canopy, 
the captured water is not sufficient to meet the atmospheric demand within a time step [124]. This means that the estimated crown 
water content is used as an indicator of (NO−

3 -N) runoff/leaching from cropland and is dependent on the observed soil water content in 
the root zone (RZ_SWC) based on the growing season rainfall [125,126]. And the total annual crop water balance by liner regression for 
model calibration with the observed water content of the crop root zone in the rainy season. 

Based on the result of the seasonal change of root zone storage, the water balance is estimated for the (NO−
3 -N) index for pre-

cipitation or (RZ_SWC) for the seasonal crop over the water content of the plant canopy. The conceptual model satisfies possible (NO−
3 - 

N) leaching\rUnoff index [123,126]. This means that nitrogen fertilizer leached or leached due to the water content of the soil is 
greater than in the growing zone. The water holding capacity of the soil is greater, which results in the water draining below the root 
zone of the plant [127] and the transport of nitrogen nitrate from the root of the plant is accelerated. Zone in which a soluble form of 
nitrate (NO−

3 -N) enters the groundwater. It can also lead to nitrate contamination of groundwater. Since the state of the water balance 
of crops depends entirely on the water content of the soil due to the amount of precipitation on the cultivated area [128,129], the 
runoff/leaching of (NO−

3 -N) reacts strongly to the precipitation [127,130,131] during the harvest season and the probability of 
groundwater recharge high water content of the soil in the root zone leading to contamination. 

Fig. 7. Zonal crop biomass statistics of managed mineral soil index.  

Fig. 8. Predicted crop canopy water content.  
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5.4. Leaching runoff index 

As the water content in the root zone of crops decreases, water is held more tightly to mineral surfaces. However, in other words, 
this means that the result can be interpreted for the water balance interval (0 to − 0.033) of the plant root zone (Fig. 10), showing an 
increase in the soil drainable state of (NO−

3 -N). A higher leaching runoff index indicates [120,121,132] that more water is lost through 
runoff, which can lead to nutrient pollution and reduced water availability for crops [26–28]. Therefore, increased soil drainability 
(NO−

3 -N) suggests that there is an increased risk of leaching and nutrient loss in the root zone of crops. This can have negative impacts 
on plant growth and yield, as well as the overall health of the ecosystem. Additionally, excessive leaching and nutrient losses can 
contribute to water pollution [66,75,133,134] in nearby bodies of water. It is critical for farmers and land managers [135–137] to 
implement appropriate irrigation and nutrient management practices to minimize these risks and ensure sustainable crop production. 

nitrate contamination. 
This means that the fertilizer’s nitrogen cycles between plant nitrogen uptake and soil nitrogen mineralization [12,13,138], with 

the primary removal process of (NO−
3 -N) runoff and leaching into surface or groundwater. This can lead to reduced crop productivity 

and nutrient availability, as well as possible contamination of water resources. To mitigate these problems, farmers may need to 
implement strategies such as precise nitrogen application and improved irrigation management to minimize leaching losses [5,6,16]. 
Additionally, regular soil testing and monitoring can help determine crop nutrient needs and manage fertilizer application to ensure 
optimal nutrient cycling and minimize environmental impact. Overall, controlling water balance and nutrient cycling in arable land is 
crucial for sustainable agriculture and protecting water quality in (equation (11)). 

Fig. 9. Canopy water content and seasonal root zone water content for indictor of surface and groundwater nitrate contamination index.  

Fig. 10. Crop water balance by crop type.  
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Nitrate Runoff \ leaching index can be=
[

0.5≥
CCWC
RZ SWC

≥ 1
]

(11)  

where CCWC is the water content of the crop canopy for the monthly average rainfall of the crop season in mm and RZ_SWC is the 
observed soil water content of the crop root zone for classified cropland sampled from African soil grids. Root depth data [139,140] 
observation for the average root zone depth was 30 cm–50 cm for seasonal N input in kgNha-1 year-1. The annual average water 
content of the tree canopy of the growing areas (Fig. 9) is used to calculate the seasonal water balance of the crops (Fig. 10). For SWC it 
is greater than or equal to the water content of the tree canopy which shows the (NO−

3 -N) contamination index. Accordingly (2004, 
2008, 2009, 2010, 2011, 2013, 2014, 2015, 2018 and 2020) seasonal nitrate leaching and runoff from the growing zone were indexed. 
Water use efficiency (WUE) is highly correlated with crop nitrogen balance (NUB). The estimate of (NUE) [47] correlates with the 
annually calculated summary for (WUE) of this specific work, see (Supplement Figs. 12 and 13). And the annual water use efficiency 
and crop nitrogen balance time series (2001–2020) are related based on validated and tested simulation results (Fig. 5) to further 
confirm the model simulation results. The conceptual model is consistent for the period when precipitation is higher than CCWC. The 
calculation of (NO−

3 -N) runoff/leaching is expected to be based on the precipitation climate indicator [141]. The (SWC) ratio to root 
zone results are summarized (Table 5) to compare the plant root zone nitrogen balance estimated in the previous specific objective of 
this research. 

5.5. Crop water balance 

The seasonal crop water balance calculated using (equation (12)) below indicates the potential for runoff/leaching of nitrate in the 
groundwater system below the root zone [112]. 

ΔS=
∑n

i
(Oswc − Pcwc) (12) 

Fig. 11. Time series (2001–2020) crop water Balance for nitrate runoff\leaching index.  

Table 5 
Time series Crop Water and Nitrogen Use Efficiency for Crop land N runoff \leaching indicator.   

Year 
Observed 
Volumetric zonal SWC[%] per R depth 

Predicted 
Zonal 
Canopy 
Water 
Content 

Crop 
Nitrogen Balance 

Crop 
Water 
Balance 

Crop 
Nitrogen 
Use 
Efficiency 

Crop 
Water Use 
Efficiency 

2001 3.369 3.248 0.121 0.1208 0.964 0.994 
2002 5.519 5.479 0.072 0.0395 0.991 0.993 
2003 5.912 5.703 0.142 0.2091 0.985 0.983 
2004 6.209 6.255 − 0.016 − 0.0423 1.002 1.011 
2005 5.339 5.297 0.021 0.0467 0.997 0.984 
2006 5.790 5.788 0.147 0.0120 0.985 0.983 
2007 6.150 6.147 0.282 0.0341 0.969 0.992 
2008 4.742 4.755 − 0.189 − 0.273 1.027 1.019 
2009 4.474 4.476 − 0.066 − 0.043 1.009 1.000 
2010 5.834 5.869 − 0.082 − 0.079 1.006 1.001 
2011 5.698 5.707 − 0.206 − 0.854 1.025 1.017 
2012 5.167 5.119 0.120 0.0485 0.984 0.991 
2013 5.427 5.470 − 0.073 − 0.0431 1.009 1.017 
2014 5.709 5.614 0.034 0.1056 0.996 0.996 
2015 3.863 3.875 − 0.041 − 0.498 1.005 1.001 
2016 3.871 3.868 0.083 0.0029 0.990 0.997 
2017 5.146 5.041 0.099 0.1049 0.989 0.990 
2018 5.435 5.473 − 0.014 − 0.0381 1.002 1.000 
2019 6.752 6.678 0.144 0.1551 0.956 0.996 
2020 5.792 5.835 − 0.157 − 0.1697 1.019 1.001  
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Where; ΔS is the Change in water storage for crop root zone and Oswc is seasonal observed soil water content for average root depth 
of ith year for main crops type in the study area. And Pcwc is seasonal predicted crop water balance of ith year for main crops type in the 
study area. The crop water balance estimates are based on the predicted seasonal observed root zone soil water content and canopy 
water content [142,143]. Therefore, crop water balance [144–146] assessment along with the Cropland (NO−

3 -N) runoff/leaching 
index is crucial to understand nitrate contamination assessment (NO−

3 -N) in groundwater [147] since runoff/leaching occurs when 
rainfall or root zone soil water content surpasses the crop water balance. Crop Nitrogen Use Efficiency (CNUE) and Crop Canopy Water 
Content (CCWC) equilibrium are correlated with soil water content shows that nitrogen input variations. The positive difference 
between observed and predicted values indicates potential (NO−

3 -N) runoff/leaching and a negative cropland water and nitrogen 
balance suggests crop stress. Increased rainfall corresponds to higher surface runoff and nitrate interflow [148,149]. Since surface and 
groundwater nitrate contamination modeling is completely dependent and sensitive to the amount of rainfall induced in surface area. 
Accordingly, the soil water content observed form seasonal cropping zone rainfall [149–152] (Fig. 11) is indicating the estimation of 
crop water balance for the cropland (NO−

3 -N) rainfall induced leaching\runoff index [153]. Therefore, the rainfall intensity during 
cropping season is important to quantify volumetric cropping zone soil water content (see Supplementary Table 1) which predicts crop 
canopy water content. Annual seasonal crop water balance indicates the potential runoff \leaching of water and nitrate contamination 
flow above and below root zone [112]. 

6. Discussion 

Indeed, hydrological modeling relies heavily on data, and the difficulty of obtaining time-series nitrate measurements for large 
watersheds represents a significant challenge [154–156]. The use of the geographically weighted regression (GWR) model approach 
[32,96,98,157,158] demonstrates to address this challenge by providing a tool for predicting nitrogen cycling in the cropland. This 
approach takes into account into various factors such as plant N uptake, (NO−

3 -N) from plant root zone leaching, surface runoff and 
trends in nitrogen release. This comprehensive approach enables more accurate simulation of nitrate pollution in groundwater and 
surface water. The specific inclusion of crop-specific growing seasons in the GWR model takes into account the temporal variability of 
agricultural practices and emphasizes that different crops can have different effects on the nitrogen cycle [53,62,63,159]. This seasonal 
calibration adds a higher level precision to the model parameters and reflects the dynamic nature of agricultural systems. Precipitation 
variability is highlighted as a key factor affecting nitrate pollution in agricultural watersheds. Therefore, this study likely presents 
visual representations of how different precipitation patterns affect the transport of nitrates within the watershed using Figs. 3, 4 and 9. 
Understanding these patterns is dire for predicting and managing nitrate pollution since rainfall can affect the movement of nutrients 
through soil and into waterways [160]. Consequently, this study is suggesting understanding routine water quality monitoring is a 
proactive measurement needed. Regular water quality assessment enables timely detection of water quality problems and enables 
intervention before widespread occurrence of contamination. This preventive approach is essential to protect the environment and 
human health using acquisition of remote sensing data. Remote sensing technologies can provide valuable information about land 
cover changes, vegetation health and other relevant parameters over large spatial scales. Integrating such data into hydrological 
models increases their accuracy and provides a broader overview of the factors affecting nitrate pollution in large watersheds. In 
summary, the study uses the GWR model to address the challenges of limited nitrate measurements in large watersheds is valuable 
approach to understand surface and groundwater contamination. It highlights the importance of considering various factors in the 
nitrogen cycle, emphasizes the role of precipitation variability and routine monitoring of water quality which proposes the integration 
of remote sensing data to improve hydrological modeling in agricultural watersheds. This is better helping to understand the complex 
interactions between the nitrogen cycle and the water cycle in the watershed. 

6.1. Limitations of the study 

Nitrates can get into surface and groundwater from many sources. However, this study considers the agricultural practices as the 
main contributor to nitrate pollution and other factors are normal in the watershed. Additionally, the geographically weighted 
regression model may have limitations to represent the hydrological processes. Therefore, the findings could be used for developing 
strategies to manage nitrate pollution problems in the watershed in consideration of other factors are normal. 

7. Conclusion 

According to the results of this study, canopy water content below zero could indicate potential crop water shortages and indicates 
drought conditions. This finding is important for farmers and agricultural professionals as it can help them to monitor and manage 
water resources more effectively. Through regular measuring the canopy water content, farmers can make informed decisions about 
irrigation schedules and water allocation and ultimately improve crop yields and water use efficiency. Furthermore, this study 
highlights the importance of implementing sustainable agricultural practices to mitigate the effects of drought and ensure food security 
in the face of climate change. Deficits during the years (2004, 2008, 2009, 2010, 2011, 2013, 2014, 2015, 2018 and 2020) indicated 
nitrogen and water deficits for cultivation with nitrogen and water deficits in the rainy season which further confirm the results based 
on the water use efficiency of the crop. To follow up the result, the results of this study on the nitrogen balance of crops were used. 
Consequently, the potential N uptake was calculated in the years (2004, 2008, 2009, 2010, 2011, 2013, 2015, 2018 and 2020) for the 
total nitrogen applied in the root zone in [Nkgha− 1 yr− 1] and other growing years. The negative crop water and nitrogen balance shows 
that the results of the current study suggested possible (NO−

3 -N), leaching\runoff from cropping zone. The quantities separated from 
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arable land were released into the waterways in the identified years. It is therefore possible to link the crop water balance with crop 
nitrogen balance. This information is also important for tracking the sustainability of water, soil and environmental management as 
well as the impact of N fertilizer management on a cropland. 
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