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ABSTRACT

Despite growing consensus that long intergenic non-
coding ribonucleic acids (lincRNAs) are modulators
of cancer, the knowledge about the deoxyribonucleic
acid (DNA) methylation patterns of lincRNAs in can-
cers remains limited. In this study, we constructed
DNA methylation profiles for 4629 tumors and 705
normal tissue samples from 20 different types of hu-
man cancer by reannotating data of DNA methyla-
tion arrays. We found that lincRNAs had different
promoter methylation patterns in cancers. We clas-
sified 2461 lincRNAs into two categories and three
subcategories, according to their promoter methy-
lation patterns in tumors. LincRNAs with resistant
methylation patterns in tumors had conserved tran-
scriptional regulation regions and were ubiquitously
expressed across normal tissues. By integrating can-
cer subtype data and patient clinical information, we
identified lincRNAs with promoter methylation pat-
terns that were associated with cancer status, sub-
type or prognosis for several cancers. Network anal-
ysis of aberrantly methylated lincRNAs in cancers
showed that lincRNAs with aberrant methylation pat-
terns might be involved in cancer development and
progression. The methylated and demethylated lin-
cRNAs identified in this study provide novel insights
for developing cancer biomarkers and potential ther-
apeutic targets.

INTRODUCTION

Deep sequencing with new computational approaches for
assembling transcriptome has identified tens of thousands
of large intergenic transcripts across different tissues and
cell types. These intergenic transcripts do not code for pro-
teins and are named long intergenic non-coding ribonu-
cleic acids (lincRNAs) (1,2). Many lincRNAs are dysreg-

ulated in human cancers and implicated in disease pro-
gression through modulating apoptosis, increasing cellular
oncogenic potential or inhibiting tumor growth (3,4). Al-
though several lincRNAs [lincRNA p21 (5), HOTAIR (6),
PCA3 (7) among others] have been depicted with relatively
explicit molecular mechanisms in several cancers, little is
known about the regulatory mechanisms of lincRNAs in
tumors or normal tissues, especially on regulation by de-
oxyribonucleic acid (DNA) methylation.

DNA methylation at gene promoters is crucial for gene
silencing and involved in many diseases (8). DNA methy-
lation of lincRNA promoters might be an epigenetic reg-
ulator of lincRNAs expression (9), for instance, lincRNA
Glt2 (MEG3), whose expression was indirectly regulated
by mir-29a in hepatocellular carcinoma cells, which in-
hibited the activity of DNA methyltransferase and caused
de-repression of MEG3 expression (10). Several lincRNAs
were upregulated in the human colorectal cancer cell line
HCT116 by treatment with a DNA-demethylating agent
(11). However, systematically identifying cancer-related
methylation patterns of human lincRNAs is still a chal-
lenge, partly because of a lack of global DNA methylation
profiles for lincRNAs.

High-resolution next-generation sequencing and mi-
croarray technologies have been used for genome-scale
mapping of DNA methylation (12). Illumina Infinium Hu-
manMethylation450 BeadChip Array (Infinium 450k) has
485 577 probes that comprehensively cover most known
CpG islands (CGIs) and 99% of NCBI Reference Sequence
genes (13). The Cancer Genome Atlas (TCGA) Research
Network contains a large number of data sets with Infinium
450k arrays for thousands of tumor samples with corre-
sponding normal samples and matched clinical annotations
that are all publicly available (14–16). Previous studies suc-
cessfully extracted lincRNA expression information by re-
purposing the microarray data, which were originally de-
signed to detect the expression of genes or exons (17–19).
By reannotating the Infinium 450k array, we could obtain
lincRNA methylation levels in a large number of samples.
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We developed a computational strategy to reannotate
the Infinium 450k array and observed that DNA methy-
lation level of lincRNA promoters was tightly linked to
lincRNA transcription. We constructed DNA methylation
profiles for 20 distinct types of cancer according to lin-
cRNA promoter methylation levels. We classified the lin-
cRNAs into two categories and three subcategories and
found that lincRNAs with resistant methylation patterns
in tumors had conserved transcriptional regulation regions
and were ubiquitously expressed across normal tissues. By
analyzing the lincRNA methylation profiles together with
clinical information for tumors in breast invasive cancer
(BRCA), lung squamous cell cancer (LUSC) and uterine
corpus endometrioid cancer (UCEC) among others, and
subtype data of tumors in BRCA (20) and LUSC (21), we
identified lincRNAs with promoter methylation patterns
that were associated with cancer status, subtype or prog-
nosis. These lincRNAs could be further evaluated for use
as cancer biomarkers and potential cancer therapy targets.
Some lincRNAs with aberrant methylation patterns in can-
cers might involve in cancer development and progression.
Early detection of hypermethylated or hypomethylated lin-
cRNAs could serve as cancer biomarkers for diagnosis or
treatment.

MATERIALS AND METHODS

Data sources

DNA methylation data from Infinium 450k arrays and pa-
tients clinical data were downloaded from TCGA (https:
//tcga-data.nci.nih.gov/tcga/). RNA-seq data for 16 tissues
were derived from Human Body Map 2 project (SRA, E-
MTAB-513)(1). RNA-seq data of six cell lines were from
Gene Expression Omnibus (GEO, GSE23316) (22). Corre-
sponding lincRNA expression data from patients were cal-
culated based on the RNA-seq V2 data from TCGA. CGI
annotation and repetitive element (RE) annotation data
were from UCSC Genome Browser (23). Annotation files
for lincRNAs and protein-coding genes (PCGs) were down-
loaded from Human lincRNA Catalog (1).

Re-annotating data from the Infinium 450k array to construct
lincRNA methylation profiles

We mapped 485 577 probe sequences (50 bp in length) to
human genome (hg19) with BLAT (24). We treated BLAT
output in two steps: first, we retained the probes uniquely
mapped to a single location in human genome with a max-
imum of two mismatches. Second, we eliminated the se-
quences with gaps. A total of 485 512 probe sequences from
Infinium 450k arrays were uniquely mapped. We then as-
signed the probe sequences into four lincRNA-associated
regions according to the Human lincRNA Catalog annota-
tion file (1): regions 10 kb upstream from the transcription
start sites (TSSs), regions 10 kb downstream from the tran-
scription termination sites (TTSs), exons and introns. We
only retained the probe sequences exclusively mapped to a
single region.

To estimate the methylation level of a given probe, we
used the beta value: the ratio of intensities between methy-
lated and unmethylated alleles. The beta value and cor-

responding P-value of each probe were obtained from
the level 3 Infinium 450k data in TCGA. Beta value =
Imeth/(Imeth+ Iunmeth), where Imeth is the intensity of methy-
lation and Iunmeth is the intensity of unmethylation. We only
used the beta values with significant detection P-values (P
< 0.05) in calculations to avoid using the missing data.

For each type of cancer, we constructed lincRNA methy-
lation profiles using the methylation levels of the probes
mapped into 10 kb upstream from the TSSs of the lincR-
NAs. In research on a cis-regulatory element annotation
system, Liu et al. specified the largest promoter size as 10
kb upstream from the TSS (25). Since the regulatory mech-
anism of lincRNAs transcription is similar to the regulation
of genes (26), we used 10 kb upstream from the TSS for a
relatively comprehensive range of lincRNA promoters. We
used only the probes closest to each TSS to determine the
DNA methylation status of lincRNA promoters.

Classification of lincRNAs with divergent methylation pat-
terns in cancers

We classified lincRNAs into two categories: prone to methy-
lation (PM) lincRNAs and resistant to methylation (RM)
lincRNAs. LincRNA promoters with beta value ≤ 0.3 were
considered as unmethylated promoters and those with beta
value > 0.3 were considered as methylated ones. These cut-
offs and strategies were similar to those in previous stud-
ies (27,28). LincRNAs with methylated promoters in more
than 20% of all tumor samples were defined as PM lincR-
NAs. LincRNAs with unmethylated promoters in all tu-
mors were named RM lincRNAs. PM lincRNAs that were
methylated in more than 5% of tumors for each cancer
were defined as consistently methylated (CM) lincRNAs.
PM lincRNAs that were unmethylated in tumor samples for
at least one cancer were classified as variable methylation
(VM) lincRNAs.

Analysis of REs at lincRNA promoters

We obtained the position information of the REs from
the Repeat Masker track (RMSK) in the UCSC Genome
Browser (hg19) (29). We divided the region ±10 kb around
lincRNA TSS into 20 equal-sized bins. The REs were con-
sidered to exist if they overlapped with the bins. We plotted
the frequency of the REs in each bin for lincRNAs belong-
ing to the three categories. We tested differences between the
categories using Fisher’s exact tests based on the density of
the REs in an interval ± 2 kb around TSSs.

Analysis of evolutionary conservation for lincRNA promoters

We used the measurements of base substitutions in 46 pla-
cental mammals (phastCons46way, UCSC) to analyze the
evolutionary conservation for lincRNAs in different cate-
gories. We separated the region upstream and downstream
10 kb from the TSS of a lincRNA into 20 non-overlapping
intervals, taking direction of transcription into account. We
calculated the mean Phastcons scores for each interval. We
tested the significance of differences between categories us-
ing scores calculated for intervals ± 2 kb around TSSs with
Wilcoxon rank sum tests.

https://tcga-data.nci.nih.gov/tcga/
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Predicting the functions of lincRNAs

We used two strategies to predict the functions of lincRNAs.
According to lincRNA cis-regulatory mechanism (30), we
used the PCGs adjacent to the target lincRNAs to infer the
potential functions of lincRNAs with three rules: first, the
PCGs must locate on the same strand with the target lin-
cRNAs. Second, the PCGs were nearest to the target lincR-
NAs. Third, only PCGs within 10 kb from the target lincR-
NAs were retained. We also performed functional enrich-
ment analysis of the PCGs co-expressed with the lincRNAs
to predict the potential functions of lincRNAs in cancers.

Obtaining lincRNA expression values from the RNA-seq V2
data in TCGA

We recalculated the RPKM values for lincRNAs using the
RNA-seq V2 data in TCGA (31). RPKM = (raw read
counts × 109)/(total reads × length of lincRNA X), where
raw read counts = sum of raw read counts in all exons en-
tirely mapped to the lincRNA locus; total reads = sum of
raw read counts calculated for all transcripts of a sample;
and length of lincRNA X = sum of length of exons mapped
to the lincRNA X locus. To avoid ambiguous exons map-
ping, we merged the overlapping lincRNA transcripts into
a single candidate lincRNA.

Identifying lincRNAs with prognosis- or cancer subtype-
associated promoter methylation patterns

We calculated Kaplan–Meier log-rank P-values to identify
lincRNAs with overall survival (OS)-associated methyla-
tion patterns. Tumors were separated according to the me-
dian methylation of each lincRNA. For each cancer, we di-
vided tumors into a discovery set and a validation set. In the
discovery phase, we retained lincRNAs with significant log-
rank P-value < 0.05. We permuted the labels for tumors in
the discovery set 5000 times to calculate the background dis-
tribution of log-rank P-values for each lincRNA. We then
estimated the false discovery rate (FDR) for each lincRNA
using its own background (32). We validated only lincRNAs
under a threshold of FDR = 0.01 in the validation set. We
identified lincRNAs with prognosis-associated (PA) methy-
lation patterns in cancers with tumor sample size available
for both clinical and methylation data ≥ 200 and a censor-
ing (alive sample) rate ≤ 0.9; or the tumor sample size < 200
and a censoring rate ≤ 0.8 for an effective survival analysis
(Supplementary Table S1) (33). We performed t-tests (one-
tailed) to compare the lincRNA methylation pattern of pa-
tients in each subtype to those in other subtypes in each can-
cer. The lincRNAs that showed statistically higher or lower
methylation (FDR < 0.05) in only one subtype were con-
sidered as having subtype-specific methylation patterns.

Statistical analyses

Functional enrichments of PCGs were consisted on the
Fisher’s exact test (two-tailed) implemented by DAVID v6.7
(http://david.abcc.ncifcrf.gov/) (34). Aberrantly methylated
(AM) lincRNAs between tumors and corresponding nor-
mal samples were identified by t-test (two-tailed), when
FDR < 0.05 and |average beta value of tumors − average
beta value of normal samples| ≥ 0.3.

RESULTS

A reannotation strategy for constructing DNA methylation
profiles of lincRNAs

To characterize DNA methylation patterns for lincRNAs,
we designed a computational strategy to reannotate data of
Infinium 450k arrays into four human lincRNA-associated
regions (Figure 1A). In total, 3361 lincRNAs had at least
one probe sequence uniquely mapped to one of the four re-
gions (Supplementary Table S2). Most probe sequences cor-
responded to introns (6911, 47%) or exons (3447, 23%). Al-
though a substantial set of probe sequences mapped to the
regions 10 kb upstream from the TSSs, we retained only the
probes closest to each TSS to determine the DNA methy-
lation status of lincRNA promoters (2461, 13%). The re-
maining probe sequences (2001, 13%) were annotated clos-
est to the regions 10 kb downstream from the TTSs (Figure
1B). To determine the validity of the reannotation strategy,
we annotated the probe sequences to PCG loci using the
same strategy. The results were consistent with the previ-
ous probe-PCG annotations provided by Illumina. To de-
termine the reliability of lincRNA methylation status, we
used data from Infinium 450k arrays and reduced represen-
tation bisulfite sequencing (RRBS) of nine cell lines from
the ENCODE project (22). Methylation levels of probes an-
notated to lincRNAs were consistent with levels detected by
RRBS (Supplementary Figure S1). In each cell line, all de-
tected probe sites showed significant concordance between
Infinium 450k array and RRBS for methylation, including
probes annotated to the four lincRNA-associated regions
(Supplementary Figure S2) and probes annotated only to
lincRNA promoters (Supplementary Figure S3).

We compared the DNA methylation patterns for each re-
gion: promoters, exons, introns and the regions 10 kb down-
stream from the TTSs for lincRNAs within each of the
10 expression quantiles with the Infinium 450k array and
RNA-seq data of an H1-hESC cell line from the ENCODE
project (22) (Figure 1C). Compared with the other three
regions, hypermethylation of promoters was more tightly
linked to transcriptional silencing of lincRNAs (Supple-
mentary Figure S4). Therefore, we constructed lincRNA
promoter methylation profiles for 20 cancer types including
4629 tumors and 705 corresponding normal tissue samples
(TCGA; Supplementary Table S3).

Dissecting lincRNAs promoter methylation patterns in can-
cers

For the lincRNAs in this study, the average DNA methy-
lation levels showed significant differences between tumors
and normal samples in 18 of the 20 cancer types (t-test,
P < 0.05), with lower methylation levels in tumors than
normal samples for 15 cancer types. Exceptions were kid-
ney renal papillary cell cancer (KIRP), brain lower grade
glioma (LGG) and prostate adeno cancer (PRAD) (Figure
2A). Since disrupting DNA methyltransferases may pro-
mote chromosome instability and tumor progression, can-
cer cells are usually less methylated at individual CpG dinu-
cleotides than healthy cells (35–38). The lower average DNA
methylation levels of lincRNAs in tumors than in corre-
sponding normal samples for most cancer types were con-

http://david.abcc.ncifcrf.gov/
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Figure 1. Computational strategy for reannotating Infinium 450k array data to construct lincRNA methylation profiles. (A) Probe reannotation pipeline for
lincRNAs. (B) Pie chart with distribution and the number of probes annotated by functional region for all collected lincRNAs. (C) Methylation patterns of
lincRNAs by 10 expression quantiles (lowest 10%–100%). Box plots show methylation levels in promoters, exons, introns and the regions 10 kb downstream
from the TTS.

sistent with the global hypomethylation patterns of PCGs
in cancer cells. In contrast, hypermethylation of lincRNAs
might be involved in DNA repair, tumor cell invasion, cell
cycle regulation and other events in which silencing might
induce metastasis (38). Aberrant promoter methylation was
frequently observed in cancer samples and might have con-
tributed to tumor progression by silencing tumor suppres-
sor genes or activating oncogenes. Therefore, we explored
the methylation patterns at lincRNA promoters in each
cancer type by dividing the 10-kb region upstream of the
TSS into 10 equal-sized bins. We obtained three representa-
tive cancer type-specific methylation patterns for 20 cancer
types, and examples were shown in bladder urothelial can-
cer (BLCA), head and neck squamous cell cancer (HNSC)
and LGG (Supplementary Figure S5). We then assigned
CGIs and CpG shores (±2-kb regions from CGI start or
end sites) in the promoter regions and obtained two repre-
sentative cancer type-specific methylation patterns accord-
ing to the methylation levels of probes mapped to each re-
gion, and examples were shown in BLCA and LGG (Sup-
plementary Figure S6).

We performed unsupervised hierarchical clustering on
the average promoter methylation profiles of lincRNAs for
20 types of cancer. The results suggested that part of the
lincRNAs had RM status in cancers, some lincRNAs had
CM status in cancers and the others had VM patterns. Can-
cers with similar lincRNA methylation patterns were clus-
tered together. Three pairs of cancers with adjacent tissue
of origins showed similar lincRNA methylation patterns:
glioblastoma multiforme (GBM) and LGG, colon adeno
cancer (COAD) and rectum adeno cancer (READ) and kid-
ney renal clear cell cancer (KIRC) and KIRP (Figure 2B).

To determine lincRNA methylation patterns in cancers,
we classified the lincRNAs into two categories and three
subcategories according to their methylation profiles of tu-
mors (Figure 2C). We obtained 1854 PM lincRNAs and 67
RM lincRNAs. By subdividing the PM lincRNAs, we ob-
tained 1693 (91.32%) CM lincRNAs and 52 (2.80%) VM
lincRNAs (Figure 2D and Supplementary Table S4). Us-
ing our methodology, CM lincRNAs had the significantly
highest median methylation levels and RM lincRNAs had
the lowest levels in tumors (Figure 2E). As an important
regulating factor of gene expression in cancers (39), DNA
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Figure 2. Dissecting lincRNA promoter methylation patterns in cancers. (A) Bar plots with average methylation levels of lincRNA promoters in tumors and
corresponding normal samples (t-test, *P < 0.05, **P < 1.0e−3 and ***P < 1.0e−4). Error bars, mean ± SEM. (B) Unsupervised hierarchical clustering of
average methylation profiles for 2461 lincRNAs in 20 cancer types. GBM-LGG, KIRC-KIRP and COAD-READ were three pairs of cancers with similar
tissue of origin. PRAD, BRCA, STAD, LUAD and PAAD were cancers arising from adeno. CESC, HNSC and LUSC were cancers arising from squamous
cells. SARC and SKCM were sarcomatoid carcinomas. (C) Strategy used to segregate lincRNAs into sets with distinct methylation patterns. (D) Pie chart
with the number of lincRNAs in different categories. (E) Box plots show methylation level of lincRNAs in different categories. Differences between sets
were tested using Wilcoxon rank sum tests. (F) Box plots of DNA methylation and expression levels of VM, CM and RM lincRNAs for three cancers.
Methylation and the corresponding expression values were obtained from consistent sample sets.

methylation might be involved in regulating lincRNA ex-
pression in cancers. We examined both methylation levels
and expression levels of CM, VM and RM lincRNAs us-
ing the Infinium 450k array data and the RNA-seq V2 data
for COAD, GBM and HNSC. In all three cancers, RM lin-
cRNAs showed the overall lowest median methylation level
and the highest median expression level (Figure 2F). Our
results indicated that the three different lincRNA methy-
lation patterns in cancers were related to lincRNA expres-
sion. Many lincRNAs have been identified as having regula-
tory functions in cancer-related pathways such as the MYC
and p53 pathways (40). Therefore, we might be able to in-
fluence lincRNA expression by altering DNA methylation,
thus disrupting the functions of lincRNAs in cancers. Fur-
ther analysis of the three different DNA methylation pat-
terns might help identify novel drug targets or cancer diag-
nostic biomarkers.

RM lincRNAs had the most conserved promoter regions and
the least tissue-specific expression in normal tissues

Since REs are involved in reprogramming of DNA methy-
lation (41,42), we investigated whether REs affected lin-
cRNA methylation patterns. We quantified the REs around
the TSSs of lincRNAs using the RMSK data from UCSC
Genome Browser (43). All three major RE classes (LINEs,
SINEs and LTRs) were depleted from lincRNA core pro-
moters (2 kb upstream from the TSSs) (Figure 3A). More-
over, RM lincRNAs had significantly fewer REs than CM
lincRNAs, possibly caused by activated DNA methylation
of REs in lincRNA promoters. RE insertion close to a
lincRNA promoter or RE hypermethylation might inter-
rupt the transcription factors or other regulatory elements
binding to lincRNA promoters, which could contribute to
lincRNAs tissue-specific expression. We quantified the tis-
sue specificity of lincRNA expression in 16 normal tissues
(SRA, E-MTAB-513) and six cell lines (GEO, GSE23316)
using an information theory method (Supplementary file)
(44). CM lincRNAs had significantly higher tissue-specific
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Figure 3. RM lincRNAs had conserved promoters. (A) RM lincRNAs were depleted of REs at promoters. Graphs show frequency of LINEs, SINEs and
LTRs at 1-kb intervals around TSSs of CM, VM and RM lincRNAs. Significance of differences in densities was determined by Fisher’s exact tests for
repeat counts ± 2 kb from the TSSs. (B) RM lincRNAs had the lowest tissue-specific expression in normal tissues. Shown are cumulative distributions of
tissue-specificity scores for CM, VM and RM lincRNAs. Differences between lincRNA sets were tested using Wilcoxon rank sum tests (***P < 0.001).
(C) RM lincRNAs had evolutionarily conserved promoters. Shown are the graphs of conservation level in 500-bp intervals around the TSSs of CM, VM
and RM lincRNAs. Conservation was determined by measuring the rate of base pair substitutions between species. Significance of observed differences
between two categories was assessed using the Wilcoxon rank sum test for scores ± 2 kb around the TSSs (***P < 1.0e−3).

expression than RM lincRNAs, which was consistent with
our hypothesis (Figure 3B). To quantify the evolutionary
conservation of lincRNA promoters, we used phastCons
scores of placental mammals (45). The core promoters of
lincRNAs showed the most conserved profiles. RM Lin-
cRNAs showed significantly greater conservation than CM
lincRNAs at core promoters (Figure 3C).

We performed functional enrichment analysis of genes
co-expressed with the RM, VM and CM lincRNAs (Pear-
son’s correlation test, top 5% of P < 0.05) for BRCA, LUSC
and GBM (46,47). RM genes (PCGs co-expressed with RM
lincRNAs) in three cancers shared the GO terms ‘regulation
of transcription’ and ‘transcription’. CM genes (PCGs co-
expressed with CM lincRNAs) were enriched in GO terms
‘immune response’, ‘cell cycle’ and ‘chromatin modification’
among others (Supplementary Figure S7). For VM genes
(PCGs co-expressed with VM lincRNAs), there were no sig-
nificant functional enrichment results. In addition, 49 RM
lincRNAs had homologous sequences in mice and 21 had
homologs in zebrafish (48). RM lincRNAs had conserved
transcriptional regulation regions and conserved sequences
in multiple species, which suggested an evolutionary de-
mand for correct regulation and expression of RM lincR-
NAs.

LincRNAs had promoter methylation patterns associated
with cancer status, subtype and prognosis

Since aberrant promoter methylation silences tumor sup-
pressor genes and activates oncogenes (49), we analyzed
the different methylation patterns of lincRNA promoters
between tumors and corresponding normal tissue samples.
For example, 126 lincRNAs showed significantly aberrant
methylation patterns in tumors compared to correspond-
ing normal samples, including 24 hypermethylated and 28
hypomethylated lincRNAs for BRCA, and 14 hypermethy-
lated and 60 hypomethylated lincRNAs for LUSC (Figure
4A and B and Supplementary Table S5). Most AM lincR-
NAs belonged to the CM category, indicating that these lin-
cRNAs are consistently methylated in other types of tumors
(Figure 4C and D). The hypomethylated CM lincRNAs in
BRCA or LUSC showed a more common methylation pat-
tern in normal samples than in tumors.

We compared the methylation patterns of lincRNAs for
different subtypes of BRCA (basal-like, HER2-enriched,
luminal A, luminal B and normal-like) (20) and LUSC
(basal, classical, primitive and secretory) (21). We identified
the lincRNAs with subtype-specific methylation patterns
in BRCA and LUSC (Figure 4E and F and Supplemen-
tary Table S6). Since tumors in each cancer molecular sub-
type had distinctive biological and clinical behaviors, lincR-
NAs with subtype-specific methylation patterns might have
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Figure 4. LincRNAs whose methylation patterns were associated with cancer status or subtypes. (A, B) Heat maps of bidirectional hierarchical clustering
of lincRNAs with significantly different methylation levels between BRCA and normal breast (A) or LUSC and normal lung (B). (C, D) Venn diagrams
showed that most of the AM lincRNAs in BRCA (C) or LUSC (D) belonged to the CM category. (E, F) Heat maps showing the methylation profiles of
the top 5% lincRNAs with significantly different methylation levels (FDR < 0.05) in the basal-like subtype compared to the others for BRCA (E) and in
the classical subtype compared to the others for LUSC (F). LincRNAs are ranked by ascending order of t-test FDR values.

crucial functions in these subtypes. Several lincRNAs with
subtype-specific methylation patterns have been function-
ally implicated in physiological or pathological processes
through experimental validation. For instance, HOTAIR,
a lincRNA hypomethylated in basal-like subtype BRCA,
was highly expressed in metastatic breast cancers. Its high
level of expression in primary breast tumors might pre-
dict subsequent metastasis and death (6). MEG3, which
was hypomethylated in the luminal A subtype of BRCA,
is an imprinted long non-coding RNA (50). MEG3 acted
as a growth suppressor in tumor cells and activated p53
(51). In addition, HOTTIP, which binds the WDR5 pro-

tein and forms a complex with the histone methyltrans-
ferase protein MLL to target the WDR5-MLL complex to
the HOXA region for transcriptional activation of HOXA
(52), also showed subtype-specific methylation patterns in
both BRCA (basal-like) and LUSC (classical).

We combined the lincRNA methylation profiles with clin-
ical annotations and identified a subset of lincRNAs with
methylation values showing a trend associated with OS in
BRCA, LUSC and UCEC. We used a validation set as an
independent data set to validate candidate reliability. For
UCEC, we obtained 23 PA lincRNAs in the validation
set from 30 lincRNAs in the discovery set (FDR < 0.01).
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For BRCA, we validated five lincRNAs associated with OS
from the top 10 lincRNAs in the discovery set (FDR <
0.01). For LUSC, we obtained seven PA lincRNAs (Supple-
mentary Tables S7–S9). For example, BRCA patients with
lower methylation level of lincRNA XLOC 009284 had bet-
ter prognosis (Figure 5A). LUSC patients with relatively
lower methylation level of lincRNA XLOC 009367 showed
poorer prognosis (Figure 5B). For UCEC, patients with the
highest methylation level of lincRNA XLOC 007617 had a
better prognosis than patients with lower methylation level
(Figure 5C). GAS5, a lincRNA linked to apoptosis that is
involved in progression of some types of cancers, was signifi-
cantly correlated with prognosis for UCEC (53,54). The lin-
cRNA MEG3 was associated with OS in the LUSC discov-
ery set but not in the validation set, which inhibits prolifera-
tion of non-small cell lung cancer cells and induces apopto-
sis by affecting p53 expression (55). We hope to further val-
idate candidates from the discovery set in the future, using
a suitable tumor set. Besides, BRCA1, the ovarian cancer
marker PCG, showed no correlation between methylation
level and OS in a previous study (14). There were 42 lin-
cRNAs showed a correlation between the methylation level
and OS in BRCA, LUSC, UCEC, KIRC and LGG, some of
which showed a negative correlation between methylation
and expression in corresponding tumors (Pearson’s corre-
lation test; Supplementary Table S10), suggesting their po-
tential as novel prognostic biomarkers.

We then used drug-free survival analysis to evaluate the
possibility of promoter methylation of lincRNAs as drug
targets. The drug-free interval was defined as from the
end of chemotherapeutic drug treatment to the date of
progression or recurrence or last contact (censored) (56).
XLOC 007617 was a lincRNA that showed positive cor-
relation between its methylation and drug-free survival in
UCEC (log-rank P = 0.013; Supplementary Figure S8). In
addition, we defined a methylation survival (MS) score us-
ing the 23 previously verified PA lincRNAs for UCEC. For
each UCEC tumor, a point was given if the methylation level
of a PA lincRNA was higher than the median methylation
and was associated with longer OS or vice versa. The MS
score of each tumor was assigned as the sum of the points.
Patients were designated as sensitive for complete or partial
response to platinum chemotherapy in the clinical data from
TCGA (57) and as resistant for stable or progressive disease.
Patients with higher MS scores were more sensitive to drugs
(Supplementary Figure S9). Among patients whose tumors
had MS scores higher than the median MS score, 87% were
sensitive compared with 61% of patients with tumors with
lower MS scores (P = 0.037, � 2 test). These results indicated
that MS scores generated using lincRNA methylation levels
might be used to predict patient sensitivity to chemothera-
peutic drugs. Therefore, lincRNAs, whose promoter methy-
lation patterns were associated with cancer status, subtype
and prognosis, should be further studied as potential and
novel cancer biomarkers.

Functional analyses of AM lincRNAs in cancers

Using the AM lincRNAs between tumors and correspond-
ing normal samples identified from 14 types of cancers
with at least seven normal samples, we constructed an AM

lincRNA-cancer network (AMCN; Supplementary Figure
S10A). The AMCN had two types of nodes: cancers and
AM lincRNAs. Edges existed only between a lincRNA and
cancer when the lincRNA was aberrantly methylated in
the cancer. The AMCN illustrated that most lincRNAs
were aberrantly methylated in a single cancer and a few
lincRNAs were aberrantly methylated in multiple cancers
(Supplementary Figure S10B). A total of 196 lincRNAs
were aberrantly methylated in more than one cancer out
of all 434 AM lincRNAs in the AMCN. Thirty one AM
lincRNAs showed pairwise appearing in more than three
types of cancer (Supplementary Figure S11). The lincRNA
XLOC 013592, located in chromosome 20, co-occurred with
other AM lincRNAs in six types of cancer. Chromosome
5 contained up to seven lincRNAs that co-occurred with
other AM lincRNAs. By removing lincRNA nodes from
the AMCN, we obtained a network of cancers (Figure 6A).
Some pairs of cancers shared more AM lincRNAs than oth-
ers. For instance, COAD and READ, two cancers that orig-
inate in the intestine, shared 69 AM lincRNAs, with 20 lin-
cRNAs aberrantly methylated uniquely in these two can-
cers. Additionally, BLCA and UCEC shared 56 AM lincR-
NAs, indicating that these two cancers might share a com-
mon pathogenesis. Clinically, a high metastatic rate from
UCEC to BLCA was seen (58). Furthermore, 191 AM lin-
cRNAs showed consistent hypermethylated or hypomethy-
lated status in diverse cancers. Five AM lincRNAs showed
altered hypermethylation or hypomethylation status in five
pairs of cancers (Figure 6B).

Except for lung adeno cancer, 238 lincRNAs aberrantly
methylated in only one cancer were named uniquely aber-
rantly methylated (UAM) lincRNAs (Figure 6C). UCEC
contained 60 UAM lincRNAs and liver hepatocellular can-
cer contained 51, amounting to nearly 47% of the total
UAM lincRNAs. Theoretically, a lincRNA could intrin-
sically cis-regulate its neighbor PCGs by binding to its
own locus. Thus, we used the PCGs neighbored to the tar-
get lincRNAs to infer the putative functions of the lincR-
NAs according to ‘guilt by association’ strategy (30,59). In
UCEC, XLOC 013045 and XLOC 013050 were found to
be adjacent to zinc-finger protein genes (ZNF181, ZNF30,
ZNF404, ZNF45). The expression level of XLOC 013350
was negatively correlated with its methylation level (Pear-
son’s correlation coefficient, PCC = −0.63, P < 0.05) and
positively correlated with the expression of ZNF404 (PCC
= 0.26, P < 0.05). We also observed a positive correla-
tion between the expression of XLOC 013045 and ZNF181
(PCC = 0.18, P < 0.05), indicating that these two lincRNAs
may be involved in cell growth and apoptosis. In PRAD, lin-
cRNA XLOC 002726 was significantly hypermethylated in
tumors and showed a negative correlation between its ex-
pression and methylation (PCC = −0.26, P < 0.05), which
was a newly found susceptibility locus for prostate cancer
in genome-wide association studies (1,60). CADM2, an up-
stream gene near XLOC 002726 on the same strand, is a
prostate cancer suppressor gene (61). Furthermore, with
the 24 AM lincRNAs found for PRAD, we built five clas-
sifiers based on Bayes network, naive Bayes, random for-
est, logistic regression and radial basis function network
models to identify patient tumors from normal samples. All
five classifiers showed good performance by 10-fold cross-



8266 Nucleic Acids Research, 2014, Vol. 42, No. 13

Figure 5. LincRNAs with PA methylation patterns in BRCA, LUSC or UCEC. (A) Kaplan–Meier curves for discovery-set patients (n = 282) with higher
(top 50%; n = 141) or lower (bottom 50%; n = 141) methylation of XLOC 009284 in BRCA (left). Kaplan–Meier curves for validation-set patients as
above (right). (B) Kaplan–Meier curves for discovery-set patients (n = 96) with higher (top 50%; n = 48) or lower (bottom 50%; n = 48) methylation
of XLOC 009367 in LUSC (left). Kaplan–Meier curves for validation-set patients as above (right). (C) Kaplan–Meier curves for discovery-set patients
(n = 171) with higher (top 50%; n = 86) or lower (bottom 50%; n = 85) methylation levels of XLOC 007617 in UCEC (left). Kaplan–Meier curves for
validation-set patients as above (right). The methylation differences between patients sets were tested using Wilcoxon rank sum tests (***P < 1.0e−3).
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Figure 6. AM lincRNAs in cancers. (A) Network of cancers. The width and shades of color of the edges between two cancer types correlate with the
numbers of shared AM lincRNAs. (B) AM lincRNAs with altered methylation status between cancers. (C) UAM LincRNAs. Dark gray, UAM lincRNA
hypermethylation in tumors. Light gray, UAM lincRNA hypomethylated in tumors.

validation (Supplementary Table S11). Therefore, lincR-
NAs with aberrant methylation patterns in cancers might
be involved in cancer development and progression. Early
detection of hypermethylation or hypomethylation of lin-
cRNAs might serve as biomarkers for cancer diagnosis or
treatment.

DISCUSSION

Epigenetic factors tightly control expression patterns of lin-
cRNAs (62). For example, DNA methylation disrupted a
long non-coding RNA activity by affecting expression in a
lethal lung developmental disorder (63). To determine the
DNA methylation patterns for lincRNAs in human cancers,
we developed a strategy to reannotate Infinium 450k array
probes to lincRNA loci and constructed lincRNA methyla-
tion profiles for tumor patients. We investigated the patterns
of lincRNA methylation in different cancer types and the
functions of lincRNAs in cancers. By clustering analyses of
lincRNA methylation levels in cancer, we revealed that some
types of cancer had similar lincRNA methylation patterns
and classified lincRNAs according to their methylation pat-
terns in tumors. By integrating cancer subtype data and pa-
tients clinical information, we identified lincRNAs whose
promoter methylation status was associated with cancer sta-

tus, subtype and prognosis. By network analyses, we in-
vestigated the functions of AM lincRNAs in cancers. By
literature mining, we validated that a few AM lincRNAs
were efficacious in cancer development and progression.
Experimentally validating the potential tumor-promoting
functions of these candidate lincRNAs in cancers would be
meaningful. LincRNAs whose promoter methylation status
was associated with cancer status, subtype and prognosis
could be investigated as disease signatures.

Two lincRNA catalogs were generated by Cabili et al.:
a predicted catalog and a stringent catalog (1). During the
reannotating process, we only considered the stringent lin-
cRNA catalog with nine additional known lincRNAs, for
these lincRNA transcripts might be more reliable (1). How-
ever, there were still some lincRNAs closed to the annotated
PCGs. The probes used to evaluate PCGs might be mapped
to nearby lincRNA-related regions. To avoid using these
probes, we reannotated a subcatalog of 2167 lincRNAs that
were more than 20 kb from the PCGs. Since we retained
only probes annotated 10 kb upstream or downstream from
lincRNAs or PCGs, probes annotated to the subcatalog of
lincRNAs could not be related to PCGs. Methylation of the
subcatalog of lincRNAs within each of the 10 expression
quantiles showed that the lower the promoter methylation,
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the higher the expression of the corresponding lincRNAs.
Methylation of the other three regions was not related to
the expression (Supplementary Figure S12). Unsupervised
hierarchical clustering of the average promoter methylation
profiles of these lincRNAs showed CM, VM or RM pat-
terns in 20 types of cancer (Supplementary Figure S13). Al-
though the average promoter methylation levels of PRAD
were higher than the corresponding normal samples, the
trends of the other sample sets were consistent with previ-
ous analyses of the other 19 cancers (Supplementary Figure
S14). Therefore, the methylation patterns of lincRNAs were
maintained based on a small stringent set of lincRNAs.

The relationship between exonic and intronic methyla-
tion of lincRNAs in the H1-hESC cell line and their expres-
sion levels (Figure 1C) were not what we expect from PCGs,
in which highly expressed genes have been shown to be more
methylated in their gene bodies than genes expressed at low
levels (64,65). However, the relationship between expres-
sion levels and gene-body methylation in PCGs has been
shown to be complex in recent studies. For example, some
tissue types showed a correlation between expression and
gene-body methylation, whereas others showed no clear re-
lationship (66,67). A relation between gene-body methyla-
tion and evolution has been suggested. For example, genes
expressed at moderate levels had the highest methylation
levels in some plants and invertebrates (68,69). Further-
more, the initiation and elongation of transcription showed
different sensitivity to DNA methylation silencing in dif-
ferent genomic and cellular contexts (70). Although lincR-
NAs and PCGs both undergo the transcription process, lin-
cRNAs have a much lower expression level and sequence
conservation than PCGs (1), which could result in complex
methylation patterns similar to those of PCGs. Therefore,
the methylation patterns of lincRNA exons and introns in
different species, cell types and phenotypes need to be fur-
ther investigated.

The observed lower tissue-specific expression patterns
and the higher promoter conservation of RM lincRNAs
are consistent with the high conservation score of ubiq-
uitously expressed lincRNAs (26). However, this pattern
differed from that of PCGs, where PM promoters were
more conserved and more depleted of REs (28), indicating
that REs may play a different role in reprogramming the
DNA methylation of lincRNA promoters. A recent study
found that repetitive and transposable elements occurred
in more than two-thirds of mature long non-coding RNA
transcripts, particularly at their TSSs, whereas they seldom
occurred in protein-coding transcripts (71), suggesting that
they may play a role in the regulation of long non-coding
RNA transcription (72). Since REs tend to be aberrantly
methylated in human cancers (73,74), they might play a spe-
cific role in altering lincRNA promoter methylation levels
and further affect lincRNA transcription in cancer. The de-
pletion of REs observed at RM lincRNAs may reflect a need
to preserve their stable methylation patterns in cancer.

In summary, we studied the functions and mechanisms of
DNA methylation of lincRNAs in human cancers by rean-
notating publicly available data and integrating them with
genomic analyses. The identified cancer-associated or clini-
cally relevant lincRNAs could be further evaluated for use
as cancer biomarkers and potential therapeutic targets.
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