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Abstract

Squamous cell carcinomas (SCC) are sun-induced skin cancers that are particularly numerous and 

aggressive in immunosuppressed individuals. SCC evade immune detection at least in part by 

down-regulating E-selectin on tumor vessels, thereby restricting entry of skin homing T cells into 

tumors. We find that nitric oxide potently suppresses E-selectin expression on human endothelial 

cells and that SCC are infiltrated by nitric oxide-producing iNOS+ CD11b+ CD33+ CD11c− HLA-

DR− myeloid-derived suppressor cells (MDSC). MDSC from SCC produced NO, TGFβ and 

arginase and inhibited endothelial E-selectin expression in vitro. MDSC from SCC expressed the 

chemokine receptor CCR2 and tumors expressed the CCR2 ligand HBD3, suggesting CCR2-

HBD3 interactions may contribute to MDSC recruitment to SCC. Treatment of SCC in vitro with 

the iNOS inhibitor L-NNA induced E-selectin expression at levels comparable to imiquimod-

treated SCC undergoing immunologic destruction. Our results suggest that local production of NO 

in SCC may impair vascular E-selectin expression. We show that MDSC are critical producers of 

NO in SCC and that NO inhibition restores vascular E-selectin expression, potentially enhancing 

T cell recruitment. iNOS inhibitors and other therapies that reduce NO production may therefore 

be effective in the treatment of SCC and their premalignant precursor lesions actinic keratoses.

Introduction

Over 700,000 SCC are diagnosed each year in the United States (Rogers et al.). The 

treatment of non-melanoma skin cancers, of which SCC is the second most frequent type, 

account for 4.5% of all Medicare cancer costs (Berg and Otley, 2002; Housman et al., 2003). 
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Although most are curable by surgical excision, 4% metastasize to the lymph nodes and 

1.5% of SCC patients die from metastatic or locally aggressive disease (Brantsch et al., 

2008). SCC are a leading cause of death among organ transplant recipients. These patients 

have a 65- to 250-fold increased risk of developing SCC; nearly 10% of these cancers 

metastasize and the majority of patients die as a result (Berg and Otley, 2002; Euvrard et al., 

2003). Currently, wide surgical excision is the only treatment for invasive SCC. In addition 

to the burden of invasive cancers, actinic keratoses, the premalignant precursor lesion of 

SCC, are the third most frequent reason in the U.S. for consulting a dermatologist (Feldman 

et al., 1998). Over 5.2 million physician visits are made each year for the treatment of 

actinic keratoses at a cost of over $900 million (Warino et al., 2006).

Immune evasion in human SCC appears to primarily result from aberrant T cell homing. 

Vessels in SCC lack expression of E-selectin, a skin addressin that is expressed at baseline 

by cutaneous postcapillary venules, is up-regulated with inflammation, and by binding to 

cutaneous lymphocyte antigen (CLA) on skin homing T cells, mediates the first step of T 

cell recruitment into skin (Chong et al., 2004; Clark et al., 2008; Kupper and Fuhlbrigge, 

2004). As a result, these tumors exclude CLA+ skin homing T cells, the cell type that 

provides cutaneous immune surveillance and would be expected to contain tumor specific T 

cells (Clark, 2010).

Topical treatment of SCC with the TLR7 agonist imiquimod induces endothelial activation, 

massive infiltration of tumors by CLA+ T cells producing IFNγ, perforin, and granzyme, 

tumor cell death and histologic evidence of tumor regression (Clark et al., 2008; Huang et 

al., 2009). This rapid and effective immune response suggests that primed SCC-specific T 

cells exist in the circulation but these cells cannot gain access to the tumor. Imiquimod can 

be used to treat SCC in poor surgical candidates (Peris et al., 2006). In solid organ transplant 

recipients, a course of imiquimod was effective and did not engender graft rejection in the 6 

or 12 months that patients were followed (Brown et al., 2005; Ulrich et al., 2007) but 

concerns linger that repeated use of imiquimod could engender graft rejection or shorten the 

life of an allograft. There is therefore a need to understand why blood vessels in SCC fail to 

express T cell homing addressins such as E-selectin and to identify novel agents that can 

induce endothelial activation and restore appropriate T cell homing without broad, 

nonspecific activation of the immune system. Below, we present our findings that nitric 

oxide (NO) production in SCC contributes to suppression of E-selectin expression by tumor 

vessels and that agents that inhibit NO production may be effective therapeutic strategies for 

the treatment of SCC.

Results

Vascular E-selectin expression correlates with tumor infiltration by CLA+ T cells and 
histologic evidence of tumor regression

We previously observed qualitative increases in vascular E-selectin expression and T cell 

infiltration after TLR7 agonist treatment of SCC (Clark et al., 2008; Huang et al., 2009). To 

quantitatively study the relationship of vascular E-selectin expression and tumor infiltration 

by skin homing CLA+ T cells, we counted the percentage of tumor vessels expressing E-

selectin and the number of infiltrating CLA+ T cells in untreated SCC and SCC treated with 
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TLR7 agonist prior to excision. In agreement with earlier observations, vascular E-selectin 

expression was absent or low in untreated tumors and markedly up-regulated in SCC treated 

with the TLR7 agonist imiquimod (Fig. 1, a and d). In untreated tumors, 6.7% of blood 

vessels in tumors expressed E-selectin (n=5, SEM 1.53) whereas 34.2% of blood vessels 

expressed E-selectin in tumors treated with TLR7 agonist prior to excision (n=3, SEM 3.04). 

The difference between treated and untreated SCC was statistically significant (p<0.0001). 

Likewise, recruitment of CLA+ T cells was low in untreated SCC but greatly enhanced in 

treated tumors (Fig. 1, b, c, and d). Untreated tumors were infiltrated by a mean 21.3 CLA+ 

T cells per high power field (HPF, n=6, SEM 5.91) whereas tumors treated with TLR7 

agonist prior to excision contained a mean 256.6 CLA+ T cells per HPF (n=3, SEM 5.91, 

p=0.0002). There was in fact a strong linear correlation between vascular E-selectin 

expression and infiltration by CLA+ T cells (correlation coefficient R=0.94) and only tumors 

with both features had histologic evidence of tumor regression (Fig. 1d).

SCC are infiltrated by NO producing CD11c−CD11b+HLA-DR− myeloid-derived suppressor 
cells

Cells expressing iNOS were prominent in untreated SCC (Fig. 2, a and b)(Clark et al., 

2008). We previously observed faint staining of iNOS+ cells for CD11c, suggesting a 

possible dendritic cell lineage. However, follow up staining with multiple anti-CD11c 

antibodies demonstrated that these cells were in fact CD11c−, CD11b+, and HLA-DR−, a 

phenotype shared by myeloid derived suppressor cells identified in several human cancers 

(MDSCs) ( Fig. 2c,d,h)(Corzo et al., 2010; Diaz-Montero et al., 2009; Filipazzi et al., 2007; 

Gabitass et al., 2011). iNOS+ cells lacked expression of the macrophage marker CD163, the 

T cell marker CD3 and the endothelial cell marker CD34 (Fig. 2e-g) and were CD14− (data 

not shown). Further characterization by flow cytometry analysis of dispersed cells isolated 

from collagenase-treated SCC demonstrated that CD11b+ HLA-DR− cells expressed CD33, 

a subset expressed iNOS and the majority expressed TGFβ, a phenotype consistent with 

human MDSC (Fig. 3a). RT-PCR analysis of CD11b+ cells isolated by magnetic bead 

separation from collagenase dispersed tumors demonstrated that CD11b+ cells expressed 

arginase I (Fig 3b). iNOS+ CD11b+CD11c−HLA-DR− cells were present in 16/16 untreated 

SCC (10 SCC were studied by immunostaining of cryosections and 6 by flow cytometry 

analysis of collagenase treated tumors). As we previously reported, iNOS+ cells were not 

present in imiquimod treated SCC undergoing regression (Clark et al., 2008). CD11b+ HLA-

DR− cells made up a mean 6% of total tumor cells in collagenase digested SCC but were 

rare (0.8%) in normal human skin (Fig. 3c). Selective gating on iNOS-expressing cells 

demonstrated that MDSC were the prominent cell type expressing iNOS in most tumors, 

although it was also expressed by other cell types within the tumor microenvironment (Fig. 

3d). A mean 51% of total iNOS+ cells in four collagenase digested SCC were CD11b+ 

CD11c− HLA-DR− CD33+ MDSC (SEM 10.3).

To confirm that NO was produced within the SCC tumor microenvironment, we measured 

nitrate and nitrite levels from tumor supernatants using the Griess method (Fig. 3e). 

Although levels varied, significant NO production was observed in all tumors analyzed 

(significance of difference medium vs. SCC supernatants, p<0.05). To confirm that MDSC 

in SCC produced NO, we isolated CD11b+ cells using magnetic bead separation of 
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collagenase dispersed tumors. CD11b enrichment produced a fairly uniform population of 

CD11b+ HLA-DRlow cells (Fig. 3f) and analysis of the culture supernatants of these cells 

demonstrated that they produced NO (Fig. 3g).

NO inhibits E-selectin expression by human dermal microvascular endothelial cells IN 
VITRO

NO inhibits the expression of endothelial adhesion receptors on human umbilical vein 

endothelial cells (HUVEC) and reduces adhesion of dendritic cells to endothelial 

monolayers in vitro (De Caterina et al., 1995; De Palma et al., 2006). Gene expression 

analyses have found significant differences between HUVEC and the microvascular 

endothelial cells found in tissues such as the skin (Chi et al., 2003). We studied the effects of 

NO on human dermal microvascular endothelial cells (DMEC). To mimic the physiologic 

stimulation likely to occur within the tumor microenvironment, DMEC were co-cultured 

with TLR7 agonist-stimulated T-cell depleted peripheral blood mononuclear cells (APC). 

Under these conditions, NO potently inhibited endothelial E-selectin expression (Fig. 4a and 

b).However, NO only partially inhibited E-selectin expression when endothelial cells were 

stimulated with 10 ng/ml of TNFβ. A similar biology was observed in umbilical vein 

endothelial cells (HUVEC); NO completely inhibited E-selectin expression after physiologic 

stimulation with APC but only partially inhibited expression after intense endothelial 

stimulation with TNFβ (Fig. 4b).

MDSC from SCC suppress endothelial E-selectin expression in vitro

To determine if cell types in SCC are capable of suppressing endothelial E-selectin 

expression, we cultured human HUVEC in the presence of unfractionated cells from 

collagenase dispersed SCC tumors. We observed a modest suppression of E-selectin under 

these conditions (Fig. 4c). We then separated collagenase dispersed SCC into CD11b+ and 

CD11b− fractions using magnetic bead separation (Fig. 3f) and tested the ability of these 

cells to suppress endothelial E-selectin expression (Fig. 4d and e). CD11b+ cell fractions 

reproducibly inhibited endothelial E-selectin expression whereas CD11b− fractions had no 

effect or modestly increased E-selectin expression.

MDSC from SCC express CCR2 and SCC produce the CCR2 ligand HBD3

MDSC from both mice and humans express the chemokine receptor CCR2 and CCL2 

production by human tumors has been implicated in the migration of MDSC into tumors 

(Huang et al., 2007). MDSC from collagenase dispersed SCC expressed CCR2 by flow 

cytometry analysis whereas T cells from the same tumors did not (Fig. 5a). Co-

immunostaining for iNOS and CCR2 in tumor cryosections confirmed that iNOS+ cells 

expressed CCR2 (Fig. 5b). Quantitative RT-PCR analysis of SCC tumors showed that the 

CCL2 ligands CCL2, CCL7, CCL13 and HBD2 were expressed at comparable levels in 

normal skin and SCC, whereas only the CCL2 ligand HBD3 was expressed at significantly 

higher levels in SCC (Fig. 5c). Immunostaining of SCC cryosections confirmed production 

of HBD3 in SCC tumors (Fig. 5d).
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iNOS inhibition induces SCC vascular E-selectin expression IN VITRO

To determine if NO production in tumors locally inhibits vascular E-selectin expression, we 

cultured portions of human SCC for 24 hours in the iNOS inhibitor L-NNA in the presence 

or absence of TNFβ and then assayed for E-selectin expression by immunostaining of 

cryosections. We observed a marked up-regulation of E-selectin expression in tumors 

treated with iNOS inhibitor (Fig. 6, a and b). E-selectin was expressed on a mean 1.9% of 

blood vessels in SCC treated with control medium (n=4 tumors, SEM 0.58). After treatment 

with iNOS inhibitor, E-selectin was expressed by a mean 27.1% of tumor vessels (n=4, SEM 

1.06, control medium vs. iNOS inhibitor p<0.0001). As expected, treatment of SCC with 

TNFβ also increased expression of E-selectin (mean 19.6% positive vessels, SEM 2.17, n=4, 

control medium vs. TNFβ treated p= 0.0002). Combining iNOS inhibition and treatment 

with TNFβ provided no additional increase in E-selectin expression above the use of iNOS 

inhibitors alone (iNOS inhibitor vs. TNFβ/iNOS inhibitor p=0.45).

Discussion

Impairment of T cell homing is a major mechanism by which cutaneous SCC evade immune 

responses. Vessels in SCC tumors lack expression of E-selectin and exclude the population 

of CLA+ T cells thought to provide immune surveillance in the skin (Clark et al., 2008). 

Induction of E-selectin expression on blood vessels by TLR7 agonist therapy leads to 

infiltration of the tumors by CLA+ T cells producing IFNγ, perforin and granzyme, and is 

associated with histologic evidence of tumor regression (Clark et al., 2008; Huang et al., 

2009). These clinical responses suggest that tumor specific T cells exist within the 

circulation but cannot gain access to the tumor. Thus, the induction of appropriate T cell 

homing addressins on tumor vessels has the potential to restore homing and potentially 

induce tumor destruction.

We report here that human SCC are infiltrated by a population of NO producing cells that 

express CD11b, CD33 and lack CD11c and HLA-DR, a phenotype suggestive of MDSC 

(Diaz-Montero et al., 2009; Gabrilovich and Nagaraj, 2009). MDSC are a heterogenous 

population of myeloid cells that are enriched in the circulation of cancer patients as well as 

in many animal tumor models. MDSC play a major role in cancer related 

immunosuppresssion and can potently suppress T cell responses (Nagaraj et al., 2010). The 

majority of CD11b+CD11c−HLA-DR− cells isolated from SCC expressed i-NOS, TGFβ, 

and arginase I, three critical effector mechanisms used by MDSC to suppress T cell 

responses (Gabrilovich, 2004; Jia et al., 2010; Li et al., 2009). CD11b+HLA-DR− cells 

comprised approximately 6% of total cells in SCC, but were rare in normal skin (Fig. 3c).

iNOS, a key enzyme that catalyzes NO production, is expressed in a variety of human 

cancers including malignant melanoma, breast, lung, prostate, and colorectal cancers 

(Lechner et al., 2005). iNOS expression correlated with progression in human astrocytoma 

and prostate cancer, and patients with iNOS+ melanomas had decreased survival 

(Ekmekcioglu et al., 2006; Lechner et al., 2005; Tanese et al., 2011). NO has a variety of 

effects on immune cells including inhibition of T cell activation, proliferation, and cytokine 

production (Bogdan, 2001) and animal studies suggest it may also reduce the adhesion of 

leukocytes to blood vessels. Inhibition of NO increased leukocyte rolling and adhesion in 
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mesenteric venules in cats and rats and P-selectin expresion was increased in rats after 

perfusion with NO inhibitors (Davenpeck et al., 1994; Kubes et al., 1991). In a mouse 

cancer model in which mouse mammary adenocarcinoma and human colon carcinoma cell 

lines were injected into the skin, treatment of animals with the iNOS inhibitor L-NAME led 

to increased rolling and stable adhesion of leukocytes to tumor vessels (Fukumura et al., 

1997).

We find that NO is produced by SCC tumors and that CD11b+ MDSC expressed iNOS and 

are significant sources of NO production within the SCC microenvironment. Small numbers 

of CD11b+ HLA-DR-/low cells isolated from SCC potently suppressed endothelial E-selectin 

expression, suggesting that even though MDSC comprise a relatively small percentage of 

total tumor cells, they may play a critical role in down regulating vascular E-selectin and 

impairing T-cell trafficking into tumors. In a mouse model of B16 melanoma, MDSC 

inhibited the migration of activated CD8 T cells into tumors but the mechanism of impaired 

T-cell homing was not identified (Lesokhin et al., 2011). Our results suggest that NO 

produced by MDSC inhibits vascular E-selectin, likely impairing T cell migration in to 

tumors, and that this may be another mechanism by which MDSC impair anti-tumor 

immunity.

Human studies have been limited but in vitro treatment of HUVEC with NO has been shown 

to reduced addressin expression and dendritic cell adhesion (De Caterina et al., 1995; De 

Palma et al., 2006). We found that NO completely abrogated the expression of E-selectin 

when DMEC were physiologically stimulated with activated APC, but could only partially 

inhibit E-selectin expression when endothelial cells were strongly and directly stimulated 

with 10 ng/ml of TNFβ (Fig. 4a, b). It may therefore be possible to overcome impaired E-

selectin expression by either inhibiting iNOS activity or by potently and directly stimulating 

endothelial cells. We found that HUVEC and DMEC derived from human skin responded 

very similarly to NO, suggesting that HUVEC, which are easier to obtain and grow, may be 

useful in drug screens used to identify novel agents that activate endothelial cells.

MDSC in both humans and animal models express the chemokine receptor CCR2 (Huang et 

al., 2007; Lesokhin et al., 2011). CCL2 is produced by human breast, gastric and ovarian 

cancers and inhibition of CCR2-CCL2 signaling in mouse cancer models reduced MDSC 

migration and MDSC-induced tumor cell growth (Huang et al., 2007). In addition to their 

antimicrobial function, HBD-2 and HBD-3 can induce cell chemotaxis via CCR2 (Rohrl et 

al., 2010). HBD3/CCR2 interactions promoted migration of macrophages into tumors in a 

mouse model of oral carcinoma (Jin et al., 2010). We found that iNOS+ MDSC in SCC 

tumors expressed CCR2 and SCC tumors expressed the CCR2 ligand HBD3, suggesting that 

CCR2-HBD3 interactions may play a role in the recruitment of MDSC to tumors (Fig. 5).

Lastly, we tested the ability of iNOS inhibitors and TNFβ to restore E-selectin expression in 

freshly excised human SCC tumors. iNOS inhibition alone markedly enhanced E-selectin 

expression on tumor vessels (Fig. 6). Remarkably, iNOS inhibition alone induced E-selectin 

expression at similar or greater levels than TNFβ. Moreover, E-selectin was expressed at 

levels comparable to those observed in SCC undergoing immunologic destruction after 

topical treatment with TLR7 agonist (Fig. 1d and 6b). SCC undergoing immunologic 
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destruction after TLR7 agonist therapy expressed E-selectin on a mean 34.2% of blood 

vessels as compared to 27.2% of blood vessels following in vitro treatment with iNOS 

inhibitor (p>0.05). Although the limitations of working with humans preclude us from 

directly demonstrating that T cell recruitment into SCC is enhanced as a result of iNOS 

inhibition, these studies strongly suggest that iNOS inhibition induces vascular E-selectin at 

levels capable of enhancing T cell entry into tumors. To our knowledge, it is previously 

unreported in a human cancer that iNOS activity impairs the expression of vascular 

addressins critical for T cell recruitment.

Our results suggest that treatment with iNOS inhibitors or potent stimulators of endothelial 

activation both have the potential to restore addressin expression in SCC without the 

attendant widespread immune activation observed with TLR agonists such as imiquimod. A 

topically applied inhibitor of iNOS is currently in clinical trials for the treatment of 

neuropathic pain (LaBuda et al., 2006). Because immune evasion in SCC is primarily an 

issue of impaired T cell homing, our studies suggest that topically applied iNOS inhibitors 

or potent endothelial activating agents may be effective, either alone or in combination with 

other therapies, in the treatment of SCC and their premalignant precursor lesions, actinic 

keratoses.

It is becoming increasingly appreciated that cancer destruction requires not only the 

generation of tumor specific T cells but also the ability of these T cells to access the tumor 

once they are generated (Gajewski, 2007). Impaired T cell homing as a result of decreased 

vascular addressin expression has been reported in a number of human cancers, including 

malignant melanoma, breast, gastric and lung cancers (Madhavan et al., 2002; Piali et al., 

1995; Weishaupt et al., 2007). Melanoma metastases express low levels of the addressins E-

selectin, P-selectin and ICAM-1 and this is associated with low numbers of T cells within 

the metastatic tumor nodules (Weishaupt et al., 2007). Our work suggests that local 

production of NO within tumors could be a common mechanism for impaired T cell homing. 

If this proves to be the case, iNOS inhibition used in concert with agents that enhance the 

presentation of tumor antigens have the potential to enhance immune responses to many 

human cancers.

Materials and methods

SCC samples

Tumor samples consisted of tumor removed prior to taking the first Moh’s section during 

Moh’s micrographic excision of biopsy-proven squamous cell carcinomas removed from 

immunocompetent individuals. Acquisition of tumor samples and all studies were approved 

by the Partners Institutional Review Board and were performed in accordance with the 

Declaration of Helsinki. Because this work utilized discarded tissues with no identifiable 

personal information, the Partners IRB ruled that no informed written patient consent was 

required.
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Immunofluorescence studies

Five μm sections were cut from SCC blocks frozen in OCT. Sections were fixed in acetone, 

air dried, rehydrated in PBS and blocked with human IgG (Jackson Immunoresearch). 

Sections were incubated with a biotinylated anti E-selectin (clone 68-5H11, BD) at 5 ug/ml, 

rinsed in PBS/1% BSA, and co-stained with streptavidin-PE (1 ug/ml, R&D Systems) and 

CD31 FITC (1:40 clone WM59, BD). Sections were rinsed and mounted with ProLong Gold 

antifade reagent with DAPI (Invitrogen). E-selectin+ blood vessels were enumerated in ten 

100X high power fields (HPF). To quantify CLA+ T cells, sections were co-stained with PE 

anti-CD3 (1:40, BD) and FITC anti-CLA (1:25, BD) . The number of CLA+ infiltrating T 

cells was determined by counting CLA+ cells directly in 10 HPF or by counting total T cells 

in 10 HPF and multiplying by the % CLA+ T cells of total T cells obtained from 5 HPF. For 

examination of iNOS-expressing cells, sections were co-stained with directly conjugated 

monoclonal antibodies (BD) and FITC anti-iNOS (1:20, BD) . For HBD3 staining, sections 

were stained with rabbit anti human HBD-3 mAb (1:00, FL-67 Santa Cruz Biotech) 

followed by Alexa Fluor 488 goat anti rabbit polyclonal antibody (1:100, Invitrogen). In all 

studies, DAPI nuclear stain was used to confirm the presence of invasive tumor as 

determined by the presence of large atypical keratinocyte nuclei. Sections were 

photographed using a Nikon Eclipse 6600 microscope equipped with Nikon Plan Fluor 

objective lenses. Images were captured with a SPOT RT model 2.3.1 camera (Diagnostic 

Instruments) and were acquired with SPOT 4.0.9 software (Diagnostic Instruments).

Isolation and flow cytometry analysis of T cells and MDSC from SCC tumors

For isolation of MDSC from SCC, tumors were minced and dissociated with 0.2% type I 

collagenase (Invitrogen) and 30 Kunitz Units/ml of DNAse (Sigma) for two hours at 37° 

with vigorous shaking. CD11b+ cells were isolated from collagenase treated tumors by 

staining with anti-CD11b-PE mAb (R&D systems) and anti-PE micro-beads (Miltenyi 

Biotech) followed by AutoMACS separation (Miltenyi Biotech). For TGFβ staining, cells 

were stimulated overnight with 1ug/ml LPS from E. coli (Sigma) and 100 IU/ml IFNγ 

(R&D systems) to activate MDSC (Greifenberg et al., 2009). Flow cytometry analysis was 

performed using directly conjugated monoclonal antibodies from BD. Analysis of flow 

cytometry samples was performed on a Becton Dickinson FACSCanto instrument and data 

were analyzed using FACSDiva software (BD).

Assay of SCC supernatants and CD11b+ cells for NO production

For analysis of SCC supernatants, 3 mm3 tumor fragments were cultured for 24 hours in 

Iscoves medium supplemented with 10% human AB serum, fungizone, gentamicin, 

penicillin/streptomycin, L-glutamine and 0.6 mM L-arginine. Supernatants were 

concentrated using Microcon centrifugal filter devices (Millipore Corp). For analysis of NO 

production from SCC CD11b+ cells, CD11b+ cells were isolated from collagenase treated 

SCC by magnetic bead separation as described and 10,000 CD11b+ cells were incubated for 

12 hours with 1ug/ml E. coli LPS and 100 IU/ml IFNγ. Supernatants were assayed for nitric 

oxide using the QuantiChrom Nitric Oxide assay kit or the Parameter Total NO/Nitrite/

Nitrate Assay Kit (R&D Systems), as per the manufacturer’s instructions.
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Endothelial cell studies

Human dermal microvascular and umbilical vein endothelial cells (Lonza) were cultured in 

EGM-2 bulletkit growth medium (Lonza). Endothelial cells at 90% confluency were 

stimulated for 12 hours with activated APC or 10 ng/ml TNF-α (R&D systems) with or 

without 0.5 mM nitric oxide donor spermine NONOate (Sigma-Aldrich). Human peripheral 

blood APC were isolated from products discarded following plasmapheresis of healthy 

donors by density centrifugation using histopaque-1077 (Sigma) and depletion of T cells 

using the Pan-T isolation kit and AutoMACS instrument (Miltenyi Biotech). APC (2.5 x 

106) and 3 μM imiquimod (added to stimulate APC) were added to wells containing cultured 

endothelial cells for 12 hr. Endothelial cells were then stained with directly conjugated 

antibodies to CD31 and E-selectin (BD) and acquired on a BD FACSCanto flow cytometer. 

Data were analyzed using FACS Diva software (V6.1). For experiments involving co-

cultures of endothelial cells with cells from SCC tumors, cells obtained from collagenase 

treated SCC were rested overnight at in complete Iscove’s medium in the presence of 10 

ng/ml GM-CSF (R&D systems) to maintain myeloid cell viability (Ko et al., 2009). Cells 

from SCC were added to endothelial cells in a 1:1 ratio and stimulated with 1 ng/ml TNF-α 

(R&D systems). In a second group of experiments, 5,000 AutoMACS-enriched CD11b+ 

cells from collagenase treated SCC were added to wells containing 5,000 endothelial cells 

stimulated with TNFα 1 ng/ml; immunostaining of endothelial cells was performed 12 hours 

later as described.

Quantitative real-time PCR for CCR2 ligands and arginase I

Total RNA was isolated from cryosections of SCC and normal skin or from cells isolated 

from SCC tumors using the RNeasy Lipid Tissue kit (Qiagen), according to the 

manufacturer’s instructions. cDNA was generated using the QuantiTect reverse transcription 

kit (Qiagen) and quantitative real-time PCR was performed using the ABI StepONE plus 

instrument and the Fast SYBR green master mix (Applied Biosystems). Expression of each 

ligand transcript was determined relative to the reference gene transcript, GAPDH, and 

calculated as 2^-(Ct, ligand - Ct, GAPDH). The primers used to detect the ligands and the 

reference transcripts were purchased from Origene Technologies and were as follows: hBD2 

(F-GGCGTAGAAGTTCTCTGTCTCC; R-GAAGCAGGAGAAAAGGATGGAG), hBD3 

(F-GGTGAAGCCTAGCAGCTATGAG; R-GCCGCCTCTGACTCTGCAATA), CCL2 (F-

AGAATCACCAGCAGCAAGTGTCC, R-TCCTGAACCCACTTCTGCTTGG), CCL7 (F-

ACAGAAGGACCACCAGTAGCCA; R-GGTGCTTCATAAAGTCCTGGACC), CCL13 

(F-GATCTCCTTGCAGAGGCTGAAG; R-TCTGGACCCACTTCTCCTTTGG), GAPDH 

(F- GAGTCAACGGATTTGGTCGT; R-CATGGGTGGAATCATATTGGA).

IN VITRO treatment of SCC with iNOS inhibitor and TNFβ

SCC were cultured for 24 hours in control medium (Iscoves, 10% human AB serum, 

fungizone, gentamicin, penicillin/streptomycin, L-glutamine, 0.6 mM L-arginine) in the 

presence or absence of 0.6 mM iNOS inhibitor Nω-Nitro-L-arginine, (L-NNA, Sigma) 

and/or 10 ng/ml TNFβ (R&D), then embedded in OCT, cryosectioned and stained for CD31 

and E-selectin as described.
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Figure 1. E-selectin expression on tumor vasculature correlates quantitatively with infiltration 
by CLA+ T cells
(a) Untreated human SCC lacked vascular expression of the skin T cell homing addressin E-

selectin. Cryosections of tumor were co-stained for CD31 (a blood vessel marker, left 

panels) and E-selectin (right panels). SCC treated with the TLR7 agonist imiquimod showed 

up-regulation of E-selectin expression on tumor vessels (lower panels) Similar findings have 

been demonstrated in a total of 12 untreated tumors and six imiquimod treated tumors. Scale 

bar = 100 μM. (b) CLA+ T cells are excluded from untreated human SCC but are present in 

imiquimod treated tumors. Shown are T cells isolated from untreated (upper panel) and 

imiquimod treated (lower panel) SCC tumors. (c) Exclusion of CLA+ T cells from SCC was 

reversed by topical treatment with TLR7 agonist prior to excision. The absolute numbers of 

CLA+ T cells per high power field (HPF) infiltrating untreated SCC (gray bars) and TLR7 

agonist treated tumors (TLR7, black bars) are shown. (d) Vascular E-selectin expression 

correlated with the number of CLA-expressing T cells infiltrating SCC and histologic 

evidence of tumor regression. The mean and SEM for both the number of CLA-expressing T 

cells and the % E-selectin positive vessels are shown. These studies demonstrate a strong 

correlation of vascular E-selectin expression with the ability of tumors to recruit CLA+ skin 

homing T cells. Tumors designated with an asterisk (*) had histologic evidence of tumor 

regression.
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Figure 2. iNOS+ cells infiltrating SCC tumors lack HLA-DR and express CD11b, a phenotype 
consistent with MSDC
(a,b) Co-staining of SCC cryosections demonstrated that iNOS+ cells were evident in SCC 

tumors. (c,d) iNOS+ cells lacked expression of the dendritic cell markers HLA-DR and 

CD11c, (e) the macrophage marker CD163, (f) the T cell marker CD3, and (g) the 

endothelial marker CD34. (h) iNOS+ cells did express the myeloid marker CD11b. CD11b 

expression together with a lack of HLA-DR expression is a phenotype suggestive of MDSC. 

Similar findings were observed in a total of eight SCC tumors. Scale bar = 100 μM.
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Figure 3. MDSC are a major source of nitric oxide production in SCC tumors
(a) SCC tumors were dispersed by treatment with collagenase and the population of 

CD11b+HLA-DR− cells were studied by flow cytometry. Most CD11b+HLA-DR− cells 

expressed CD33, approximately half expressed iNOS and over half produced TGFβ. 

Representative histograms are shown and the mean and SEM of multiple donors are shown 

on the right (n=5 for CD33 and iNOS, n=3 for TGFβ) (b) Arginase I was increased in 

CD11b+ cells isolated by magnetic bead separation from collagenase dispersed tumors as 

assayed by qRT-PCR. The mean and SEM of 3 donors are shown. (c) In collagenase 

dispersed tumors, a mean 6% of total tumor cells were CD11b+ HLA-DR−CD33+ MDSC 

but these cells were rare in normal skin (Nml skin). (d) In many tumors, MDSC represented 

the majority of iNOS-expressing cells but non-MDSC cell types also expressed iNOS. (e) 

Analysis of SCC tumor supernatants using the Griess method demonstrated that NO was 

produced in SCC tumors. For each tumor, the mean and SEM of duplicate measurements of 

nitrate+nitrite are shown. (f,g) CD11b+ MDSC from SCC produce NO. CD11b+ MDSC 

were enriched by magnetic bead separation from collagenase treated tumors and cultured in 

vitro. Culture supernatants were analyzed for the presence of NO by the Griess method. The 

mean and SEM of measurements from three SCC are shown.
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Figure 4. NO and MDSC from SCC inhibit human endothelial cell E-selectin expression
(a) Human skin dermal microvascular cells (DMEC) were stimulated with either TLR7 

agonist activated APC (APC), mimicking physiologic stimulation, or the potent endothelial 

activator TNFβ in the presence or absence of the NO donor spermine NONOate (NO). 

Treated cells were immunostained for E-selectin and analyzed by flow cytometry. NO 

potently suppressed E-selectin upregulation in response to stimulated APC but only partially 

inhibited expression when endothelial cells were directly stimulated with TNFβ. (b) Percent 

inhibition of E-selectin expression by NO after stimulation with APC or TNFβ. The mean 

and SEM of three different endothelial donors are shown. Human umbilical vein endothelial 

cells (HUVEC) responded similarly in that NO completely abrogated E-selectin expression 

in response to stimulated APC (APC+NO) but only partially inhibited expression after 

stimulation with TNFβ. (c-e) MDSC from SCC suppress endothelial E-selectin expression in 

vitro. (c) Human HUVEC were stimulated with TNFβ in the presence or absence of 

collagenase dispersed cells from SCC tumors. A modest but reproducible inhibition in E-

selectin expression was observed. Representative histograms and individual results from 

four SCC tumors are shown, along with the mean and SEM of these measurements. (d,e) 

CD11b+ MDSC from SCC tumors suppress endothelial E-selectin expression. CD11b+ and 

CD11b− cell populations were obtained by magnetic bead separation from collagenase 

dispersed SCC tumors. HUVEC were stimulated with TNFβ in the presence or absence of 

CD11b+ and CD11b− cells. (d) Representative histograms and (e) individual results from 

three SCC tumors are shown, along with the mean and SEM of these measurements. 

CD11b+ MDSC reproducibly inhibited expression of endothelial E-selectin.
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Figure 5. MDSC from SCC express CCR2 and SCC produce the CCR2 ligand HBD3
(a) CD11b+HLA-DR− MDSC from collagenase dispersed SCC uniformly expressed CCR2 

whereas CD3+ T cells lacked CCR2 expression. (b) Immunostaining of SCC cryosections 

confirmed that iNOS+ cells in SCC tumors co-express CCR2. (c) RT-PCR analysis of SCC 

tumors and normal human skin demonstrated selective production of the CCR2 ligand 

HBD3 in SCC. (d) Immunostaining of SCC cryosections confirmed production of HBD3 by 

SCC tumor cells. Scale bar = 100 μM.
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Figure 6. Inhibition of iNOS activity restores vascular E-selectin expression in SCC tumors
(a) In vitro treatment of human SCC induced vascular E-selectin expression. SCC tumors 

were cultured for 24 hours in medium alone, TNFβ or with the iNOS inhibitor L-NNA. 

Tumors were then cryosectioned and stained for vascular E-selectin expression. SCC treated 

with TNFβ or iNOS inhibitor showed induction of vascular E-selectin expression on a subset 

of vessels. (b) iNOS inhibition potently induced vascular E-selectin expression. The mean 

and SEM of the % E-selectin expressing vessels in 10 high-power fields are shown. In vitro 

treatment of tumors with iNOS inhibitor induced vascular E-selectin at levels comparable to 

or greater than that observed after treatment with TNFβ. Results from four SCC tumors are 

shown; comparable results were observed in seven additional SCC. ***p<0.0005, **p<0.01, 

*p<0.05. Scale bar = 500 μM.

Gehad et al. Page 18

J Invest Dermatol. Author manuscript; available in PMC 2013 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


