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Abstract: Eosinophilic esophagitis (EoE) is a relatively new condition described as an allergic-mediated
disease of the esophagus. Clinically, it is characterized by dysphagia, food impaction, and reflux-like
symptoms. Multiple genome-wide association studies (GWAS) have been conducted to identify
genetic loci associated with EoE. The integration of numerous studies investigating the genetic
polymorphisms in EoE and the Mendelian diseases associated with EoE are discussed to provide
insights into the genetic risk of EoE, notably focusing on CCL26 and CAPN14. We focus on the genetic
loci investigated thus far, and their classification according to whether the function near the loci is
known. The pathophysiology of EoE is described by separately presenting the known function of
each cell and molecule, with the major contributors being eosinophils, Th2 cells, thymic stromal
lymphopoietin (TSLP), transforming growth factor (TGF)-β1, and interleukin (IL)-13. This review
aims to provide detailed descriptions of the genetics and the comprehensive pathophysiology of EoE.

Keywords: genetic susceptibility; pathophysiology; polymorphism

1. Introduction

Eosinophilic esophagitis (EoE) is a relatively new condition first described in 1978; its pathology
and phenotype were defined by Atwood et al. in 1993 and Straumann et al. in 1994 [1–4]. EoE is an
allergy-mediated disease of the esophagus that is characterized by significant esophageal eosinophilia
and esophageal dysfunction, such as dysphagia and food impaction [1,5–7]. Its diagnostic criteria are
difficult to define because its symptoms are unspecific and mimic those observed in gastroesophageal
reflux disease (GERD). Signs of damage to the esophageal barrier, such as tissue erosions and white
exudates, are found in patients with EoE [8]. The disease occurs both in pediatric and adult populations,
and is especially common in atopic males [9]. The overall prevalence of EoE seems to be increasing
progressively [10]. This phenomenon is a consequence of better recognition patterns that are more
likely to contribute to the increase in the incidence and prevalence of this condition [9,11]. Several
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environmental factors have been reported to contribute to the development of EoE. Twin studies have
shown that the prevalence of EoE is more common in cold and dry climates, along with other allergic
and autoimmune diseases [9,12,13]. Early life experiences such as premature delivery and antibiotic
and acid-suppressant use have been identified to be associated with EoE [14–16].

Multiple genome-wide association studies (GWAS) have been conducted to identify genetic loci
associated with EoE. Overexpression of several critical genes, including thymic stromal lymphopoietin
(TSLP) and calpain 14 (CAPN-14), was found to disrupt the esophageal barrier and enhance
immune-mediated inflammation [8,17,18]. We focus on the genetic loci investigated so far, and their
classifications, depending on whether the function of the genes near the loci is known. Furthermore,
the roles of inflammatory cells and various molecules, particularly TSLP, transforming growth factor
(TGF)-β1, and interleukin (IL)-13, in EoE pathophysiology are summarized. This review aims to
provide detailed and comprehensive information on both the genetics and pathophysiology of EoE.

2. Definition and Diagnosis of EoE

EoE is defined as a chronic, immune/antigen-mediated esophageal disease characterized clinically
by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant
inflammation [19,20].

For the last decade, diagnosis of EoE required an esophageal biopsy with 15 or more eosinophils
present in one high-power field even with an eight week or longer treatment with maximal dose
proton pump inhibitor (PPI). The recently updated consensus criteria in 2017 removed the PPI trial for
the diagnosis of EoE. Although ~50% of EoE patients show PPI-responsive esophageal eosinophilia
(PPI-REE), it is agreed that as PPI is a treatment for EoE, there is no need to diagnose the disease
primarily based on response to treatment [19]. As such, the updated diagnostics criteria for EoE
requires symptoms of esophageal dysfunction, ≥15 eosinophils per high-power field (~60 eos/mm2) on
an esophageal biopsy, and an assessment of non-EoE disorders that cause or potentially contribute to
esophageal eosinophilia (Box 1) [6,19,21].

Box 1. Secondary causes of eosinophilic esophagitis (EoE).

Eosinophilic gastrointestinal diseases
Gastroesophageal reflux disease (GERD)
Celiac disease
Crohn’s disease
Infection
Hypereosinophilic syndrome
Achalasia
Drug hypersensivity
Vasculitis
Pemphigus
Connective tissue disease
Graft vs. host disease

3. Genetics

The EoE transcriptome is a distributed section throughout the human genome, which shows
a conserved expression in the esophagus of patients with EoE [22,23]. The EoE transcriptome
has 574 genes expressed differently in tissues of children [2,24]. Studying genetic variants in EoE
transcriptome provides a deep understanding of the mechanisms of EoE, and there are still many
genes remaining with an unknown role in pathophysiology. The most highly expressed gene in the
EoE transcriptome is CCL26, the expression of which is induced by IL-13 [22,25,26]. The strongest
transcriptional changes occur at 1q21, which encodes the epidermal differentiation complex [22]. Genes
included in 1q21, such as filaggrin, show considerably minimal activity in EoE, which leads to the loss
of epidermal cell differentiation and impaired barrier function [22,27,28].
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3.1. Risk Genes

Candidate gene studies regarding EoE, GWAS, and analysis of its association with other monogenic
disorders are the main methods used to study the genetics of EoE [9]. These studies aim to identify
genetic loci that may contribute to EoE. Some of the genes have known functions, while others are
still unknown [14]. Some genetic risk loci are found in most EoE patients, while some are rare even
among these patients. In this review, we present identified, common, and rare genetic risk loci and
their known functions.

3.1.1. Common Risk Genes and Function

Table 1 summarizes the common risk genes identified thus far that have known functions with
further information on genetic risk loci, the p-value in the case of the GWAS approach, and the name of
another approach if used instead of GWAS (this is highlighted inside the bracket). Some of the genes
not described in this section are instead described with regard to EoE-associated diseases in Section 3.2.

Table 1. Common risk genes with known functions.

Genetic Risk Loci Gene at and Near Risk
Variants

p-Value in Case of GWAS
Approach (or the
Approach Used)

Known Function/Possible
Pathogenic Mechanisms

2p23.1 CAPN14 5 × 10−10

Encodes a proteolytic enzyme specific to
the esophagus that is induced by IL-13 and

involved in epithelial homeostasis
and repair

CCL26
(/eotaxin-3) (candidate gene) A potent eosinophil chemoattractant and

activating factor induced by IL-13

CRLF2 (candidate gene) TSLP receptor

FLG (candidate gene) Esophageal barrier function

IL-5/IL-13 (PheWAS) Th2 signaling

11q13.5
LRRC32

C11orf30 (EMSY)
CAPN5

4 × 10−11

LRRC32 is a TGF-β binding protein.
Possibly TFG-β signaling/epithelial
protease function/barrier function

EMSY is involved in
transcriptional regulation

12q13 STAT6 2 × 10−6 IL-13 responsive transcription factor, Th2
development

TGFβ1 (candidate gene) Th2 skewing and fibrosis

5q22.1 TSLP
WDR36 3 × 10−9

Potent Th2 skewing
Induces Th2 cell development and activates

eosinophils and basophils

19q13.11
ANKRD27

PDCD5
RGS9BP

2 × 10−9

ANKRD27 inhibits the SNARE complex
PDCD5 is involved in apoptotic pathways
RGS9BP is not expressed in the esophagus

or by immune cells

18q12.1 DSG1
DCC

(mapping/sequencing/phenotype
association)

7 × 10−6

Regulates esophageal epithelial
barrier function

TGFβR1/TGFβR2/PBN (phenotype association) Th2 skewing and fibrosis

PTEN (phenotype association) Regulation of eosinophil response

STAT3 (phenotype association) Engagement in signal pathway of growth
factors, hormones and multiple cytokines

SPINK5 (phenotype association) Esophageal barrier function

DOCK8 (phenotype association) Potent role in T-cell homeostasis

GWAS, genome-wide association studies. CAPN14, calpain-14. IL, interleukin. CCL26, chemokine ligand 26. CRLF2,
cytokine receptor-like factor 2. TSLP, thymic stromal lymphopoietin. FLG, filaggrin. PheWAS, phenome-wide
association studies. LRRC32, leucine-rich repeat containing 32. STAT, signal transducer and activator of transcription.
TGFβ, transforming growth factor beta. WDR, WD repeat domain. ANKRD, ankyrin repeat domain. PDCD,
programmed cell death. RGS9BP, regulator of G protein signaling 9 binding protein. DSG, desmoglein. DCC,
deleted in colorectal cancer. FBN, fibrillin. PTEN, phosphatase and tensin homolog. STAT, signal transducer and
activator of transcription. SPINK5, serine protease inhibitor Kazal-type 5. DOCK8, dedicator of cytokinesis 8.



Int. J. Mol. Sci. 2020, 21, 7253 4 of 20

When allergens are exposed to the esophageal epithelium, epithelial cells and basophils produce
TSLP [2,29,30]. TSLP plays an important role in promoting Th2 cell differentiation by inducing the
Th2-polarizing capacity of dendritic cells [22,31]. A TSLP single nucleotide polymorphism (SNP)
augments the Th2 response [2]. TSLP levels are significantly higher in patients with atopic disease,
including EoE [22,32]. In addition, SNPs in a gene encoding a component of the TSLP receptor,
CRLF2, are associated with increased EoE risk [33]. Activated Th2 cells produce cytokines such as
IL-4, IL-5, and IL-13. IL-4 promotes the differentiation of T cells into Th2 and B cells, eventually
leading to IgE secretion [2,34]. IL-5 and IL-13 induce the secretion of eotaxin-3 from epithelial
cells [26,29]. The eotaxin-3 gene, which induces eosinophil recruitment to the esophagus, has the
strongest transcriptome expression levels, i.e., approximately 53 times higher than in controls [2,35].
IL-13 also reduces the expression levels of genes in the epidermal differentiation complex such as
filaggrin and involucrin, thus weakening the barrier function of the squamous epithelium [29,36].
At the same time, locally activated eosinophils and mast cells produce TGF-β1, which triggers fibrotic
changes in the esophageal wall, which in turn is mediated by fibroblasts and periostin, thus leading to
smooth muscle dysfunction [24,29]. A SNP in the promoter of TGF-β1 is responsible for esophageal
dysfunction [2].

CAPN encodes a proteolytic enzyme specifically in the esophagus [18,22]. IL-13 induces the
activity of this enzyme, and CAPN14 invokes a pathway that alters basic epithelial cell functions,
including barrier integrity [18,22]. STAT6 is known to be an IL-13-activated transcription factor;
it induces CAPN expression [37]. Thus, SNPs in CAPN14 and STAT6 are common genetic risk factors
in EoE. CAPN14 has also been identified as a regulator of desmoglein 1(DSG1) [38]. DSG1 regulates
esophageal epithelial barrier function and immune responses [28]. DSG1 is decreased in EoE and
is associated with an impaired barrier phenotype [9,28]. FLG is associated with esophageal barrier
integrity maintenance [33,36,39].

LRRC32, which encodes a TGF-β binding protein, and C11orf30, which encodes EMSY, are involved
in transcriptional regulation [22]. EMSY and LRRC32 are both expressed in esophageal epithelial cells;
however, the roles of these proteins in EoE are yet to be reported [38].

19q13 is another genetic risk locus, and the genes ANKRD27, PDCD5, and RGS9BP are near
this location. The protein ANKRD27 inhibits the activity of the SNARE complex, which could have
important implications for apical transport in esophageal epithelial cells and in wound healing [14,40,41].
The PDCD5 protein is known to be involved in apoptotic pathways, transcriptional regulation, DNA
damage response, and cell cycle control [42]. However, RGS9BP encodes a product not expressed in
the esophagus and immune cells [14,43,44]. Further studies are needed to identify the role of these
genes, and their associated proteins, in EoE.

Several other genetic risk loci were identified by GWAS, but their functions remain obscure.
The locus, tag of genetic variant, and p value of each gene are specified in Table 2 [14,45–48]. These genes
may have yet to be discovered functions that contribute to the genetic mechanism of EoE.

Table 2. Common risk genes with unknown functions.

Genetic Risk Locus Tag Genetic Variant Genes at and Near Risk Variants p-Value

1p13.3 rs2000260 SLC25A24 7 × 10−7

1p36.13 rs28530674 KIF17 3 × 10−7

rs2296225 1 × 10−7

1p32.2 rs11206830 AC119674.2 8 × 10−8

rs77569859 3 × 10−10
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Table 2. Cont.

Genetic Risk Locus Tag Genetic Variant Genes at and Near Risk Variants p-Value

3q26.32 rs6799767 4 × 10−7

4q21.1 rs13106227 SHROOM3 4 × 10−6

rs1986734 1 × 10−6

rs3806933 2 × 10−8

rs252716 4 × 10−14

5q23.1 rs2055376 SEMA6A 7 × 10−8

5q14.2 rs1032757 2 × 10−6

6p11.2 rs9500256 AL445250.1 5 × 10−6

8p23.1 rs2898261 XKR6 5 × 10−8

8q24.12 rs11989782 SNTB1 7 × 10−6

8q22.2 rs13278732 ERICH5 6 × 10−6

10p12.31 rs11819199 MIR4675 3 × 10−7

10q23.1 rs2224865 MARK2P15-LINC02650 9 × 10−6

rs2155219 4 × 10−7

rs77301713 1 × 10−7

11q14.2 rs118086209 CCDC81 2 × 10−7

11q21 rs1939875 NR 3 × 10−6

14q12 rs8008716 NOVA1 7 × 10−8

15q13.3 rs8041227 LOC283710, KLF13 6 × 10−10

16p13 rs12924112 CLEC16A 2 × 10−9

16q24.1 rs371915 MEAK7 2 × 10−8

17q24.3 rs6501384 CALM2P1-AC011990.1 6 × 10−6

17q25.3 rs3744790 TIMP2, CEP295NL 8 × 10−7

rs9956738 4 × 10−7

21q22.3 rs17004598 HSF2BP 1 × 10−7

22q11.21 rs2075277 P2RX6 9 × 10−7

SLC25A24, solute carrier family 25 member 24. KIF17, kinesin-like protein 17. SHROOM3, shroom family member
3. SEMA6A, semaphorin 6A. XKR6, XK related 6. SNTB1, syntrophin beta 1. ERICH5, glutamate-rich protein 5.
MIR4675, microRNA 4675. MARK2P15, microtubule affinity regulating kinase 2 pseudogene 15. LINC02650, long
intergenic non-protein-coding RNA 2650. CCDC81, coiled-coil domain-containing protein 81. NOVA1, the NOVA
alternative splicing regulator 1. KLF13, kruppel-like factor 13. CLEC16A, a C-type lectin domain containing 16A.
MEAK7, MTOR associated protein, Eak-7 homolog. CALM2P1, calmodulin 2 pseudogene 1. TIMP2, a tissue
inhibitor of metalloproteinases 2. CEP295NL, CEP295 N-terminal. HSF2BP, a heat shock transcription factor 2
binding protein. P2RX6, purinergic receptor P2X 6.

3.1.2. Rare Risk Genes and their Function

Studies on risk genes rarely found in EoE patients are emerging. Rochman et al. identified 39 rare
variants by performing whole-exome sequencing (WES) in 33 patients; these variants have the potential
to alter the biological function of EoE-associated genes [14,27]. Sherrill et al. also performed WES in
63 patients, focusing particularly on families, identifying 5 rare, damaging variants in dehydrogenase
E1 and transketolase domain-containing 1 (DHTKD1) [14,49]. Conducting careful studies to identify
novel rare genetic variants of EoE will provide insights into the complex pathophysiology of EoE and
associated diseases.
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3.2. Associated Diseases of EoE

EoE is often studied with associated Mendelian diseases. Table 3 summarizes the Mendelian
diseases associated with EoE [14,22,38]. Studying these co-occurring diseases might help to identify
certain genes and the corresponding pathogenic mechanisms of EoE.

Table 3. Mendelian diseases associated with EoE.

Mendelian Disease Associated with EoE Genetic Mutation Plausible Etiologic Mechanism

Loeys-Dietz syndrome (LDS) Mutations in TGFBR1 and TGFBR2 Enhanced TGF-β signaling

Ehlers-Danlos syndrome,
hypermobility type

Unknown; other subtypes of
Ehlers-Danlos syndrome are caused

by mutations in collagen genes

Disrupted joint and skin
development; increased activity of
TGF-β due to altered binding by

extracellular matrix

Severe atopy syndrome associated with
metabolic wasting (SAM syndrome) Homozygous mutations in DSG1 Disrupted epithelial barrier

Neherton syndrome Loss-of-function mutations in SPINK5 Unrestricted protease activity of
KLK5 and KLK7

PTEN hamartoma tumor
syndrome (PHTS) Mutations in PTEN

Inhibited regulation of the
phosphatidylinositol-4,5-biphosphate
3-kinase (PI3K) signaling pathway

Autosomal dominant
hyper-IgE syndrome Deleterious mutations in STAT3 Dysregulated response to IL-6 and

possibly IL-5

Autosomal recessive hyper-IgE syndrome Loss-of-function mutations in DOCK8
Loss of T-cell homeostasis; lack of

durable secondary antibody
response against specific antigens

ERBIN deficiency Loss-of-function mutation in ERBIN
Increased TGF-β pathway

activation in T cells with increased
Th2 responses

TGFBR, transforming growth factor beta receptors. TGF-β, transforming growth factor beta. DSG1, desmoglein-1.
SPINK5, serine protease inhibitor Kazal-type 5. KLK5, kallikrein-related peptidase 5. PTEN, phosphatase and tensin
homolog. STAT3, a single transducer and activator of transcription 3. IL, interleukin. Ig, immunoglobin. DOCK8,
a dedicator of cytokinesis 8. ERBIN, Erbb2 interacting protein.

Connective tissue disorders (CTDs) (e.g., Loeys-Dietz syndrome (LDS) and Ehlers-Danlos
syndrome (hypermobility type)) are the most well-recognized diseases associated with EoE [9,22,50].
A diagnosis of EoE increases the risk of developing a CTD by eight-fold [34,38]. Increased production
and/or signaling of TGF-β and dysregulated expression of collagen in the esophagus commonly occur
in both CTD and EoE [22,38,51–53]. Specifically, LDS is caused by gain-of-function mutations in
the TGF-β receptors, TGFBR1, and TGFBR2, whereas Ehlers-Danlos syndrome is caused by genetic
mutations in collagen-encoding genes [9,38,54–56].

Severe atopy syndrome associated with metabolic wasting (SAM syndrome) also co-occurs with
EoE [22]. Downregulation of DSG1 in the esophageal epithelia is reported in both SAM syndrome and
EoE [2,8,38]. DSG1 is a major constituent of desmosomes; thus, downregulation of DSG1 leads to the
impaired barrier phenotype [9,28].

EoE is enriched in patients with Netherton’s syndrome, which is caused by autosomal dominant
loss-of-function mutations in the protease inhibitor SPINK5 [22,38,57,58]. Without SPINK5, which is a
regulator of the epidermal proteases kallikrein-related peptidase KLK5 and KLK7, the skin is disrupted
substantially [38,59]. The association between EoE and Netherton’s syndrome shows that barrier
impairment has a central role in both diseases [38].

PTEN hamartoma tumor syndrome (PHTS) is associated with EoE [9,60]. PHTS carries a
>200-fold increased risk for eosinophil-associated gastrointestinal disorders, including EoE [9,60].
PHTS is caused by mutations in the tumor suppressor PTEN, which is a critical regulator of the
phosphatidylinositol-4,5-biphosphate 3-kinase (PI3K) pathway [38,61]. Moreover, eosinophils are
capable of expressing PTEN [38].
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Autosomal-dominant hyper-IgE syndrome, caused by deleterious mutations in STAT3, is associated
with EoE [4]. Deleted function of STAT3 leads to dysregulated response to IL-6, which causes deficit in
T-helper 17 cells, central T cell memory, and memory B cells [13,38]. STAT3 is activated in eosinophils
following IL-5 signaling, but the role of eosinophils in hyper-IgE is yet to be discovered [13,38].

Autosomal-recessive hyper-IgE syndrome, caused by loss-of-function mutations in DOCK8, is also
associated with EoE [9,62]. DOCK8, which is expressed on human eosinophils, functions in T-cell
homeostasis, and in a durable secondary antibody response [38,63]. It maintains the morphological
shape and nuclear integrity of T and NK cells during chemotaxis, through CDC42 and p21-activated
kinase (PAK) [38,64].

In addition, ERBB2-interacting protein (ERBIN) deficiency is related to EoE [22,65].
ERBIN downregulates TGF-β signaling [22,65]. EoE is also known to be associated with esophageal
granular cell tumors, but it is uncertain whether this is a disease association or consequence of
EoE [22,66].

4. Pathophysiology

EoE is caused by an allergic inflammation reaction in patients that have genetic and environmental
risks of EoE, and it relies on both the innate and adaptive immune pathways. Thus, the underlying
pathophysiology of EoE is complex and diverse pathways are involved, with many immune cells or
cytokines contributing to this disease. Figure 1 shows a compact overview of the EoE pathophysiology.
Recently, approximately 50% of EoE patients were found to fall into the category of PPI-REE; therefore,
the pathophysiological characteristics to distinguish PPI-REE from EoE are important future research
fields [19,67].
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Figure 1. Overview of EoE pathophysiology. Allergens stimulate the esophageal epithelium, inducing TSLP/IL-33, leading to stimulation of Th2 cells, NK cells, mast cells, 
basophils, and iLC2. Main receptors on each cell are indicated. NK cells, mast cells, basophils, iLC2, and Th2 cells induce IL-4 which induce Th2 differentiation. IL-4 and 
IL-13 induced by Th2 cells induce eotaxin-3 (CCL26), which stimulates eosinophils to secrete IL-5. IL-5, secreted by Th2 cells and mast cells, also stimulate eosinophils. 
Mast cells also induce TGF-β1 which stimulate eosinophils and fibroblasts, as outlined in the blue box. IL-13 induces impaired barrier function and tissue remodeling, as 
outlined in the orange box.

Figure 1. Overview of EoE pathophysiology. Allergens stimulate the esophageal epithelium, inducing TSLP/IL-33, leading to stimulation of Th2 cells, NK cells, mast
cells, basophils, and iLC2. Main receptors on each cell are indicated. NK cells, mast cells, basophils, iLC2, and Th2 cells induce IL-4 which induce Th2 differentiation.
IL-4 and IL-13 induced by Th2 cells induce eotaxin-3 (CCL26), which stimulates eosinophils to secrete IL-5. IL-5, secreted by Th2 cells and mast cells, also stimulate
eosinophils. Mast cells also induce TGF-β1 which stimulate eosinophils and fibroblasts, as outlined in the blue box. IL-13 induces impaired barrier function and tissue
remodeling, as outlined in the orange box.
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4.1. Role of Inflammatory Cells

4.1.1. Eosinophils

Eosinophils are recruited from the blood with local chemotaxis and they seem to be integral to
EoE disease pathogenesis [2,68–71]. Eosinophils release eosinophilic peroxidase (EPO), eosinophil
cationic protein (ECP), and major binding protein (MBP), which directly causes tissue damage and
esophageal dysmotility [2,9,72]. ECP damages cellular membrane barriers, and MBP increases smooth
muscle reactivity by causing the dysfunction of vagal muscarinic M2 receptors, while also provoking
mast cell and basophil degranulation [2,9]. Eosinophils also serve as antigen-presenting cells (APCs)
with MHC-II presentation as well as co-stimulatory molecules (CD40, CD28, CD86, and CD27) [1,9,73].
Eosinophils secrete a variety of cytokines (IL-2, IL-4, IL-6, IL-10, IL-12) which together can activate
T cells [9,73]. Eosinophils also produce IL-1, IL-3, IL-4, IL-5, IL-13, TGF-β, eotaxin-3, RANTES,
macrophage inflammatory protein 1 (MIP-1), tumor necrosis factor (TNF)-α, granulocyte-macrophage
colony-stimulating factor (GM-CSF), platelet-activating factor (PAF), and leukotriene C4 (LTC4) [1,9].

The importance of eosinophils in EoE has been studied in both mouse and human models.
Mice genetically engineered to lack eosinophils and mice in which eosinophils are selectively targeted
via antibody treatment showed a decrease in the symptoms in many, but not all features [9,69,70,74].
This implies that an EoE-like disease is not completely dependent on eosinophils. In vivo, experimental
adoptive transfer of antigen-pulsed eosinophils produced antigen-specific T cell responses, which
proves T cell activation by eosinophils [9].

4.1.2. T Cells

In EoE, the numbers of CD3+, CD4+, and CD8+ T cells, as well as the CD8+/CD4+ T cell ratio,
increase in the esophageal mucosa [1,9,75,76]. As observed in case of many other allergic reactions,
Th2 cells are mainly involved in the inflammatory response [9]. Higher abundances of pathogenic
effector Th2 cells (peTh2 cells) were detected in patients with EoE; which were chemoattractant
receptor-homologous molecule-positive (CRTH2+), hematopoietic prostaglandin D synthase-positive
(HPSD+), and CD161 high CD4+ T cells [22,77,78]. CRTH2 was present on peTH2 cells, eosinophils,
and basophils and in response to prostaglandin D2 changed the chemotaxis of these cells [22]. Th2 cells
produce type 2 cytokines such as IL-4, IL-5, and IL-13, which play a key role in the pathogenesis of EoE.
In murine models, recombination activation gene 1 (RAG1) knockout mice were completely protected
from experimentally derived EoE, whereas CD4 knockout mice were partially protected and CD8 and
B cell knockout mice were not protected [1,9,79].

Regulatory T cells were increased in esophageal biopsies, but not in the percentage of total T cells;
thus, their significance in EoE is unclear [1].

4.1.3. Mast Cells

The esophageal mast cell content increased significantly, and mast cell degranulation was detected
in nearly all patients with EoE [1,33,80,81]. Genes specific to mast cells, such as those that encode
carboxypeptidase 3A (CPA3), FcεR-I, and tryptase (TPSAB1), were highly expressed in the EoE
transcriptome [1,9]. IgE was bound by the FcεR-I receptor in the membrane of mast cells, and IgE may
have contributed to a local IgE-mediated immediate hypersensitivity response in the esophagus [9,80].
Mast cells secrete diverse products such as cytokines, proteases, and bioactive compounds, and many
of these products lead to esophageal remodeling and dysmotility [9,33].

In murine models, mast cell numbers and eosinophil numbers increased as EoE symptoms
increased [1,81]. Mice with depleted IgE and mast cells still showed EoE-like symptoms, but they
showed reduced muscle cell hyperplasia and hypertrophy [9,81,82]. This implied that although mast
cells were not required in experimentally derived EoE, they were required to increase the thickness of
the muscularis mucosa [33]. Further studies in murine models have found that both IL-5 and IL-9
transgenic mice had increased numbers of mast cells, suggesting that both IL-5 and IL-9 promote
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mast cell activation and maturation [1,83]. A clinical trial using IL-5 antibodies showed that mast cell
numbers were correlated with EoE symptom severity, while eosinophil numbers were not [9,84].

4.1.4. Basophils

Basophils are known to play a key role in allergic responses. Increased esophageal basophilia was
observed in EoE, and these basophils showed increased ST2 expression [1,85,86]. Basophils have been
reported to secrete various type 2 cytokines and act as antigen presenting cells (APCs) to induce Th2
cells [33,87]. In particular, basophils expressed the receptor of TSLP (TSLPR) [2,88]. Basophil-deficiency
led to the prevention of EoE; furthermore, TSLP and basophils are required to maintain EoE after
disease establishment [89].

By observing EoE biopsies, Siracusa et al. showed that TSLP affected basophil hematopoiesis [86].
In a murine model of EoE, Noti et al. suggested that basophils were critical to eosinophil recruitment
via TSLP [1,90]. In addition, in a TSLP-dependent, experimentally derived EoE model, an increased
number of basophils were recruited in an ST2-dependent manner, implying that IL-33 may induce
basophil recruitment [33,91].

4.1.5. Dendritic Cells

Dendritic cells normally reside in the esophageal epithelium and an increased number of these
cells were found in patients with EoE [33,75,76]. There was evidence that dendritic cells may present
antigens in EoE [9,79,92,93]. Langerhans cells, a type of dendritic cells found in the esophagus,
expressed FcεRI, which was correlated with the Th2 response level [9,94]. These Th2 responses were
induced by allergens and/or environmental adjuvants, likely via communication between resident
stromal and dendritic cells [9,95,96].

4.1.6. Innate Lymphoid Cells

Innate lymphoid cells (ILCs) are resident immune cells in tissues that may serve as sources of
type 2 cytokines [9,33,97–99]. Group 2 ILCs (ILC2s) expressed CRTH2 and secreted large quantities of
type 2 cytokines in response to IL-25, IL-33, and TSLP [9].

In murine models, ILCs were important in infection and inflammation responses, as well as in
tissue repair of EoE [9,99]. Doherty et al. reported that ILC2s were present in EoE biopsies, with an
increased level in active EoE, and this correlated with the number of eosinophils found in biopsies [9,99].

4.1.7. Invariant Natural Killer T Cells (iNKT Cells)

Invariant natural killer T cells (iNKT cells) recognize lipid and glycolipid antigens that are
presented by CD1d molecules, and they have the capacity to produce type 2 cytokines [9,33,100–102].
Mucosal iNKT tolerance to environmental antigens can mediate allergic sensitization and tissue
inflammation in the absence of tolerance [9,103].

In murine models, CD1d-deficient mice were protected from experimental EoE, and activation of
iNKT was sufficient to induce EoE. Furthermore, iNKT neutralized mice were also protected from
experimental EoE [9,104,105]. Recently, a possible role of iNKT cells in protecting from EoE-specific
pathologies was shown in RAG1-deficient mice [9]. Fewer iNKT cells were found in the peripheral
blood of patients, while increased numbers of iNKT were found in the esophagus [33,105,106]. iNKTs
from patients expanded more readily and produced more IL-13 in response to stimulation [9,106].

4.1.8. B Cells

Mouse models of EoE showed that B cell-deficient mice still developed EoE, suggesting that EoE
does not rely on B cells [1,79].
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4.2. Role of Various Molecules

4.2.1. TSLP

TSLP and its receptor TSLPR are implicated in various EoE pathways. TSLP expression was
increased in esophageal tissues in patients with EoE [89]. TSLP mainly induced a type 2 immune
response [89]. TSLPR-deficient mice were protected from experimentally derived EoE [89,90].

4.2.2. TGF-β1

TGF-β1, produced by mast cells, eosinophils, and esophageal epithelial cells, is a key cytokine for
epithelial fibrosis and epithelial cell transformation [9]. Elevated expression of TGF-β1 was found in
the esophageal biopsy samples of patients with active EoE when compared to that in samples from
control patients or patients with GERD [9,70,107–109].

TGF-β1 can have profibrotic effects on esophageal fibroblasts [89] and TGF-β1 can directly induce
the expression of profibrotic genes such as fibronectin, collagen I, periostin, and smooth muscle actin
in EoE fibroblasts [89]. Studies on murine models support this function; the TGF-β1 pathway mediator
SMAD2/3 was important in esophageal fibrosis, and SMAD3-deficient mice were partially protected
from EoE-associated fibrosis [68,110]. TGF-β1 also affects associated cellular functions. TGF-β1 can
alter the contraction of collagen gels in esophageal smooth muscle cells [52,53,68]. This function has
recently been found to rely on the expression of phospholamban (PLN), a protein that regulates calcium
flux [52,68]. EoE esophageal smooth muscles expressed PLN, while the absence of PLN was found in
controls [52,68]. Inhibition of PLN expression and signaling through TGF-β receptor I both decreased
esophageal smooth muscle contraction in response to TGF-β1 [52,68].

Studies of human epithelial cells showed that TGF-β1 induced epithelial mesenchymal
transformation, with increased vimentin expression [68,111]. The degree of epithelial mesenchymal
transformation correlated positively with both TGF-β1 expression and eosinophil numbers [53,68,107].

4.2.3. IL-4

IL-4 is secreted by Th2 cells, NK cells, and TSLP-dependent basophils [2,34]. IL-4, but not IL-13,
induced Th2 cell differentiation, differentiation of naive T cells into Th2 and active B cells class switching
to produce IgE [9].

4.2.4. IL-5

IL-5 is secreted by Th2 cells, mast cells, and eosinophils [9,112]. IL-5 promotes eosinophil
proliferation, survival, activation, and chemotaxis [1]. IL-5 and its receptor were expressed in
esophageal tissue in EoE, and it increased the IL-5 mRNA and protein expression levels, which were
observed in the esophagus of EoE patients [89,93]. Previous studies of anti-IL-5 therapy in humans
were not effective in improving the symptoms of EoE, although protective effects against esophageal
eosinophilia were observed [9,109].

4.2.5. IL-13

IL-13, a key cytokine and the most studied cytokine in EoE pathogenesis, is secreted by Th2
cells and activates eosinophils [9,93,113,114]. Esophageal IL-13 overexpression by Th2 cells induces
CCL26, eotaxin-3, and periostin expression, eosinophilic recruitment by upregulation of an eosinophil
chemokine, and CAPN14 expression, which was responsible for STAT6 and IL-33 production [2,34].
IL-13 downregulates the expression of DSG-1, filaggrin, EDC, and involucrin, which are proteins
important in epithelial integrity and barrier function [9,28,36]. In addition, independent of eosinophilia,
IL-13 induces tissue remodeling by promoting collagen deposition, angiogenesis, and epithelial
hyperplasia [9,71].
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In murine models, IL-13 induced EoE and tissue remodeling whereas IL-13-deficient mice
showed improvements in esophageal symptoms [9,71,115]. In human trials, anti-IL-13 reduces tissue
eosinophilia [1,116,117].

4.2.6. IL-15

An increased amount of IL-15 is observed in patients with EoE and in murine models [9].
IL-15 contributes to CD4+ T and iNKT cell growth, including the synthesis of IL-5 and IL-13 in
EoE [9,25,36,70,118].

4.2.7. Eotaxin-3 (CCL26)

Eotaxin-3, mainly produced by esophageal epithelial cells through the IL-13 signaling pathway,
and is implicated in eosinophil trafficking to the esophagus in patients with EoE [9,26]. Eotaxin-3 is
the most abundant EoE chemokine regardless of the age, sex, and atopic status of the patient [1,26,119].
Microarray analysis showed that eotaxin-3 has the largest fold change in mRNA expression level
between patients with EoE and controls [89].

In murine models, mice lacking the eotaxin receptor CCR3 were protected from developing
experimental EoE [9,26].

4.2.8. IgE and IgG4

IgE is a cytokine that contributes to many atopic pathways; however, growing evidence suggests
that IgE has no direct role in EoE [89]. B cell-deficient mice still developed EoE [1,79]. IgE was not
elevated in all patients with EoE and omalizumab, an anti-IgE monoclonal antibody, was ineffective in
the treatment of EoE [89,120].

Increased levels of IgG4 were observed in EoE esophageal tissues [89,120,121]. However,
the specific contribution of IgG4 in EoE is yet to be discovered [89].

4.2.9. Prostaglandins

Prostaglandins affect the eosinophil pathway in the esophagus [9,122]. Prostaglandin inhibitors
showed protective effects against EoE-like inflammation [9,123]. The chemoattractant receptor (CRTH2)
expressed on Th2 cells is the receptor for prostaglandin D2 (PGD2) and mediated the chemotaxis of
Th2 cells, eosinophils, and basophils [9,123].

4.2.10. Additional Cytokines

Several studies have identified additional cytokines in the EoE pathway. Collison et al. found that
TNF-related, apoptosis-inducing ligand (TRAIL) controlled MID1 and TSLP expression, inflammation,
fibrosis, smooth muscle hypertrophy, and expression of cytokines in experimentally derived EoE.
These included cytokines such as TSLP, CCL11, CCL20, CCL24, IL-5, IL-13, IL-25, and TGF-β [9,124].
De Souza et al. identified that macrophage migration inhibitory factor (MIF) induced eosinophil
infiltration and remodeling in EoE in a murine model [9,125]. Dutt et al. identified that allergen-induced
IL-18 promoted IL-5-and iNKT-dependent EoE pathology [9,126].

5. Summary

Eosinophilic esophagitis (EoE) is a relatively new allergy-mediated condition. In this
comprehensive review, we focused on providing a detailed description of both common and rare
genetic risk loci of EoE. The function of various common and rare genetic loci remains unknown (Table 2,
Section 3.1.2.), and further genetic studies should focus on revealing these roles. The pathophysiology of
EoE is complex, with a network of various cells and molecules contributing to it, especially eosinophils,
Th2 cells, TSLP, TGF-β1, and IL-13. Molecules that have not yet been identified may contribute to
the mechanism of EoE. Moreover, although patients with PPI-REE account for about 50% of patients
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with EoE, the distinguishing genetics and pathophysiology have not yet been identified and should be
investigated further.
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